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Abstract 
Chiral heterocyclic secondary alcohols have received much attention due to their widespread use in pharmaceutical interme-
diates. In this study, Lactobacillus kefiri P2 biocatalysts isolated from traditional dairy products, were used to catalyze the 
asymmetric reduction of prochiral ketones to chiral secondary alcohols. Secondary chiral carbinols were obtained by asym-
metric bioreduction of different prochiral substrates with results up to > 99% enantiomeric excess (ee). (R)-1-(benzofuran-
2-yl)ethanol 5a, which can be used in the synthesis of pharmaceuticals such as bufuralols potent nonselective β-blockers 
antagonists, Amiodarone (cardiac anti-arrhythmic), and Benziodarone (coronary vasodilator), was produced in gram-scale, 
high yield and enantiomerically pure form using L. kefiri P2 biocatalysts. The gram-scale production was carried out, and 
9.70 g of (R)-5a in enantiomerically pure form was obtained in 96% yield. Also, production of (R)-5a in terms of yield and 
gram scale through catalytic asymmetric reduction using the biocatalyst was the highest report so far. This is a cost-effective, 
clean and eco-friendly process for the preparation of chiral secondary alcohols compared to chemical processes. From an 
environmental and economic perspective, this biocatalytic method has great application potential, making it a green and 
sustainable way of synthesis.
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Introduction

Chirality has become important in various industries such 
as, pharmaceutical, agrochemical and fine chemical. Chi-
ral aromatic and hetero aromatic alcohols are widely used 
for synthetic procedures in the pharmaceutical and fine-
chemical industries, owing to their stable structure (Qua-
glia et al. 2013). The functional groups of chiral secondary 
alcohols can be easily transformed into other functional 
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groups without racemation (Şahin and Dertli 2019). Enan-
tiopure 1-phenylethanol and its derivatives are useful chiral 
building blocks or intermediates for synthesis of various 
complex molecules used in a spectrum of industries. For 
instance, (S)-1-phenyl ethanol, 2-naphthyl ethanol and (S)-
1-(3-methoxyphenyl) ethanol are used as chiral auxiliaries 
in chemical and pharmaceutical industries (Lou et al. 2009; 
Mangas-Sánchez et al. 2009). On the other hand, impor-
tant examples of heteroarylmethanols are (R)-neobenodine, 
(R)-orphenadrine, (S)-cetrazine, (S)-carbinoxamine, (S)-
duloxetine, (1R,2S)-mefloquine, HIV reverse-transcriptase 
inhibitor furo[2,3-c]pyridine thiopyrimidine ether, β-blocker 
2-(2-tert-butylamino-1-hydroxyethyl)benzofuran and analge-
tic (S)-phenyl(pyridin-2-yl)methanol (Şahin et al. 2019a, b). 
Enantiopure N-heteroaryl methanols, such as (R)-1-(pyridin-
2-yl)ethanol (1a), are widely used in synthetic organic and 
medicinal chemistry as key intermediates for the synthesis 
of various pharmaceutical products (Nian et al. 2019). The 
(R)-1-(furan-2-yl)ethanol (2a) is valuable structural motif, 
widely used in the total synthesis of numerous pharmaceuti-
cal and natural product such as Landomycins A, E (Zhou and 
O’Doherty 2008), (−)-Angiopterlactone B (Thomson et al. 
2017), and (+)- and (−)-cis-Osmundalactone (Blume et al. 
2016). Enantioenriched chiral aryl heteroaryl alcohols (R)-
phenyl(thiophen-2-yl)methanol (3a) and (S)-phenyl(pyridin-
2-yl)methanol (4a) are significant precursors in the synthesis 
of numerous pharmaceuticals, and agrochemicals, such as 
bepotastine besilate (Ohnmacht et al. 1971), carbinoxam-
ine (Salvi et al. 2009), and (R,S)-mefloquine (Corey and 
Helal 1996; Nian et al. 2019). Benzofuran-based structures, 
such as (R)-1-(benzofuran-2-yl)ethanol (5a), are significant 
synthetic building blocks in the manufacturing of pharma-
ceuticals such as bufuralols potent nonselective β-blockers 
antagonists, Amiodarone (cardiac anti-arrhythmic), and 
Benziodarone (coronary vasodilator) (Goudarshivannana-
var et al. 2009). Antifungal and antibacterial properties of 
various benzofuran carbinol derivatives were investigated. 
At the same time, such compounds have found wide applica-
tion area in the cosmetic industry and chemical pesticides 
(Ryu et al. 2010). Molecules contained piperonyl ring, such 
as (S)-1-(benzo[d][1,3]dioxol-5-yl)ethanol (6a), are found 
in the skeleton of natural products such as podophylltoxin 
and diphyllin, which have been reported to exhibit biologi-
cal activity such as anticancer (Oliveira et al. 2010), anti-
convulsant (Prasanthi et al. 2013; Aboul-Enein et al. 2012), 
antiamoebic (Wani et al. 2012), antiproliferactive (Alizadeh 
et al. 2010), antiviral (Yeo et al. 2005), antitumor properties 
(Feng et al. 2009).

