pubs.acs.org/JACS

Rapid Construction of Tetralin, Chromane, and Indane Motifs via Cyclative C–H/C–H Coupling: Four-Step Total Synthesis of (\pm) -Russujaponol F

Zhe Zhuang, Alastair N. Herron, Shuang Liu, and Jin-Quan Yu*

Cite This: J. An	n. Chem. Soc. 2021, 143, 687–692	Read Online	
ACCESS	III Metrics & More	E Article Recommendations	s Supporting Information

ABSTRACT: The development of practical C–H/C–H coupling reactions remains a challenging yet appealing synthetic venture because it circumvents the need to prefunctionalize both coupling partners for the generation of C–C bonds. Herein we report a cyclative $C(sp^3)$ –H/C(sp^2)–H coupling reaction of free aliphatic acids enabled by a cyclopentane-based mono-N-protected β -amino acid ligand. This reaction uses inexpensive sodium percarbonate (Na₂CO₃·1.5H₂O₂) as the sole oxidant and generates water as the only byproduct. A range of biologically important scaffolds, including tetralins, chromanes, and indanes, can be easily prepared by this protocol. Finally, the synthetic application of this methodology is demonstrated by the concise total synthesis of (±)-russujaponol F in a four-step sequence starting from readily available phenylacetic acid and pivalic acid through sequential functionalizations of four C–H bonds.

C arbon-carbon (C-C) bond formation constitutes one of the most important classes of reactions in organic synthesis. Because of its potential to shorten synthesis, the past two decades have witnessed rapid developments in using C-H activation strategies for the construction of C-C bonds.¹ While most coupling methods require prefunctionalized coupling partners (e.g., organoborons and organohalides), C-H/C-H coupling reactions offer a complementary strategy to construct C-C bonds directly from two simple C-H bonds (Scheme 1A).² Compared with traditional coupling methods, this green and atom-economical approach is highly attractive because water is potentially the sole stoichiometric byproduct of this process (Scheme 1A). To date, extensive studies have

Scheme 1. C-H Activation/C-C Bond-Forming Reactions A C-H activation/C-C bond-forming reactions

B Cyclative C(sp³)-H/C(sp²)-H coupling reaction of free aliphatic acids

 ${\bm C}$ Concise synthesis of (±)-russujaponol F via multiple C–H functionalizations

focused on the coupling of two relatively reactive $C(sp^2)-H$ bonds for biaryl synthesis,³ whereas only a few reactions have been reported for the construction of more challenging $C(sp^3)-C(sp^2)$ bonds. Because these existing reaction protocols require exogenous directing groups (DGs) to promote cyclometalation, additional steps to install and remove the DG are necessary.^{5,6} Additionally, reported methods pose practical limitations, such as the stoichiometric use of precious silver salts^{4b,c,5,6b,c} and harsh conditions,^{4b,c,5a,b,6} with temperatures as high as 160 °C being reported. Moreover, current methods for $C(sp^3)-H/C(sp^2)-$ H coupling initiated by $C(sp^3)-H$ activation are largely limited to more reactive heterocyclic $C(sp^2)-H$ bonds.^{5a,b,6} Despite the great value that C-H/C-H coupling reactions might have for organic synthesis, the development of $C(sp^3) H/C(sp^2)-H$ coupling reactions that use both a practical oxidant and native substrates remains a significant challenge.

Recent advances in C–H functionalization have provided chemists with creative and strategic retrosynthetic disconnections that are otherwise difficult to achieve using traditional methods.⁷ However, for C–H functionalization strategies to truly improve the overall efficiency of synthesis, three criteria should be met: (1) the ability to use a wide range of simple starting materials to enable the synthesis of diverse natural product families; (2) the use of native functionalities as DGs; (3) precise control of the site selectivity of the C–H functionalization reaction. Given the ubiquitous nature of

Received: November 30, 2020 Published: January 4, 2021

Communication

Journal of the American Chemical Society

C–H bonds in organic molecules, synthetic sequences that incorporate multiple C–H functionalizations are particularly attractive for the efficient synthesis of natural products. However, approaches that meet these aforementioned criteria are challenging to execute and thus are uncommon in the literature.^{7a,8}

To address these challenges, we herein report a cyclative $C(sp^3)-H/C(sp^2)-H$ coupling reaction using a native free carboxylic acid as the DG (Scheme 1B). The use of a cyclopentane-based mono-N-protected β -amino acid ligand and a practical and inexpensive oxidant, sodium percarbonate (Na₂CO₃·1.5H₂O₂), proved crucial to the success of this reaction. Tetralins, chromanes, and indanes, which are common frameworks in natural products, can be readily prepared by this protocol (Figure 1). The synthetic application

Figure 1. Biologically significant natural products containing tetralin, chromane, or indane frameworks.

