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Introduction

Optically active 2-hydroxy- and 2-acyloxyalkanoates[1] are
frequently utilized as fundamental synthons for the produc-
tion of chiral molecules, such as medicines, biologically
active chemicals, and advanced functionalized polymers. Re-
cently, several effective methods for the kinetic resolution of
racemic sec-phenethyl alcohol derivatives were developed
that afforded the corresponding chiral secondary alcohols
with high enantiomeric excesses [Eq. (1)]:[2] however, to the
best of our knowledge a general artificial method for the ki-
netic resolution of 2-hydroxyalkanoates [Eq. (2)] has not yet
appeared until now. Because of the extensive synthetic utili-
ty of the chiral 2-hydroxyalkanoate derivatives, it is strongly
desired to establish a facile protocol to prepare these valua-

ble materials through the resolution of the racemic sub-
strates.

We have recently reported the first asymmetric esterifica-
tion of achiral carboxylic acids with racemic benzylic alco-
hols[3] through the formation of mixed anhydrides in situ by
using aromatic or pivalic anhydrides with chiral acyl-transfer
catalysts, such as (�)-(S)-tetramisole and (+)-(R)-benzote-
tramisole ((R)-BTM), which were introduced by Birman
et al.[4] The asymmetric esterification also directly provides
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the chiral 2-arylpropionic acid derivatives from the corre-
sponding racemic 2-arylpropionic acids by using kinetic res-
olution with achiral secondary alcohols through the forma-
tion of the mixed anhydrides derived from the acid compo-
nents and aromatic anhydrides under the influence of (R)-
BTM or (S)-b-Np-BTM.[5] Because these protocols utilized
rapid transacylation to form the suitable mixed anhydrides
from free carboxylic acids in situ, we expected that the pres-
ent asymmetric esterification could be applicable for not
only preparation of chiral sec-phenethyl alcohol derivatives,
but also for the production of optically active 2-hydroxyal-
kanoates. Herein, we report the novel and useful kinetic res-
olution of racemic 2-hydroxyalkanoates that do not contain
an aryl alkyl carbinol moiety, by using the present mixed-an-
hydride technology with free achiral carboxylic acids and
hindered carboxylic anhydrides.

Results and Discussion

First, the reactions of racemic benzyl lactate ((� )-1) with
several achiral carboxylic acids were chosen as model cases
for optimization of electrophile structure (Table 1). In the

presence of 4-methoxybenzoic anhydride (PMBA) as a cou-
pling reagent, (R)-BTM was used for chiral induction ac-
cording to the standard reaction conditions established in
our preceding papers.[3] As shown in entries 1 and 2 in
Table 1, the esterification provides the chiral lactate ((S)-1)
and the corresponding 2-acyloxypropanoates ((R)-2 a and
(R)-2 b) with medium selectivities (s=14 and 20).[6] We next
increased the bulkiness around the carbonyl group of the in-

termediary mixed anhydrides by introducing several sub-
stituents to the 2-positions of the electrophiles. The results
are shown in entries 3–7 of Table 1. Fortunately, we discov-
ered that diphenylacetic acid is a very effective electrophile
and it afforded the desired chiral benzyl 2-(diphenylacetox-
y)propanoate ((R)-2 e) and benzyl lactate ((S)-1) in good en-
antiomeric excesses (95 and 62 % ee, respectively) with high
chemical conversion (35% yield of (R)-2 e and 48 % recov-
ery of (S)-1) as depicted in entry 5 in Table 1. Because an
excellent s-value (s= 70) and medium chemoselectivity (2 e/
2’=80/20) were attained in this case in which the kinetic res-
olution was carried out in the presence of PMBA as shown
above, we further attempted to improve the chemoselectivi-
ty of the desired ester 2 e over the undesired byproduct 2’
for practical use of this reaction.

Several carboxylic anhydrides including two aromatic an-
hydrides and four other kinds of aliphatic anhydrides were
next examined as coupling reagents for the kinetic resolu-
tion of (� )-1 with diphenylacetic acid (3) in order to pre-
vent the formation of 2’ (Table 2). Surprisingly, all of the re-

actions afforded very good enantioselectivities, and the cor-
responding carboxylic ester (R)-2 e and the resulting alcohol
(S)-1 were obtained in high enantiomeric excesses (s=>62).
It was found that the use of bulky anhydrides, such as pivalic
anhydride, provided the optically active ester 2 e with almost
no formation of the undesirable ester 2’ as shown in en-
tries 3–6 in Table 2.[3b] The solvent effect was further exam-
ined in the above reaction and we found that diethyl ether
functions as a suitable medium for the kinetic resolution of
(� )-1 to produce the desired ester (R)-2 e in good yield
(44 %) with an excellent enantiomeric excess (97% ee), so
that the s-value dramatically increased to 146 (Table 2,
entry 7).