Different chemical processes are used to prepare sec-
ondary alcohols such as enantioselective crystallization, 
electrode reduction, chromatography separation and asym-
metric reduction of prochiral ketone using different chiral 
specific catalysts that are derived from transition metals 

such as Rh-complexes with different nitrogen containing 
compounds, metal–ligand complexes, chiral Lewis acid 
and oxazaborolidine (Yadav and Devendran 2012a, b; 
Touchard et al. 1999; Mikhailine and Morris 2010; He et al. 
2014). However, there are several drawbacks associated 
with chemical processes such as requirement of expensive 
chiral ligands and hazardous metals, harsh conditions, low 
conversion and low enantioselectivity, and formation of by-
products (Şahin and Dertli 2017; Shrivas and Pratap 2019). 
Various biocatalytic approaches for synthesis of enantiose-
lective chiral secondary alcohols have been introduced as 
alternatives to chemical approaches (Matsunami et al. 2018). 
Biocatalytic processes can offer highly selective, environ-
mentally benign and energy effective solution for production 
of optically active compounds. They have advantages such 
as mild reaction conditions, no need of tedious protection/
de-protection steps, less or absence of by-product formation 
and they can exhibit high chemo-, regio- and stereo-selectiv-
ity (Ni and Xu 2012; Muñoz Solano et al. 2012; Şahin 2020). 
These biocatalysts have two procedures, such as direct asym-
metric reduction of ketones or resolution of racemic alco-
hols. However, enzymatic resolution was limited by 50% 
theoretical yield. Therefore, a suitable biocatalyst that can be 
used to production of chiral alcohol is more advantageous. 
Enantioselective bioreduction can be carried out using either 
isolated enzymes or whole cells. Whole-cell biocatalysts are 
advantageous as they are generally inexpensive and more 
stable. They contain multiple dehydrogenases that are able 
to accept a broad range of unnatural substrates. All enzymes 
and co-factors are well protected within their natural cellular 
environment. Moreover, the use of whole-cell biocatalysts 
avoids enzyme purification and cofactor addition (Yu et al. 
2018). Chemical chiral reductants are used limited in the 
commercial production because of low chiral selectivity and 
costly (Yılmaz et al. 2017). Therefore, different biocatalytic 
approaches for production of enantioselective chiral second-
ary alcohols have been introduced as alternatives to chemical 
approaches like whole-cell or purified enzymes (Yadav and 
Devendran 2012a, b; Wu et al. 2007; Schmidt et al. 2017; 
Şahin et al. 2019a, b). Biocatalytic reduction seems to be 
the most potential and competitive industrialization pro-
cess, which is reflected in the application of some important 
products. It has been reported that the chiral compounds 
produced by biocatalytic reduction accounted for 20% of 
the total chiral alcoholic intermediates in industrial products 
(Honda et al. 2017). Asymmetric bioreduction of prochi-
ral ketones via biocatalysts is one of the most encouraging 
and simple routes to production of enantiomerically pure 
secondary alcohols. Although there are many studies in the 
literature involving asymmetric reduction of heteroaromatic 
substrates with chemical catalysts, there are limited stud-
ies on the reduction of these substrates with biocatalysts. 
Therefore, it is very important to develop new biocatalysts 