of this methodology is further demonstrated by a concise total synthesis of (\pm) -russujaponol F (the shortest and highestyielding synthesis reported to date) via multiple C–H functionalizations in four steps from readily available phenylacetic acid and pivalic acid (Scheme 1C), demonstrating the potential of C–H activation disconnections to enhance the ideality of synthesis.⁹

Aliphatic carboxylic acids are ubiquitous and synthetically versatile motifs and are often inexpensive reagents in organic chemistry; as such, they are privileged substrates for C-H activation reactions.¹⁰ Following our recent disclosure of the β -C(sp³)-H lactonization¹⁰ⁱ and acyloxylation^{10j} of free carboxylic acids using tert-butyl hydrogen peroxide (TBHP) as the sole oxidant, we initiated our investigation of cyclative $C(sp^3)-H/C(sp^2)-H$ coupling reactions by selecting TBHP as the bystanding oxidant and aliphatic acid 1a as a model substrate. Under the optimal conditions of the aforementioned β -acyloxylation reaction,^{10j} we were delighted to observe a 50% ¹H NMR yield of the desired product **2a** without the formation of competing reductive elimination products, such as the β lactone or β -hydroxy acid (see Table S1). Further investigation of the bystanding oxidants and bases revealed that the combination of Na2CO3 ·1.5H2O2 and LiOAc could further improve the yield to 57% (see Tables S1 and S2). The yields using LiOAc are generally better than those using NaOAc as the metal additive under the optimized conditions (see Table S4). The use of sodium percarbonate, one of the cheapest and most easily handled oxidants,¹¹ potentially renders this protocol practical and scalable. In light of recent advances in ligand-accelerated Pd(II)-catalyzed \tilde{C} -H activation,¹² we next searched for ligands that could substantially improve the reactivity of the catalyst. Guided by mono-N-protected amino acid (MPAA) ligand-enabled $C(sp^3)$ -H activation reactions of free carboxylic acids,^{10c,d,g,i,j} we tested a series of commercially available MPAA ligands L1–L4 (Table 1): β -amino acid ligand L4 showed superior reactivity over α -amino acid ligands L1Table 1. Ligand Investigation for the Cyclative $C(sp^3)-H/C(sp^2)-H$ Coupling Reaction^{*a*,*b*}

^{*a*}Conditions: 1a (0.1 mmol), Pd(OAc)₂ (10 mol %), ligand (L) (10 mol %), LiOAc (1.0 equiv), Na₂CO₃·1.5H₂O₂ (2.0 equiv), HFIP (1.0 mL), 60 °C, 12 h. ^{*b*}The yields were determined by ¹H NMR analysis of the crude products using CH_2Br_2 as the internal standard. ^{*c*}Isolated yield.

L3 (57% vs 19–45%), as was also observed in other C(sp³)–H functionalization reactions of free acids via Pd(II)/Pd(IV) catalytic cycles.^{10d,i,j} Through systematic modifications of the backbone of the β -amino acid ligand (L5–L10), we found that *cis*-cyclopentane-based ligand (±)-L9 gave the optimal reactivity (78% isolated yield). The superior reactivity of (±)-L9 might be attributed to the more rigid conformation enforced by the cyclopentane linkage. Control experiments showed that the yields were low in the absence of the ligand or in the presence of the γ -amino acid ligand L11 (23% or 20%, respectively), indicating the importance of six-membered chelation by the ligand for reactivity.

With the optimal ligand and reaction conditions in hand, we evaluated the scope of the cyclative $C(sp^3)-H/C(sp^2)-H$ coupling reaction (Table 2). A wide range of tertiary aliphatic acids bearing a single α -methyl group (1a-e and 1h) or an α gem-dimethyl group (1f and 1g) were all compatible, affording the tetralin products in moderate to good yields (45-78%). The reaction could also be conducted on a 2.0 mmol scale, delivering 2a in 69% yield. The attempted desymmetrization of the α -gem-dimethyl group of 1f using enantioenriched L9 resulted in racemic product. Less reactive free carboxylic acids containing α -hydrogens (1i–l) also reacted in synthetically useful yields (35-63%). Among these, a variety of functionalities on the aryl rings such as methyl (2b), methoxy (2j and 2k), fluoro (2c, 2g, and 2l), and chloro (2d) as well as naphthyl (2e) were tolerated, with the halogen moiety (2d) serving as a useful synthetic handle for subsequent derivatization. This protocol could also be successfully extended to the synthesis of biologically important chromane products. β -Phenoxy carboxylic acids containing an α -gemdimethyl group (1m-r) or α -hydrogens (1s, from Rocheester) were all reactive substrates. While a range of electrondonating (methoxy, tert-butyl, cyclohexyl, and benzyl) groups on the aryl ring (2s and 2n-p) were well-tolerated to afford the desired products in good yields (70-85%), aliphatic acids containing electron-withdrawing (bromo and trifluoromethyl)

