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ABSTRACT: Carvone is a sustainable and readily available 
starting material for organic synthesis. Herein, we present the 
syntheses of various natural product scaffolds that rely on a novel 
benzannulation involving the α-methyl group (C-10) of carvone 
to afford a versatile tetralin. The utility of our synthetic approach 
is highlighted by its application to a short synthesis of the ent-3,4-
seco-atisane diterpenoid (−)-crotogoudin. The 13-step enantiospe-
cific synthesis features a regioselective double oxidative dearoma-
tization, a Diels–Alder cycloaddition with ethylene gas (to con-
struct the bicyclo[2.2.2]octane framework), and a final acid-
mediated lactonization. The versatility of this benzannulation 
strategy is demonstrated by its utility in the preparation of the 
carbon skeleton of ent-3,4-seco-abietane diterpenoids using an 
intramolecular oxidative dearomatization.  

A key aspiration in pursuing total syntheses of complex mole-
cules in the modern era is to maximize sustainable practices.1 
Designing highly efficient synthetic strategies, as well as powerful 
methods to implement them, are paramount to realizing this ob-
jective.2 In addition to considerations of strategies and methods, 
the choice of readily available and sustainable starting materials 
contributes substantially to achieving the goals of a modern syn-
thesis. In this context, the pool of chiral compounds including 
amino acids,3 sugars,4 and terpenes5 (the ‘chiral pool’)6 has served 
admirably as starting materials for many practical and inspiration-
al total syntheses over the last century. With regard to the total 
synthesis of terpenoid natural products,7 carvone has been a fre-
quently employed starting material due to its ready availability in 
both enantiomeric forms, as well as the potential for the orthogo-
nal derivatization of its functional groups.8 

Despite the wealth of reactivity that has been established for the 
α-methyl (C-10), isopropenyl, and enone (i.e., double bond and 
carbonyl) groups of carvone (Figure 1), we recognized that direct 
carbon-carbon bond formation involving the α-methyl group has 
been underexplored. Direct C–C bond formation to this methyl 
substituent holds significant potential in the context of natural 
product synthesis. Specifically, we envisioned that if benzannula-
tion of the carvone six-membered ring could be achieved by en-
gaging the C-10-methyl and enone carbonyl groups, the stage 
could be set to access myriad natural product classes. In particu-
lar, numerous natural product scaffolds could arise from benzan-
nulation following sequential diastereoselective functionalization 
α to the enone carbonyl group (i.e., at C-6) of carvone.9 For ex-
ample, 3,4-seco-atisane natural products10 such as agallochaol 

C10a (Figure 1, Panel A) could be accessed from (S)-carvone 
whereas 3,4-seco-abietanes including seco-hinokiol11 or 
callicarpic acid A12 (Figure 1, Panel B) could arise from (R)-
carvone.  

Figure 1. Benzannulation of carvone: a unified approach toward 
terpenoids. 
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In this Communication, we report our initial investigations into 
developing this potentially unifying strategy, which has afforded 
the frameworks of several terpenoid secondary metabolites via 
short diastereoselective sequences. The virtues of this approach 
are borne out in a short, enantiospecific total synthesis of the ent-
3,4-seco-atisane diterpenoid (–)-crotogoudin (1)13 in 13 steps 
from (S)-carvone. 

We commenced our studies with the preparation of benzo-fused 
bicycle 6 (Scheme 1A), bearing allyl and methyl groups at C-6 
(carvone numbering). The methyl group is resident in many of the 
natural products that could arise from this benzannulated interme-
diate, whereas the choice of the allyl substituent was dictated by 
its facile introduction as well as its versatility for subsequent deri-
vatizations. Following a well-established sequence, known car-
vone derivative 2 was easily prepared through a sequential meth-
ylation/allylation protocol.9c Conjugate reduction using L-
Selectride® followed by oxidative work-up affords the corre-
sponding ketone,14 which is converted to vinyl triflate 3 upon 
deprotonation and treatment of the resulting enolate with Comins’ 
reagent.15,16 Heck reaction of 3 with ethyl acrylate as the cross-
coupling partner yields an ethyl enoate (4), which upon saponifi-
cation provides acid 5, the substrate for benzannulation. 
Scheme 1. Synthesis of hexadienoic acid 5 and initial ex-
ploration of the proposed benzannulation. 

 

We anticipated that benzannulation would be achieved by con-
version of carboxylic acid 5 to the corresponding ketene17 (9, 
Scheme 1B) by ε-deprotonation in mixed anhydride intermediate 
8.18 In turn, 6π electrocyclization of 9, aromatization, and acyla-
tion of the resulting phenol would yield 6, consistent with the 
precedent of Murali and Rao.19 Several conditions (A–C), as out-
lined in Scheme 1A, were explored to effect the benzannulation. 
Using the conditions reported by Murali and Rao (Condition A), 
only a 13% yield of 6a was isolated from a messy reaction mix-
ture.20 A switch to propionic anhydride as the solvent, which 
could be heated to 160 °C, led to a substantial increase in yield to 
42% and the isolation of the desired bicycle 6b and, surprisingly, 

constitutional isomer 7b in a 1:1 ratio. A Cope rearrangement21 of 
8 prior to ketene formation and electrocyclization likely explains 
the genesis of 7b through conformer 8’. Full conversion of start-
ing material 5 was achieved by heating the reaction mixture to 
180 °C for 5 days, resulting in a combined yield of 59% of 6b and 
7b (1:1.4 ratio). 