Chemical Papers 

1 3

that can be reduced heteroaromatic substrates as an asym-
metric. In the literature, pure alcohol dehydrogenase enzyme 
(ADH) isolated from L. kefiri was used catalysts for asym-
metric reduction of aromatic ketones and different prochiral 
ketones to corresponding chiral secondary alcohols with 
high ee and conversion (Weckbecker and Hummel 2006). 
Ethyl (S)-4-chloro-3-hydroxybutanoate was obtained with 
high ee and yield using L. kefiri (Amidjojo and Weuster-Botz 
2005). (2,5)-hexanedione was reduced to (5R)-hydroxyhex-
ane-2-one with > 99% ee using with whole-cell immobilized 
L. kefiri (Tan et al 2006). These studies show that L. kefiri 
is an important biocatalyst. However, to our knowledge, the 
use of L. kefiri for asymmetric reduction in the hetero aro-
matic ketones has not been investigated yet.

The aim of this study is to investigate the catalytic activity 
of L. kefiri P2 in asymmetric reduction of hetero aromatic 
ketones. In our previous work, L. kefiri P2 was demonstrated 
effective biocatalysts for the asymmetric reduction of aro-
matic ketones (Baydaş et al. 2020). Herein, we report on the 
application of L. kefiri P2 for the synthesis of heterocyclic 
aromatic secondary alcohols. Moreover, to the best of our 
knowledge, it is the first report that (R)-5a was synthesized 
as enantiopure form using biocatalyst in the highest yield 
and highest gram. The present study provides a practical 
approach for producing (R)-5a, which can meet the demand 
for industrial green production of this heterocyclic chiral 
alcohol. The effect of the steric properties of the hetero aro-
matic ketones on the bioreaction catalyzed by L. kefiri P2 is 
also discussed.

Experimental

Materials

Chemicals

MRS, which is growth medium of bacteria, solvents and 
substrate were purchased from Fluka and Aldrich. Purifica-
tion of 1a–6a were carried out by column chromatography 
and the alcohols were obtained using ethyl acetate/hexane: 
(10:90, v/v) solvent mixture. TLC was used for checked the 
progress of reaction, using ethyl acetate/hexane (10:90, v/v) 
as a mobile phase. Racemic alcohols 1a–6a as a reference 
sample was obtained by reducing the substrate with  NaBH4 
in the  CH3OH at room temperature. Agilent 1260 HPLC 
system, which have UV and chiral detector, was used for the 
HPLC analysis of substrate and product. The product char-
acterization was determined by Bruker NMR spectrometer 
(Bruker Ltd., Germany). Bellingham + Stanley (ADP220, 
589 nm) spectropolarimeter was used for the optical rota-
tion of the product. The conversion rate was calculated by 

comparison of the ketone peak with the alcohol peak after 
HPLC analysis of the crude product.

Culture medium and bacterial strain

Lactobacillus kefiri P2 strain used in this study was previ-
ously isolated from kefir and stored at − 80 °C in glycerol 
and this strain was grown in MRS broth as described previ-
ously (Baydaş et al. 2020).