Table 2. Substrate Scope of the Cyclative $C(sp^3)-H/C(sp^2)-H$ Coupling Reaction^{*a,b*}

^{*a*}Conditions A: 1 (0.1 mmol), $Pd(OAc)_2$ (10 mol %), (±)-L9 (10 mol %), LiOAc (1.0 equiv), Na_2CO_3 ·1.5H₂O₂ (2.0 equiv), HFIP (1.0 mL), 60 °C, 12 h. ^{*b*}Isolated yields are shown. ^{*c*}Conditions B: 1 (0.1 mmol), $Pd(CH_3CN)_4(BF_4)_2$ (10 mol %), Ag_2CO_3 (1.0 equiv), 1-fluoro-2,4,6-trimethylpyridinium tetrafluoroborate (2.0 equiv), HFIP (1.0 mL), 90 °C, 12 h. ^{*d*}The reaction was run on a 2.0 mmol scale.

groups (**2q** and **2r**) showed comparatively low reactivity (31% and 17%), likely due to the sluggish nature of $C(sp^2)$ -H activations of electron-deficient arenes. Although intermolecular kinetic isotope effect (KIE) experiments of electron-rich **1m** and **1m**-*d*₅ (*k*_H/*k*_D = 1.1) suggest that $C(sp^2)$ -H activation is not the rate-determining step (see the KIE experiments section in the Supporting Information), the possibility of $C(sp^2)$ -H activation with electron-deficient substrates as the rate-determining step cannot be ruled out. It is noteworthy that high regioselectivity was observed for the aliphatic acids containing *m*-methoxy groups (**1** and **1s**), while the substrate

bearing a *tert*-butyl group (1n) afforded a mixture of regioisomers (2n/2n' = 3/1). Considering the previously observed high para selectivity of Pd(IV)-mediated C–H coupling reactions of anisoles,^{3g,5c,22} it is likely that the alkyl–Pd(II) intermediate is oxidized to Pd(IV) prior to C–H activation. Under the present conditions, carboxylic acid 1t containing either NBoc or NTs groups failed to deliver tetrahydroisoquinoline (THIQ) product 2t. This cyclative C–H/C–H coupling reaction was also amenable to the syntheses of indane scaffolds (2u-w). Notably, an [F⁺] oxidant^{3g,13} (1-fluoro-2,4,6-trimethylpyridinium tetrafluoroborate) showed superior reactivity for tertiary aliphatic acids containing an α -gem-dimethyl group (2v and 2w) (see Table S5).

Illudalane sesquiterpenes constitute a large family of natural products that typically feature an indane core (for which various oxidation states are possible) bearing a challenging all-carbon quaternary center (Scheme 2A).¹⁴ Because of their

Scheme 2. Total Synthesis of (\pm) -Russujaponol F^a

A Illudalane sesquiterpenes: an indane core containing a quaternary center

^aConditions: (a) SOCl₂, EtOH, reflux, overnight; I₂ (0.5 equiv), Selectfluor (0.5 equiv), CH₃CN, 60 °C, 3 h. (b) Pd(OAc)₂ (10 mol %), L12 (10 mol %), pivalic acid (3.0 equiv), CsOAc (1.0 equiv), Ag₂CO₃ (2.0 equiv), HFIP, 80 °C, 12 h. (c) Pd(CH₃CN)₄(BF₄)₂ (10 mol %), Ag₂CO₃ (1.0 equiv), 1-fluoro-2,4,6-trimethylpyridinium tetrafluoroborate (2.0 equiv), HFIP, 90 °C, 12 h. (d) LAH (3.0 equiv), THF, 0 °C to rt, overnight.

promising biological activities, tremendous efforts have been devoted to the total syntheses of these targets.^{15,16} Given the power of this methodology for the construction of indane scaffolds, we embarked on the total synthesis of (\pm) -russujaponol F via multiple C–H functionalizations (Scheme 2B). Baudoin's group reported the first total synthesis of russujaponol F in racemic and enantioselective forms based on a C(sp³)–H arylation strategy in 13 steps (26% yield) and 15 steps (12% yield), respectively.¹⁵ Beginning with phenylacetic acid 3, which is commercially available or can be synthesized through *o*-C–H methylation,¹⁷ we were able to prepare aryl iodide 4 by esterification and subsequent

Journal of the American Chemical Society

monoiodination¹⁸ of **3** using I₂ and Selectfluor in 79% yield. Investigation of the C–H arylation of pivalic acid indicated that with ligand L12^{10f,19} the monoarylated product **5** could be obtained in 62% yield, along with a 12% yield of the cyclative C–H/C–H coupling product **6** (see Table S6). The formation of **6** under these conditions might be attributed to a second arylation of **5** with additional aryl iodide serving as the bystanding oxidant.²⁰ The cyclative C–H/C–H coupling was then performed under the standard conditions using an [F⁺] oxidant to give the desired product **6** in 41% yield. Finally, global reduction of **6** using LAH cleanly delivered (±)-russujaponol F in 96% yield, completing the total synthesis in four steps and 28% overall yield; this is the shortest and highest yielding total synthesis of russujaponol F to date.