Table 1. Kinetic resolution of racemic benzyl lactate ((� )-1) by using the
mixed-anhydride method.

Entry R1 Yield
of 2

[%][a]

2/2’[b] ee (2)
[%]

Yield
of 1

[%][a]

ee (1)
[%]

s

1 Ph ACHTUNGTRENNUNG(CH2)2 (a) 33 86/14 80 54 42 14
2 pTolCH2 (b) 35 86/14 85 42 46 20
3 iPr (c) 50 95/ 5 85 47 78 29
4 cHex (d) 38 87/13 88 34 56 27
5 Ph2CH (e) 35 80/20 95 48 62 70
6 ACHTUNGTRENNUNG(a-Np)2CH (f) 8 84/16 94 86 6 35
7 ACHTUNGTRENNUNG(b-Np)2CH (g) 31 89/11 95 52 51 63

[a] Isolated yield. [b] Determined by 1H NMR spectroscopy.

Table 2. Kinetic resolution of racemic benzyl lactate ((� )-1) with diphe-
nylacetic acid (3).

Entry R1 Yield
of 2

[%][a]

2/2’[b] ee (2)
[%]

Yield
of 1

[%][a]

ee (1)
[%]

s

1 Ph 46 87/13 92 43 84 64
2 4-MeOC6H4

[PMBA] 35 80/20 95 48 62 70
3 tBu 44 98/ 2 94 55 68 62
4 PhMe2C 27 98/ 2 95 43 75 92
5 Ph2MeC 37 >99/<1 96 44 62 87
6 Ph3C 11 >99/<1 97 75 12 72
7[c] tBu 44 98/ 2 97 55 82 146

[a] Isolated yield. [b] Determined by 1H NMR spectroscopy. [c] Diethyl
ether was used as a solvent instead of dichloromethane.
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Eventually, esterification of a variety of racemic 2-hydrox-
yalkanoates ((� )-4 a–j) with diphenylacetic acid (3) by pro-
motion with pivalic anhydride and (R)-BTM was demon-
strated in order to assess the generality of this novel method
(Table 3). All the reactions with 2-hydroxyalkanoates that

have linear alkyl substituents R next to the carbonyl group
produced the corresponding esters (R)-5 a–c, 5 e, 5 f, and 5 h
in good enantiomeric excesses (Table 3, entries 1–3, 5, 6, and
8; R= Me, Et, nPr, nBu, iBu, and Ph ACHTUNGTRENNUNG(CH2)2; 94–97 % ee)
with excellent s-values (s=126–202). It is noteworthy that
this protocol was successfully applied for the preparation of
chiral dihydroxy ester equivalents (R)-5 i (93 % ee) and (S)-
4 i (87 % ee) in the same manner by the asymmetric coupling
reaction starting from the racemic benzyl 3-(tert-butyldime-
thylsiloxy)-2-hydroxypropanoate ((� )-4 i) with the achiral
electrophile 3, as shown in entry 9 in Table 3 (R=

TBSOCH2, s=80). Furthermore, the kinetic resolution of
racemic benzyl 4-(tert-butyldimethylsiloxy)-2-hydroxybuta-
noate ((� )-4 j) with 3 also effectively produced the optically
active malic acid derivatives (R)-5 j (96 % ee) and (S)-4 j
(87 % ee) in 45 % and 52 % yields, respectively (Table 3,
entry 10; R=TBSO ACHTUNGTRENNUNG(CH2)2, s=146).

Several kinds of solvents were next examined in order to
reveal the difference of those effects on the reaction of race-
mic benzyl 2-hydroxy-3-methylbutanoate ((� )-4 d) with 3
(Table 4). The reactivity of substrate improved when dialkyl
ether was used as a reaction medium (Table 4, entries 3–
7).[4i] These results showed that not only diethyl ether func-
tions as a good medium, but also other ethers such as diiso-
propyl ether, methyl tert-butyl ether (MTBE), and cyclopen-
tyl methyl ether (CPME) facilitated the desirable selective

coupling between alcohol (R)-4 d and carboxylic acid 3 in
the presence of (R)-BTM. Other solvents such as dichloro-
methane and toluene were rather less effective (Table 4, en-
tries 1 and 2; s= 19 and 22) compared with dialkyl ethers
(Table 4, entries 3–6; s=>50),[7] and N,N-dimethylforma-
mide (DMF) was ineffective for this reaction because only
10 % of the desired ester 5 d was obtained although the
enantioselectivity factor was acceptable (Table 4, entry 8;
s=28).