General procedure for asymmetric bioreduction

Lactobacillus kefiri P2 was added from its glycerol stock by 
inoculation to 10 mL MRS mixture  (MgSO4·7H2O 11.5% 
(w/v),  K2HPO4 2 g/L, pepton [Oxoid] 10 g/L, yeast extract 
2% glucose, [Difco] 5 g/L,  C2H3NaO2·3H2O 5 g/L, salt solu-
tion  [MgSO4·7H2O 11.5% (w/v), triamonium citrate 2 g/L], 
Tween 80 1 mL/L) followed by 48 h growth at 37 °C. From 
this mixture, 1 mL bacterial cell was inoculated to 100 mL 
sterilized MRS mixture in 250 mL Erlenmeyer flask and 
then pH was adjusted to 4.5 by 1 M HCl (approximately 
1 mL). Following the 2 h of incubation, 1 mmol of 1–6 
were added directly to the reaction medium and the reaction 
was stirred at 25 °C for 64 h under agitation at 150 rpm. 
After the catalytic reaction was complete, the supernatant 
was separated with centrifuged. The aqueous phase was 
saturated with solid NaCl and extracted with dichlorometh-
ane (2 × 100 mL). The organic phase back-extracted with 
brine (50 mL). After the organic phase was combined, they 
were dried over anhydrous  Na2SO4 and filtered to remove 
the salt. The organic solvent was removed in a vacuum and 
the crude product was characterized by NMR analysis. The 
crude product was purified using column chromatography 
with mixture of hexane: ethyl acetate (90:10, v/v) solvent.

Gram scale production of (R)‑5a

The gram scale asymmetric bioreduction of ketone 5 was 
performed as follows. L. kefiri P2 was added from its glyc-
erol stock by inoculation to 10 mL MRS mixture followed 
by 48 h growth at 37 °C. Then this 10 mL starting culture 
was inoculated to 1 L sterilized MRS mixture in 5 L Erlen-
meyer flask and incubation for 2 h under optimization con-
ditions. Then the pH of the mixture was adjusted to 4.5 by 
1 M HCl (approximately 2 mL). Following the 2 h of incu-
bation, substrate 5 (10 g) was added directly as the solid to 
the mixture and incubated on an orbital shaker at 25 °C, 
150 rpm for 64 h. At the end of the incubation period, the 
cell was separated by centrifugation at 6000×g for 5 min at 
4 °C. The aqueous phase was saturated with solid NaCl and 
extracted with dichloromethane (2 × 600 mL). The organic 
phase back-extracted with brine (100 mL). After the organic 
phases were combined, they were dried over anhydrous 
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 Na2SO4 and filtered to remove the salt. The organic solvent 
was removed in a vacuum and the crude product was charac-
terized by NMR analysis. After removal of the solvent under 
reduced pressure, the crude product was purified on a 40 cm 
column containing 50 g silica gel and eluted using hexane: 
ethyl acetate (90:10, v/v) to afford the product. As a result 
of purification, 9.7 g of (R)-5a was obtained in 96% yield.

(R)‑1‑(pyridin‑2‑yl)ethanol (1a) (Wu et al. 2016) Colorless 
oil, 1H-NMR (400 MHz,  CDCl3) δ = 8.49 (d, J = 4.8 Hz, 1H), 
7.67 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 7.9 Hz, 1H), 7.17–7.14 
(m, 1H), 1.86 (q, J = 6.5, 6.4 Hz, 1H), 1.47 (d, J = 6.5 Hz, 
3H);13C-NMR (100 MHz,  CDCl3) δ = 163.2, 148.1, 136.8, 
122.2, 119.8, 68.9, 24.2; [α]D

25 = 19.5 (c 0.52,  CH2Cl2), 
93% ee; Lit.[α]D

25 = 20.8 (c 0.52,  CH2Cl2, 99% ee for R 
enantiomer) (Wu et al. 2016); HPLC condition of product, 
Chiralcel OD-H column, 230 nm, flow rate: 0.6 mL/min, 
i-PrOH/n-hexane 3:97,  tR (R) 20.8, (S) 24.2 min. HPLC 
analysis condition of ketone 1 is the same as alcohol (R)-1a 
and retention time of substrate was determined as 9.4 min.