On the basis of literature precedents^{3–5} and our recent work on the C–H activation of free acids,^{10i,j} we propose that this cyclative $C(sp^3)$ –H/C(sp²)–H coupling reaction proceeds via a Pd(II)/Pd(IV) catalytic cycle as outlined in Scheme 3. First,

Scheme 3. Proposed Mechanism of the Cyclative $C(sp^3)$ - $H/C(sp^2)$ -H Coupling Reaction

coordination of Pd(OAc)₂ to an MPAA ligand generates the active LPd(II) species. After coordination of acid substrate 1 to Pd, both the Na⁺ or Li⁺ countercation and the MPAA ligand accelerate the cyclopalladation of the β -C(sp³)-H bond to form int-I. Next, oxidative addition of the hydrogen peroxide occurs to produce int-II, a process established in previous studies on the oxidation of Pd(II) to Pd(IV) by benzoyl peroxide,^{21a} *tert*-butyl peroxyacetate,^{21b} or hydrogen perox-ide.^{21c,d} In the previously reported β -lactonization¹⁰ⁱ and acetoxylation^{10j} reactions, selective reductive elimination yields the β -lactone and β -acetoxylated carboxylic acid, respectively. In this case, a reactive phenyl group on the side chain of the substrate undergoes a second $C(sp^2)$ -H activation of int-II to deliver int-III via a seven- or six-membered palladacycle, enabled by the facile dissociation of the weakly coordinating free acid.²² However, it is also possible that the Pd(II) species int-I performs the second C-H activation prior to the oxidative addition of hydrogen peroxide that generates int-III. Finally, reductive elimination of int-III generates the cyclative C-H/C-H coupling product 2 and regenerates the LPd(II) species.

In summary, we have realized a Pd(II)-catalyzed cyclative C(sp³)-H/C(sp²)-H coupling reaction enabled by a cyclopentane-based mono-N-protected β -amino acid ligand. The use of inexpensive sodium percarbonate as the sole oxidant and native free carboxylic acids as directing groups renders this reaction highly practical and potentially amenable to large-scale manufacturing. A range of biologically significant scaffolds, including tetralins, chromanes, and indanes, could be readily prepared by this protocol. The synthetic application of this methodology was demonstrated by a concise total synthesis of (\pm)-russujaponol F via multiple C–H functionalizations in four steps from readily available phenylacetic acid and pivalic acid.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c12484.

Full experimental details and characterization of new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

Jin-Quan Yu – Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States; orcid.org/0000-0003-3560-5774; Email: yu200@ scripps.edu

Authors

- **Zhe Zhuang** Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States; orcid.org/0000-0001-6679-0496
- Alastair N. Herron Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States; © orcid.org/0000-0001-7141-3986
- Shuang Liu Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.0c12484

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the NIH (NIGMS, R01GM084019), the NSF under the CCI Center for Selective C-H Functionalization (CHE-1700982), and The Scripps Research Institute for financial support. Z.Z. thanks Dr. Nelson Y. S. Lam for proofreading.

REFERENCES

(1) For reviews of C-H activation/C-C bond-forming reactions, see: (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. *Angew. Chem., Int. Ed.* **2009**, *48*, 5094–5115. (b) Daugulis, O.; Roane, J.; Tran, L. D. Bidentate, monoanionic auxiliary-directed functionalization of carbon-hydrogen bonds. *Acc. Chem. Res.* **2015**, *48*, 1053–1064. (c) He, G.; Wang, B.; Nack, W. A.; Chen, G. Syntheses and transformations of α -amino acids via palladium-catalyzed auxiliary directed sp³ C-H Functionalization. *Acc. Chem. Res.* **2016**, *49*, 635–645.

(2) For reviews of C-H/C-H coupling reactions, see: (a) Yeung, C. S.; Dong, V. M. Catalytic dehydrogenative cross-coupling: forming

carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. *Chem. Rev.* **2011**, *111*, 1215–1292. (b) Girard, S. A.; Knauber, T.; Li, C.-J. The cross-dehydrogenative coupling of $C(sp^3)$ –H bonds: a versatile strategy for C–C bond formations. *Angew. Chem., Int. Ed.* **2014**, *53*, 74–100. (c) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Oxidative coupling between two hydrocarbons: an update of recent C–H functionalizations. *Chem. Rev.* **2015**, *115*, 12138–12204.