The estimated reaction pathway is illustrated in Scheme 1.
First, a mixed anhydride (B) forms as a key intermediate in
situ from pivalic anhydride (A) with diphenylacetic acid (3)
after generation of the zwitterion (Int-I) during steps i and ii
by the promotion of the nucleophilic catalyst ((R)-BTM).
Actually, when pivalic anhydride (A) was treated with 3 in
the presence of triethylamine with (R)-BTM, the facile for-
mation of the mixed anhydride (B) was observed on the
basis of a 1H NMR experiment. Next, the mixed anhydride
(B) is activated again by (R)-BTM to form the correspond-
ing zwitterionic species (Int-II), which then selectively reacts
with benzyl (R)-2-hydroxyalkanoates ((R)-4 a–j) included in
the racemic mixture (� )-4 a–j to afford the desired carbox-
ylic esters (R)-5 a–j with high enantiomeric excesses through
steps iii and iv. Furthermore, the remaining half of the nu-
cleophiles can be recovered as the unreacted optically active
alcohols (S)-4 a–j with high enantiopurities.

Determination of the transition state forming the optically
active diester from methyl (R)-lactate ((R)-8) with the elec-
trophile (Int-II) was carried out by using density functional
theory (DFT) calculations at the B3LYP/6-31G*//B3LYP/6-
31G* level according to the method reported by Houk and
Birman et al.[8] We obtained several transition states, and
the most stable structure that produces (S)- or (R)-diester
((S)- or (R)-9) is depicted in Scheme 2.[9,10] It was found that

Table 3. Kinetic resolution of racemic benzyl 2-hydroxyalkanoates ((� )-
4a–j) by the mixed-anhydride method.

Entry R Yield
of 5

[%][a]

5/5’[b] ee (5)
[%]

Yield
of 4

[%][a]

ee (4)
[%]

s

1 Me (a) 44 98/2 97 55 82[c] 146
2 Et (b) 46 >99/<1 95 43 94 126
3 nPr (c) 50 >99/<1 95 48 97 171
4 iPr (d) 46 >99/<1 92 50 73 53
5 nBu (e) 47 >99/<1 96 51 88 128
6 iBu (f) 45 >99/<1 94 55 97 140
7 cHex (g) 43 >99/<1 91 53 75 47
8 Ph ACHTUNGTRENNUNG(CH2)2 (h) 48 99/1 96 47 95 202
9 TBSOCH2 (i) 47 >99/<1 93 50 87 80

10 TBSO ACHTUNGTRENNUNG(CH2)2 (j) 45 >99/<1 96 52 87 146

[a] Isolated yield. [b] Determined by 1H NMR spectroscopy. [c] 5a =2e,
4a =1.

Table 4. Kinetic resolution of racemic benzyl 2-hydroxy-3-methylbuta-
noate ((� )-4d) with diphenylacetic acid (3).

Entry Solvent Yield
of 5d
[%][a]

5d/5 d’[b] ee (5d) [%] Yield
of 4 d
[%][a]

ee (4d)
[%]

s

1 CH2Cl2 32 >99/<1 84 47 49 19
2 toluene 26 >99/<1 84 58 65 22
3 Et2O 46 >99/<1 92 50 73 53
4 iPr2O 44 >99/<1 92 54 77 57
5 MTBE[c] 40 >99/<1 93 54 69 52
6 CPME[d] 36 >99/<1 93 58 53 50
7 THF[e] 38 >99/<1 90 61 57 33
8 DMF[f] 10 >99/<1 92 82 22 28

[a] Isolated yield. [b] Determined by 1H NMR spectroscopy. [c] Methyl
tert-butyl ether. [d] Cyclopentyl methyl ether. [e] Tetrahydrofuran.
[f] N,N-Dimethylformamide.
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the high selectivity attained in the present kinetic resolution
can be explained by the rapid transformation of (R)-8 into
(R)-9 through the stabilized transition state (R)-8-ts, which
consists of (R)-8 and the imidazolium salt (Int-II) derived
from the mixed anhydride (B) and (R)-BTM. The distance
of the forming C�O bond (between carbonyl carbon of the
acid component and oxygen of hydroxy) is 2.172 �, and the
distance of the cleaved O�H bond (between oxygen and hy-
drogen in hydroxy) is 1.313 �. A frequency analysis of (R)-
8-ts revealed that the nucleophilic attack of the alcohol to
carbonyl group and the deprotonation of the hydroxyl group
with the pivalate anion proceeded under the concerted reac-
tion mechanism because the C�O bond-forming step and
the O�H bond-cleaving process occurred simultaneously.
The lactate moiety has a rigid structure in which the confor-
mation is restricted by the attractive interaction between
oxygen in the ester carbonyl group and the positive elec-
tronic charge on the face of the imidazolium salt as well as

the coordination of oxygens in
the pivalate anion onto hydro-
gen in hydroxy (1.132 �) and
hydrogen at C-2 of the imidazo-
lium salt (2.103 �). On the
other hand, complexation of
the imidazolium salt (Int-II)
with methyl (S)-lactate ((S)-8),
an enantiomer of methyl (R)-
lactate ((R)-8), produced an un-
stable structure, (S)-8-ts,[11] that
has a higher energy derived
from steric repulsion between
the alkyl substituent at the 2-
position of (S)-8 and one of the
phenyl groups of diphenylacetic
acid moiety of the imidazolium
salt to afford the corresponding
ester (S)-9. Therefore, the de-
sired (R)-diester was selectively
obtained by the rapid transfor-
mation of (R)-8 into (R)-9
through the transition state (R)-
8-ts.