(R)‑1‑(furan‑2‑yl)ethanol (2a) (Kang and Shin 2017) Pale yel-
low oil, 1H-NMR (400 MHz,  CDCl3) δ = 7.36 (dd, J = 1.8, 
0.7 Hz 1H), 6.31 (dd, J = 3.2, 1.8 Hz 1H), 6.21 (d, J = 3.2 Hz 
1H), 4.86 (q, J = 6.4 Hz 1H), 1.20 (s, 1H, (OH)), 1.52 (d, 
J = 6.6 Hz, 3H); 13C-NMR (100 MHz,  CDCl3) δ = 157.6, 
141.9, 110.1, 105.1, 63.6, 21.2; [α]D

25 = 7.69 (c 0.9, 
 CH2Cl2), 95% ee; Lit.[α]D

25 = 7.86 (c 0.9,  CHCl3, % 97 ee 
for R enantiomer) (Kang and Shin 2017); HPLC condition of 
product, Chiralcel AS-H column, 220 nm, flow rate: 1.0 mL/
min, i-PrOH/n-hexane 1:99,  tR (R) 46.4, (S) 40.6 min. HPLC 
analysis condition of ketone 2 is the same as alcohol (R)-2a 
and retention time of substrate was determined as 18.1 min.

Phenyl(thiophen‑2‑yl)methanol (3a) ( Wang et  al. 
2017) White solid, M.p: 51–53 °C 1H-NMR (400 MHz, 
 CDCl3) δ = 7.47–7.26 (m, 6H), 6.96–6.88 (m, 2H), 6.06 (d, 
J = 3.9 Hz, 1H), 2.42 (d, J = 3.9 Hz, 1H (OH)); 13C-NMR 
(100 MHz,  CDCl3) δ = 148.1, 143.1, 128.5, 128.0, 126.4, 
126.3, 125.4, 124.9, 72.4; [α]D

25 = 0 (c 1.0,  CHCl3), 0% 
ee; HPLC condition of product, Chiralcel OD-H column, 
220 nm, flow rate: 0.8 mL/min, i-PrOH/n-hexane 8:92,  tR 
(R) 18.1, (S) 16.6 min. HPLC analysis condition of ketone 
3 is the same as alcohol 3a and retention time of substrate 
was determined as 9.6 min.

(S)‑phenyl(pyridin‑2‑yl)methanol (4a) (Maerten and Agbos‑
sou‑Niedercorn 2008) White solid, M.p: 72–74 °C; 1H-
NMR (400 MHz,  CDCl3) δ = 8.56–8.54 (m, 1H), 7.63–7.59 
(m, 1H), 7.40–7.27 (m, 5H), 7.20–7.15 (m, 1H), 5.76 (s, 1H), 
5.38 (bs, 1H (OH)); 13C-NMR (100 MHz,  CDCl3) δ = 160.9, 
147.8, 143.2, 136.8, 128.6, 127.8, 127.1, 122.4, 121.3, 75.0; 
[α]D

25 = 21.5 (c 1.0,  CHCl3), 43% ee; Lit.[α]D
25 = 35.0 (c 1.0, 

 CHCl3, %70 ee for S enantiomer) (Maerten and Agbossou-
Niedercorn 2008); HPLC condition of product, Chiralcel 
AD column, 254 nm, flow rate: 0.8 mL/min, i-PrOH/n-hex-
ane 10:90,  tR (R) 15.9, (S) 19.8 min. HPLC analysis condi-
tion of ketone 4 is the same as alcohol (S)-4a and retention 
time of substrate was determined as 9.3 min.

(R)‑1‑(benzofuran‑2‑yl)ethanol (5a) (Sokeirik et  al. 
2007) Light yellow oil, 1H-NMR (400  MHz,  CDCl3)) 
δ = 7.55–7.52 (m, 1H), 7.48–7.44 (m, 1H), 7.29–7.19 (m, 
1H), 7.24–7.20 (m, 1H), 6.61 (s, 1H), 5.02 (q, J = 6.5, Hz, 
1H), 2.19 (bs, 1H (OH)), 1.64 (d, J = 6.5, Hz, 3H); 13C-
NMR (100 MHz,  CDCl3) δ = 160.2, 154.7, 128.1, 124.2, 
122.8, 121.1, 111.2, 101.8, 64.2, 21.4; [α]D

25 = 23.5 (c 0.53, 
 CHCl3), > 99% ee; Lit.[α]D

25 = 19.8 (c 0.53,  CHCl3, %84 ee 
for R enantiomer) (Sokeirik et al. 2007); HPLC condition of 
product, Chiralcel OD-H column, 254 nm, flow rate: 0.5 mL/
min, i-PrOH/n-hexane 1:99,  tR (R) 72.8, (S) 68.8 min. HPLC 
analysis condition of ketone 5 is the same as alcohol (R)-5a 
and retention time of substrate was determined as 19.4 min.