(3) For early examples of $C(sp^2)-H/C(sp^2)-H$ coupling reactions, see: (a) Stuart, D. R.; Fagnou, K. The catalytic cross-coupling of unactivated arenes. Science 2007, 316, 1172-1175. (b) Xia, J.-B.; You, S.-L. Carbon-carbon bond formation through double sp² C-H activations: synthesis of ferrocenyl oxazoline derivatives. Organometallics 2007, 26, 4869-4871. (c) Hull, K. L.; Sanford, M. S. Catalytic and highly regioselective cross-coupling of aromatic C-H substrates. J. Am. Chem. Soc. 2007, 129, 11904-11905. (d) Brasche, G.; García-Fortanet, J.; Buchwald, S. L. Twofold C-H functionalization: palladium-catalyzed ortho arylation of anilides. Org. Lett. 2008, 10, 2207-2210. (e) Cho, S. H.; Hwang, S. J.; Chang, S. Palladiumcatalyzed C-H functionalization of pyridine N-oxides: highly selective alkenylation and direct arylation with unactivated arenes. J. Am. Chem. Soc. 2008, 130, 9254-9256. (f) Zhao, X.; Yeung, C. S.; Dong, V. M. Palladium-catalyzed ortho-arylation of O-phenylcarbamates with simple arenes and sodium persulfate. J. Am. Chem. Soc. 2010, 132, 5837-5844. (g) Wang, X.; Leow, D.; Yu, J.-Q. Pd(II)-catalyzed paraselective C-H arylation of monosubstituted arenes. J. Am. Chem. Soc. 2011, 133, 13864-13867.

(4) For Pd-catalyzed $C(sp^3)-H/C(sp^2)-H$ coupling reactions initiated by $C(sp^2)-H$ activation, see: (a) Liégault, B.; Fagnou, K. Palladium-catalyzed intramolecular coupling of arenes and unactivated alkanes in air. *Organometallics* **2008**, 27, 4841–4843. (b) Pierre, C.; Baudoin, O. Intramolecular Pd^{II}-catalyzed dehydrogenative $C(sp^3)-C(sp^2)$ coupling: an alternative to Pd⁰-catalyzed $C(sp^3)-H$ arylation from aryl halides? *Tetrahedron* **2013**, 69, 4473–4478. (c) Shi, J.-L.; Wang, D.; Zhang, X.-S.; Li, X.-L.; Chen, Y.-Q.; Li, Y.-X.; Shi, Z.-J. Oxidative coupling of sp² and sp³ carbonhydrogen bonds to construct dihydrobenzofurans. *Nat. Commun.* **2017**, *8*, 238.

(5) For Pd-catalyzed $C(sp^3)-H/C(sp^2)-H$ coupling reactions initiated by $C(sp^3)-H$ activation, see: (a) Jiang, Y.; Deng, G.; Zhang, S.; Loh, T.-P. Directing group participated benzylic $C(sp^3)-H/C(sp^2)-H$ cross-dehydrogenative coupling (CDC): synthesis of azapolycycles. Org. Lett. **2018**, 20, 652–655. (b) Sun, W.-W.; Liu, J.-K.; Wu, B. Practical synthesis of polysubstituted unsymmetric 1,10phenanthrolines by palladium catalyzed intramolecular oxidative cross coupling of $C(sp^2)-H$ and $C(sp^3)-H$ bonds of carboxamides. Org. Chem. Front. **2019**, 6, 544–550. (c) Hao, H.-Y.; Mao, Y.-J.; Xu, Z.-Y.; Lou, S.-J.; Xu, D.-Q. Selective cross-dehydrogenative $C(sp^3)-H$ arylation with arenes. Org. Lett. **2020**, 22, 2396–2402.

(6) For other metal-enabled $C(sp^3)-H/C(sp^2)-H$ coupling reactions, see: (a) Wu, X.; Zhao, Y.; Ge, H. Pyridine-enabled copper-promoted cross dehydrogenative coupling of $C(sp^2)-H$ and unactivated $C(sp^3)-H$ bonds. *Chem. Sci.* **2015**, *6*, 5978–5983. (b) Tan, G.; You, J. Rhodium(III)-catalyzed oxidative cross-coupling of unreactive $C(sp^3)-H$ bonds with $C(sp^2)-H$ bonds. *Org. Lett.* **2017**, *19*, 4782–4785. (c) Wang, X.; Xie, P.; Qiu, R.; Zhu, L.; Liu, T.; Li, Y.; Iwasaki, T.; Au, C.-T.; Xu, X.; Xia, Y.; Yin, S.-F.; Kambe, N. Nickel-catalysed direct alkylation of thiophenes via double $C(sp^3) H/C(sp^2)-H$ bond cleavage: the importance of KH₂PO₄. *Chem. Commun.* **2017**, *53*, 8316–8319. (d) Tan, G.; Zhang, L.; Liao, X.; Shi, Y.; Wu, Y.; Yang, Y.; You, J. Copper- or nickel-enabled oxidative cross-coupling of unreactive $C(sp^3)-H$ bonds with azole $C(sp^2)-H$ bonds: rapid access to β -azolyl propanoic acid derivatives. *Org. Lett.* **2017**, *19*, 4830–4833.