In order to obviate the competing Cope rearrangement and with 
an eye toward application of the benzannulated bicycle to the 
synthesis of the diterpenoids illustrated in Figure 1, the allyl group 
of ester 4 was converted to an n-propyl hydroxy group (Scheme 
2). This was achieved by chemoselective hydroboration of the 
allyl group in the presence of the isopropenyl group using Wil-
kinson’s catalyst (1 mol % loading) and catecholborane followed 
by oxidation of the resulting alkylborane.22,23 Saponification of 
the intermediate hydroxyester gave acid 10 in 83% yield over 2 
steps. Benzannulated bispropionate bicycle 11 was formed in 82% 
yield upon heating 10 in propionic anhydride to 180 °C for 5 
days. 
Scheme 2. Completion of the synthesis of crotogoudin via a 
double-oxidative dearomatization strategy.   

 
Following procedures adapted from Kunesch and Kondo,24 the 

phenyl propionate in 11 was selectively cleaved using tetra-
methylguanidine. This set the stage for a position selective oxida-
tive dearomatization to afford dienone 12 (along with the corre-
sponding para-quinol ether and isomeric masked ortho-
benzoquinone as side products in 11–13% yield, respectively).25,23 
The observed selectivity in this iodine(III)-mediated oxidative 
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dearomatization is rather unusual and has, to the best of our 
knowledge, only been reported by Mal and co-workers on simpler 
substrates.26 Inspired by Fukuyama’s recent synthesis of (−)-
lepenine,27 a diastereoselective [4+2] cycloaddition of cyclohexa-
dienone 12 with ethylene was envisioned. However, in accord-
ance with investigations by Liu and co-workers, compound 12 did 
not readily undergo the desired Diels–Alder reaction.28 Cycload-
dition only proceeded under pressure and at elevated temperature 
(70 bar, 140 °C, 5 d) to afford tricycle 13 in 90% yield (6:1 d.r.).29 
At this stage, Wittig olefination of the ketone group followed by 
acid treatment removed both the propionyl group and cleaved the 
dimethyl ketal. The resulting primary hydroxyl was oxidized to 
the carboxyl group to provide seco-crotogoudin (14) in 75% yield 
over 2 steps.30,31 Lactonization of 14 to afford (–)-crotogoudin 
was fraught with complicating side reactions.23 Ultimately, condi-
tions were identified that provided crotogoudin (1) in 16% yield 
(2.9% total yield over 13 steps), along with rearranged lactone 15 
in 14% yield.32 Current efforts are directed at identifying condi-
tions that provide 1 more selectively and in higher yield.33 Croto-
goudin prepared using the strategy outlined here provided spectral 
and analytical data consistent with those obtained during its pre-
vious syntheses by Carreira [(+)-crotogoudin, 27 steps,34 1.4% 
overall yield]13c and Liu [(±)-crotogoudin, 16 steps,34 3.1% over-
all yield]13b as well as from its isolation by Dumontet and Ra-
soanaivo from croton goudotii.13a 

Notably, our synthesis plan affords opportunities to access oth-
er diterpenoid secondary metabolites including the atisane and 
abietane frameworks outlined in Figure 1. For example, ester 
cleavage of bispropionate bicycle 11 (Scheme 3) and subsequent 
intramolecular oxidative dearomatization35 of the intermediate 
phenol (not shown) provided dienone 16. Selective reduction of 
the less substituted double bond of the cyclohexadienone moiety 
of 16 to yield α,β-unsaturated ketone 17 was achieved using a 
combination of MAD36 and L-Selectride®.37 A 1,2-addition of an 
isopropyl group using Knochel’s method38 readily delivered al-
lylic alcohol 18. The direct treatment of this tertiary alcohol with 
a proton source results in elimination to key intermediates (19 and 
20) for the synthesis of seco-abietane congeners such as 9-
hydroxycallicarpic acid A and seco-hinokiol, respectively.  
Scheme 3. Synthesis of secondary metabolite congeners via 
an intramolecular oxidative dearomatization pathway.  

 
In conclusion, a novel strategy for the synthesis of diterpenoids 

using carvone as a starting material has been developed. Several 
key transformations led to the success of this approach. These 
include (1) a benzannulation sequence that employs propionic 
anhydride, (2) a site-selective double oxidative dearomatization 
reaction that sets the stage for (3) a highly diastereoselective cy-
cloaddition of ethylene to forge the key [2.2.2] bicycle. Our ap-

proach has led to a enantiospecific 13-step synthesis of the 
diterpenoid (–)-crotogoudin and provided a platform for the syn-
thesis of other terpenoids. The application of this plan to the syn-
theses of other natural products is the subject of ongoing studies 
in our laboratory. 
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