(S)‑1‑(benzo[d][1,3]dioxol‑5‑yl)ethanol (6a) (Şahin 
2018) Colorless oil, 1H-NMR (400 MHz,  CDCl3 δ = 6.89–
6.75 (m, 3H), 5.94 (s, 2H), 4.81 (q, J = 6.4, Hz, 1H), 
1.82 (bs, 1H, (OH)), 1.45 (d, J = 6.4 Hz, 3H); 13C-NMR 
(100 MHz,  CDCl3) δ = 148.0, 147,1, 140.2, 118.9, 108.3, 
106.3, 101.1, 70.5, 25.4; [α]D

20 = -33.9 (c 1.0,  CHCl3), 73% 
ee; Lit.[α]D

20 = 46.5 (c 1.0,  CHCl3) for 99% ee for R enanti-
omer) (Şahin 2018), HPLC condition of product, Chiralcel 
OD column, 210 nm, flow rate: 1.0 mL/min, i-PrOH/n-hex-
ane 5:95,  tR (R) 18.7, (S) 16.8 min. HPLC analysis condition 
of ketone 6 is the same as alcohol (S)-6a and retention time 
of substrate was determined as 10.0 min.

Results and discussion

In this study, the biocatalytic reactions were carried out 
using 1 mmol substrates (1–6) under optimized conditions 
which is obtained in the previous study (Table 1). In our 
previous study, asymmetric reduction reaction conditions 
were optimized using the model substrate acetophenone 
with L. kefiri P2 and optimization conditions were obtained 
as pH 4.5, time 64 h, temperature 25 °C, agitation speed 
150 rpm (Baydaş et al.2020). The catalytic activity of L. 
kefiri P2 on heteroaromatic ketones (1–6) was investigated 
and compared to the literature (Table 1). L. kefiri P2 effec-
tively catalyzed the reduction of 1 to (R)-1a with 93% ee 
and satisfactory conversion (56%) (Table 1, entry 1). In the 
literature, (S)-1a was reported to be synthesized in small 
scale in high enantiomeric purity by asymmetric reduction 
of 2-acetylpyridine 1 using expensive pure enzyme and 
cofactor (Yanga et al. 2008; Ni et al. 2011). However, to our 
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knowledge, the synthesis of (R)-1a with biocatalyst has not 
been known yet. The asymmetric reduction of the 1 with 
seed adzuki bean was carried out to corresponding chiral 
seconder alcohol (S)-1a in > 81% ee with 44% conversion 
and small scale (Xie et al. 2009). In the literature, synthesis 
of (R)-1a at high ee was carried out using chemical catalyst 
(Utepova et al. 2018; Zhou et al. 2012). High conversion 
(99%) and ee (95%) were obtained in asymmetric reduc-
tion of 2 with whole-cell L. kefiri P2 (Table 1, entry 2). The 
enantioselective reduction of 2 with alcohol dehydrogenase 
enzyme was carried out to (S)-2a in 99% ee with 85% yield 
(Blume et al. 2016). Asymmetric reduction of aryl heter-
oaryl ketones are generally carried out using toxic metals, 
such as Ru, Rh, Ir, and Pd, as efficient catalysts (Ling et al. 
2019). The L. kefiri P2 mediated bioreduction of substrate 
3 was reduced to racemic 3a with 27% conversion and 24% 
yield (Table 1, entry 3). The asymmetric reduction of 3 to 
the (S)-3a with L. paracasei BD101 as biocatalyst had been 