(7) For reviews of C-H functionalization for natural product synthesis, see: (a) Baudoin, O. Multiple catalytic C-H bond functionalization for natural product synthesis. *Angew. Chem., Int. Ed.* **2020**, *59*, 17798–17809. (b) Lam, N. Y. S.; Wu, K.; Yu, J.-Q. Advancing the logic of chemical synthesis: C-H activation as strategic and tactical disconnections for C-C bond construction. *Angew.*

Chem., Int. Ed. 2020, DOI: 10.1002/anie.202011901. (c) Gutekunst, W. R.; Baran, P. S. C-H functionalization logic in total synthesis. Chem. Soc. Rev. 2011, 40, 1976–1991. (d) Abrams, D. J.; Provencher, P. A.; Sorensen, E. J. Recent applications of C-H functionalization in complex natural product synthesis. Chem. Soc. Rev. 2018, 47, 8925– 8967.

(8) For selected examples of total synthesis using multiple C-H functionalizations, see: (a) Wang, D.-H.; Yu, J.-Q. Highly convergent total synthesis of (+)-lithospermic acid via a late-stage intermolecular C-H olefination. J. Am. Chem. Soc. 2011, 133, 5767-5769. (b) Gutekunst, W. R.; Baran, P. S. Total synthesis and structural revision of the piperarborenines via sequential cyclobutane C-H arylation. J. Am. Chem. Soc. 2011, 133, 19076-19079. (c) Rosen, B. R.; Simke, L. R.; Thuy-Boun, P. S.; Dixon, D. D.; Yu, J.-Q.; Baran, P. S. C-H functionalization logic enables synthesis of (+)-hongoquercin A and related compounds. Angew. Chem., Int. Ed. 2013, 52, 7317-7320. (d) Hong, B.; Li, C.; Wang, Z.; Chen, J.; Li, H.; Lei, X. Enantioselective total synthesis of (-)-incarviatone A. J. Am. Chem. Soc. 2015, 137, 11946-11949. (e) Dailler, D.; Danoun, G.; Ourri, B.; Baudoin, O. Divergent synthesis of aeruginosins based on a $C(sp^3)$ -H activation strategy. Chem. - Eur. J. 2015, 21, 9370-9379. (f) Wu, F.; Zhang, J.; Song, F.; Wang, S.; Guo, H.; Wei, Q.; Dai, H.; Chen, X.; Xia, X.; Liu, X.; Zhang, L.; Yu, J.-Q.; Lei, X. Chrysomycin A derivatives for the treatment of multi-drug-resistant tuberculosis. ACS Cent. Sci. 2020, 6, 928-938.

(9) Gaich, T.; Baran, P. S. Aiming for the ideal synthesis. J. Org. Chem. 2010, 75, 4657–4673.

(10) For β -C(sp³)–H functionalization reactions of free carboxylic acids, see: (a) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. Palladium-catalyzed methylation and arylation of sp² and sp³ C-H bonds in simple carboxylic acids. J. Am. Chem. Soc. 2007, 129, 3510-3511. (b) Chen, G.; Zhuang, Z.; Li, G.-C.; Saint-Denis, T. G.; Hsiao, Y.; Joe, C. L.; Yu, J.-Q. Ligand-enabled β -C-H arylation of α -amino acids without installing exogenous directing groups. Angew. Chem., Int. Ed. 2017, 56, 1506-1509. (c) Zhu, Y.; Chen, X.; Yuan, C.; Li, G.; Zhang, J.; Zhao, Y. Pdcatalysed ligand-enabled carboxylate-directed highly regioselective arylation of aliphatic acids. Nat. Commun. 2017, 8, 14904. (d) Ghosh, K. K.; van Gemmeren, M. Pd-catalyzed β -C(sp³)-H arylation of propionic acid and related aliphatic acids. Chem. - Eur. J. 2017, 23, 17697-17700. (e) Shen, P.-X.; Hu, L.; Shao, Q.; Hong, K.; Yu, J.-Q. Pd(II)-catalyzed enantioselective $C(sp^3)$ -H arylation of free carboxylic acids. J. Am. Chem. Soc. 2018, 140, 6545-6549. (f) Zhuang, Z.; Yu, C.-B.; Chen, G.; Wu, Q.-F.; Hsiao, Y.; Joe, C. L.; Qiao, J. X.; Poss, M. A.; Yu, J.-Q. Ligand-enabled β -C(sp³)-H olefination of free carboxylic acids. J. Am. Chem. Soc. 2018, 140, 10363-10367. (g) Hu, L.; Shen, P.-X.; Shao, Q.; Hong, K.; Qiao, J. X.; Yu, J.-Q. Pd^{II}catalyzed enantioselective C(sp3)-H activation/cross-coupling reactions of free carboxylic acids. Angew. Chem., Int. Ed. 2019, 58, 2134-2138. (h) Ghosh, K. K.; Uttry, A.; Koldemir, A.; Ong, M.; van Gemmeren, M. Direct β -C(sp³)-H acetoxylation of aliphatic carboxylic acids. Org. Lett. 2019, 21, 7154-7157. (i) Zhuang, Z.; Yu, J.-Q. Lactonization as a general route to β -C(sp³)-H functionalization. Nature 2020, 577, 656-659. (j) Zhuang, Z.; Herron, A. N.; Fan, Z.; Yu, J.-Q. Ligand-enabled monoselective β - $C(sp^3)$ -H acyloxylation of free carboxylic acids using a practical oxidant. J. Am. Chem. Soc. 2020, 142, 6769-6776. (k) Ghiringhelli, F.; Uttry, A.; Ghosh, K. K.; van Gemmeren, M. Direct β - and γ -C(sp³)-H alkynylation of free carboxylic acids. Angew. Chem., Int. Ed. 2020, 59, 23127-23131.