Based on the above theoreti-
cal studies of the reaction
mechanism, it was revealed that
the aromatic part of the benzyl
ester group in 2-hydroxyalka-
noates 4 a–j is not required to
achieve high selectivity. Actual-
ly, the use of the racemic ethyl
2-hydroxypentanoate ((� )-6) as
an acyl-donor instead of benzyl
2-hydroxyalkanoates for the
present kinetic resolution under
the standard reaction conditions
also afforded the optically
active diester (R)-7 with a high

enantiomeric excess (97 % ee), whereas the unreacted ethyl
2-hydroxypentanoate ((S)-6) was additionally recovered
with a high optical purity (89 % ee); this gave excellent se-
lectivity (s=217) as shown in Scheme 3. According to the
above theoretical predictions, the reaction of racemic
methyl lactate ((� )-8) with diphenylacetic acid (3) success-
fully proceeded to provide the desired optically active 2-acy-
loxyester (R)-9 and the recovered 2-hydroxyester (S)-8 with
a high selectivity factor (s=119).

Conclusions

In summary, we have developed the first practical method
to provide the optically active 2-hydroxy- and 2-acyloxyalka-
noates by the nonenzymatic kinetic resolution of the race-
mic 2-hydroxyalkanoates by using diphenylacetic acid (3),
pivalic anhydride, and the chiral acyl-transfer catalyst. This

Scheme 1. Reaction pathway to form the optically active 2-acyloxyalkanoates ((R)-5a–j) and 2-hydroxyalka-
noates ((S)-4 a–j).
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protocol affords optically active compounds directly from
racemic 2-hydroxyalkanoates that do not contain the sec-
phenethyl alcohol moiety, through transacylation of the
mixed anhydrides generated from 3 with bulky carboxylic
anhydrides under the influence of (R)-BTM. One of the fea-
tures of the present protocol is that it provides a very simple
procedure for producing the desired chiral ester derivatives.
That is, the addition of promoters to the mixture of racemic

2-hydroxyalkanoates, free acid
3, and pivalic anhydride at
room temperature affords both
optically active 2-acyloxyalka-
noates and 2-hydroxyalkanoates
in good yields with high enan-
tiopurities. The utility of the
present protocol will be demon-
strated by the applications of
this reaction system to the syn-
theses of useful and complex
natural molecules in the future.

Experimental Section

General methods, detailed experimen-
tal procedures, spectroscopic data of
all compounds, and Cartesian coordi-
nates and absolute energies for all cal-
culated structures have been provided
in the Supporting Information.

Typical procedure for the synthesis of
the optically active 2-acyloxyalka-
noates from the racemic 2-hydroxyal-
kanoates with diphenylacetic acid (3)
by using pivalic anhydride and (R)-
BTM : Diisopropylethylamine
(46.4 mL, 0.266 mmol), (R)-BTM
(2.8 mg, 0.0111 mmol) and a solution
of racemic benzyl 4-(tert-butyldime-
thylsiloxy)-2-hydroxybutanoate ((�)-
4j ; 72.1 mg, 0.222 mmol) in diethyl
ether (0.5 mL) were successively
added to a solution of pivalic anhy-
dride (27.0 mL, 0.133 mmol) and diphe-
nylacetic acid (3 ; 23.6 mg, 0.111 mmol)
in diethyl ether (0.6 mL) at room tem-
perature. The mixture was stirred for
12 h at room temperature and then
quenched with saturated aqueous
NaHCO3. The organic layer was sepa-
rated and the aqueous layer was ex-
tracted with diethyl ether. The com-
bined organic layers were dried over
Na2SO4. After filtration of the mixture
and evaporation of the solvent, the
crude product was purified by prepa-
rative thin layer chromatography on
silica (hexane/ethyl acetate 5:1) to
afford the corresponding diester (R)-
5j (51.7 mg, 45%, 96 % ee) and the re-
covered optically active hydroxyester
(S)-4j (37.2 mg, 52%, 87% ee) as col-
orless oils [Table 3, entry 10, s=146].
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Scheme 2. Calculated transition states to form methyl 2-(diphenylacetoxy)propanoate (9) from methyl lactate
(8).

Scheme 3. Kinetic resolution of racemic ethyl 2-hydroxypentanoate ((� )-6) and methyl lactate ((� )-8) by the
enantioselective mixed-anhydride method.
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