previously reported for the first time by Sahin and co-work-
ers in the enantiopurepure form, high yield, and gram-scale 
(Şahin and Dertli 2019). Substrate 4 was reduced to (S)-4a 
with L. kefiri P2 in 43% ee and 8% conversion (Table 1, 
entry 4). In the literature, in the presence of biocatalysts 
such as, carbonyl reductase enzyme, isolated fungal strains, 
Camellia sinensis cell culture, and cell cultures of Nicotiana 
tabacum, 4a was obtained with 99%, 91%, 86%, 48% ee 
respectively, in good yields and small scale (Li et al. 2009; 
Pal et al. 2012; Takemoto and Tanaka 2001; Takemoto et al. 
1995). Additionally, substrate 4 was reduced to (R)-4a with 
19% ee and 92% yield using Catharanthus Roseus (Take-
moto and Achiwa 1995). Compared with the literature, low 
conversion and ee was achieved in the asymmetric reduction 
of substrates 3 and 4 in the presence of L. kefiri P2 biocata-
lyst (Table 1, entries 3, 4). The reason for the low conver-
sion of substrates 3 and 4 may be due to the low solubility 
of these substrates in water. Therefore, it was observed that 

Table 1  Asymmetric reduction 
of prochiral ketones (1–6) with 
novel L. kefiri P2 biocatalyst

a Determined by HPLC using a chiral column
b Determination of absolute configuration was carried out by comparison of the sign of optical rotation rela-
tive to the values in the literature
c The conversions were determined by chiral HPLC
d Isolated yield

Entry Substrate Product ee (%)a,b Conversion(%)c Yield (%)d

1 93 (R) 56 52

2 95 (R) 99 95

3 Racemic 27 24

4 43 (S) 8 6

5  > 99 (R)  > 99 96

6 73 (S) 98 95
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there were no changes in the conversion and ee using organic 
solvents such as 5% ethyl alcohol, isopropyl alcohol and 
DMSO in the reaction medium. The low ee and conversion 
for substrates 3 and 4 could be explained by the bulky groups 
on both sides of the carbonyl group in this substrates. Since 
it is difficult for substrates to interact with the active site of 
the enzyme due to the bulky groups, conversion and ee may 
be reduced. This indicated that the bulky groups on the both 
side of carbonyl group adversely affected the conversion rate 
of the enzymatic reaction. Similarly, ketone 1 was converted 
faster than 4 with L. kefiri P2. Clearly, for ketone 3 and 4, the 
steric effect is influence the conversion. In this study, excel-
lent enentiomeric excess (> 99%) and conversion (> 99%) 
was achieved in the asymmetric bioreduction of substrate 
5 to (R)-5a using L. kefiri P2 (Table 1, entry 5). Baker’s 
yeast reduction of 5 gave (S)-5a with moderate enantiomeric 
purity (55%) and in moderate yield (60%) (Toşa et al. 2008). 
Rhizopus arrhizus mediated bioreduction of 5 furnished (S)-
5a in 99% yield with 92% enantiomeric purity (Salvi and 
Chattopadhyay 2016). The enzymatic reduction of prochi-
ral heterocyclic ketone 5 by carrot root (Daucus carota) in 
water afforded the corresponding (S)-5a with 47% yield and 
95% ee (Aldabalde et al. 2007). In our previous study, we 
reported that (S)-5a had reached 92% yield with ee of higher 
than 99% using L. paracasei BD87E6 (Şahin 2019). Under 
the optimized conditions, piperonyl methyl ketone 6 was 
reduced to the corresponding chiral alcohol (S)-6a by L. 
kefiri P2 with good ee (73%) and high conversion (98%) 
(Table 1, entry 6). The (R)-6a has been obtained in the high 
enantioselectivity by reducing piperonyl methyl ketone 6 
with the expensive chiral reagent and toxic chemical cat-
alysts (Ling et al. 2018; Chen and Lu 2016). The limited 
study is available on obtaining this chiral secondary alcohol 
6a with biocatalysts. In one of these studies, production of 
(R)-6a was performed in 89% yield and 99% enantiomeric 
purity L. paracasei BD101 (Şahin 2018).

Substrates 5 and 6, which are similar in sterically, are 
reduced to the corresponding alcohol with almost the same 
conversion ratio. However, (R)-5a was obtained with higher 
ee. Thus, benzofuran structure of substrate 5 might be better 
stabilized in the enzyme active site in such a way to increase 
the ee of the product. This shows that the heteroatoms in the 
substrate structure are very important in selectivity.