(11) (a) McKillop, A.; Sanderson, W. R. Sodium perborate and sodium percarbonate: Cheap, safe and versatile oxidising agents for organic synthesis. *Tetrahedron* **1995**, *51*, 6145. (b) Muzart, J. Sodium perborate and sodium percarbonate in organic synthesis. *Synthesis* **1995**, *1995*, 1325.

(12) For reviews, see: (a) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. *Chem. Rev.* **2017**, *117*, 8754–8786. (b) Shao, Q.; Wu, K.; Zhuang, Z.; Qian, S.; Yu, J.-Q. From Pd(OAc)₂ to chiral catalysts: the discovery

Journal of the American Chemical Society

and development of bifunctional mono-N-protected amino acid ligands for diverse C-H activation reactions. *Acc. Chem. Res.* **2020**, *53*, 833–851.

(13) Engle, K. M.; Mei, T.-S.; Wang, X.; Yu, J.-Q. Bystanding F^+ oxidants enable selective reductive elimination from high-valent metal centers in catalysis. *Angew. Chem., Int. Ed.* **2011**, *50*, 1478–1491.

(14) (a) Yoshikawa, K.; Kaneko, A.; Matsumoto, Y.; Hama, H.; Arihara, S. Russujaponols A-F, illudoid sesquiterpenes from the fruiting body of Russula japonica. J. Nat. Prod. 2006, 69, 1267-1270. (b) Yoshikawa, K.; Matsumoto, Y.; Hama, H.; Tanaka, M.; Zhai, H.; Fukuyama, Y.; Arihara, S.; Hashimoto, T. Russujaponols G-L, illudoid sesquiterpenes, and their neurite outgrowth promoting activity from the fruit body of Russula japonica. Chem. Pharm. Bull. 2009, 57, 311-314. (c) Becker, U.; Erkel, G.; Anke, T.; Sterner, O. Puraquinonic acid, a novel inducer of differentiation of human HL-60 promyelocytic leukemia cells from Mycena pura (Pers. Ex Fr.). Nat. Prod. Lett. 1997, 9, 229-236. (d) Kuroyanagi, M.; Fukuoka, M.; Yoshihira, K.; Natori, S. The absolute configurations of pterosins, 1indanone derivatives from bracken, Pteridium aquilinum var. Chem. Pharm. Bull. 1974, 22, 723-726. (e) Suzuki, S.; Murayama, T.; Shiono, Y. Echinolactones C and D: two illudalane sesquiterpenoids isolated from the cultured mycelia of the fungus Echinodontium japonicum. Z. Naturforsch., B: J. Chem. Sci. 2006, 61, 1295-1298.

(15) (a) Melot, R.; Craveiro, M.; Bürgi, T.; Baudoin, O. Divergent enantioselective synthesis of (nor)illudalane sesquiterpenes via Pd^{0} catalyzed asymmetric $C(sp^{3})$ -H activation. Org. Lett. **2019**, 21, 812– 815. (b) Melot, R.; Craveiro, M. V.; Baudoin, O. Total synthesis of (nor)illudalane sesquiterpenes based on a $C(sp^{3})$ -H activation strategy. J. Org. Chem. **2019**, 84, 12933–12945.