The configurations of obtained alcohols in this study var-
ied according to the structure of substrates. The probable 
reason for this can be explained by the fact that different 
configurations might occur due to the different interaction 
of substrates with the active center of the enzyme. Based 
on these results, it can be concluded that this biocatalyst 
might work as substrate selective as previously stated in 
the literature (Baydaş et al. 2020). When the bioreduction 
reactions were performed in the absence of the L. kefiri P2 
in the medium, practically no conversion occurred, which 

indicated that the cause of the conversion in the reactions 
was the L. kefiri P2.

The last aim of the study was to attempt gram scale syn-
thesis of (R)-5a using the determined optimum bioreduction 
conditions, since highly gram scale synthesis of enantiopure 
chiral alcohol using green method is extremely significant 
for industrial applications. The asymmetric reduction of 5 
for the high gram scale synthesis of (R)-5a with L. kefiri P2 
is seen in Fig. 1.

It has been shown that a change in substrate concentra-
tion has an effect on ee of product and the conversion of 
substrate, higher concentrations decrease the biotransforma-
tion, which has been reported to cell toxicity and product/
substrate inhibition (Roy et al. 2003). In line by this infor-
mation, the concentration of substrate from 5 to 15 g was 
gradually varied and examined. Higher than concentrations 
of 10 g decreased the ee and yield of product. The best ee 
(> 99%) of product and complete conversion were achieved 
with 10 g/2L concentration of substrate 5. Under optimized 
conditions, substrate 5 (62.4 mmol) was converted to (R)-5a 
in 96% yield with > 99% ee and conversion with the L. kefiri 
P2. There is only one study in the literature involving the 
biocatalytic gram-scale synthesis of (R)-5a (Şahin 2019). 
Şahin (2019) reported the gram scale production of (R)-5a 
(6.26 g, ee > 99%, 99% conversion, 92% yield) from 6.73 g 
5 whole cells of L. paracasei BD87E6. This study in the 
literature gave relatively lower yield and low substrate toler-
ance. The present study gave advantages of higher substrate 
tolerance (10 g/2L) and yield (96%). This is the first report 
on production of (R)-5a with L. kefiri P2 as a whole-cell bio-
catalyst in highest gram and yield. These results indicate that 
L. kefiri P2 can be used on a gram scale in the production 
of substantial drug precursors. In light of this information, 
these results may reveal useful information for further inves-
tigation of purified enzyme systems from these bacteria.

Conclusions

In conclusion, L. kefiri P2 was proved an effective biocata-
lyst for asymmetric bioreduction of prochiral hetero aromatic 
ketones with high conversion (8–99%) and ee (0–99%). 
(R)-5a, which can be used in the synthesis of pharmaceu-
ticals such as bufuralols potent nonselective β-blockers 
antagonists, Amiodarone (cardiac anti-arrhythmic), and 

Fig. 1  Gram scale synthesis of (R)-1-(benzofuran-2-yl)ethanol (5a) 
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Benziodarone (coronary vasodilator), was synthesized 
in gram scale, high yield and enantiomerically pure form 
using L. kefiri P2. Compared with the past report, which 
used biocatalyst, 5 was bioreduced to (R)-5a in higher yield 
and gram scale. To the best of our knowledge, we are the 
first to successfully synthesis highest amount of enantio-
pure (R)-5a from 5 using a whole-cell biocatalytic reduc-
tion method. These results showed that current process has 
significant potential for the green synthesis of (R)-5a at an 
industrial scale. The biocatalytic reduction should have great 
importance for the synthesis of optically pure chiral alco-
hols owing to the alluring biocatalysts and environmentally 
friendly reaction condition. L. kefiri P2 catalyzed asymmet-
ric bioreduction of prochiral hetero aromatic ketones is a 
cost-effective, environmentally benign and easily scalable 
processes compared to chemical processes. To expand the 
catalytic reduction activity of this biocatalyst, studies are 
continuing on new substrates, in particular, which could be 
drug precursors.
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