(16) For recent examples, see: (a) Tiong, E. A.; Rivalti, D.; Williams, B. M.; Gleason, J. L. A concise total synthesis of (*R*)-puraquinonic acid. Angew. Chem., Int. Ed. **2013**, 52, 3442–3445. (b) Elmehriki, A. A. H.; Gleason, J. L. A spiroalkylation method for the stereoselective construction of α -quaternary carbons and its application to the total synthesis of (*R*)-puraquinonic acid. Org. Lett. **2019**, 21, 9729–9733. (c) Zeng, Z.; Zhao, Y.; Zhang, Y. Divergent total syntheses of five illudalane sesquiterpenes and assignment of the absolute configuration. Chem. Commun. **2019**, 55, 4250–4253. (d) Xun, M. M.; Bai, Y.; Wang, Y.; Hu, Z.; Fu, K.; Ma, W.; Yuan, C. Synthesis of four illudalane sequiterpenes utilizing a one-pot Diels–Alder/oxidative aromatization sequence. Org. Lett. **2019**, 21, 6879–6883.

(17) Thuy-Boun, P. S.; Villa, G.; Dang, D.; Richardson, P.; Su, S.; Yu, J.-Q. Ligand-accelerated *ortho*-C–H alkylation of arylcarboxylic acids using alkyl boron reagents. *J. Am. Chem. Soc.* **2013**, *135*, 17508– 17513.

(18) Stavber, S.; Kralj, P.; Zupan, M. Selective and effective iodination of alkyl-substituted benzenes with elemental iodine activated by SelectfluorTM F-TEDA-BF₄. *Synlett* **2002**, 2002, 598–600.

(19) For examples of C–H activation reactions using L12, see: (a) Le, K. K. A.; Nguyen, H.; Daugulis, O. 1-Aminopyridinium ylides as monodentate directing groups for sp³ C–H bond functionalization. *J. Am. Chem. Soc.* 2019, 141, 14728–14735. (b) Zhuang, Z.; Yu, J.-Q. Pd(II)-catalyzed enantioselective γ -C(sp³)–H functionalizations of free cyclopropylmethylamines. *J. Am. Chem. Soc.* 2020, 142, 12015– 12019.

(20) (a) Sun, W.-W.; Cao, P.; Mei, R.-Q.; Li, Y.; Ma, Y.-L.; Wu, B. Palladium-catalyzed unactivated $C(sp^3)$ -H bond activation and intramolecular amination of carboxamides: a new approach to β -lactams. Org. Lett. **2014**, 16, 480-483. (b) Zhang, S.-J.; Sun, W.-W.; Cao, P.; Dong, X.-P.; Liu, J.-K.; Wu, B. Stereoselective synthesis of diazabicyclic β -lactams through intramolecular amination of unactivated $C(sp^3)$ -H Bonds of carboxamides by palladium catalysis. J. Org. Chem. **2016**, 81, 956-968. (c) Tong, H.-R.; Zheng, W.; Lv, X.; He, G.; Liu, P.; Chen, G. Asymmetric synthesis of β -lactam via palladium-catalyzed enantioselective intramolecular $C(sp^3)$ -H amidation. ACS Catal. **2020**, 10, 114-120. (d) Zhou, T.; Jiang, M.-X.; Yang, X.; Yue, Q.; Han, Y.-Q.; Ding, Y.; Shi, B.-F. Synthesis of chiral

 β -lactams by Pd-catalyzed enantioselective amidation of methylene $C(sp^3)$ -H bonds. *Chin. J. Chem.* **2020**, 38, 242–246.

(21) (a) Canty, A. J.; Jin, H.; Skelton, B. W.; White, A. H. Oxidation of complexes by $(O_2CPh)_2$ and $(ER)_2$ (E = S, Se), including structures of $Pd(CH_2CH_2CH_2CH_2)(SePh)_2(bpy)$ (bpy = 2,2'bipyridine) and MMe₂(SePh)₂(L2) (M = Pd, Pt; L2 = bpy, 1,10phenanthroline) and C····E bond formation at palladium-(IV). Inorg. Chem. 1998, 37, 3975-3981. (b) Giri, R.; Liang, J.; Lei, J.-G.; Li, J.-J.; Wang, D.-H.; Chen, X.; Naggar, I. C.; Guo, C.; Foxman, B. M.; Yu, J.-Q. Pd-catalyzed stereoselective oxidation of methyl groups by inexpensive oxidants under mild conditions: a dual role for carboxylic anhydrides in catalytic C-H bond oxidation. Angew. Chem., Int. Ed. 2005, 44, 7420-7424. (c) Oloo, W.; Zavalij, P. Y.; Zhang, J.; Khaskin, E.; Vedernikov, A. N. Preparation and C-X reductive elimination reactivity of monoaryl Pd^{IV} -X complexes in water (X = OH, OH₂, Cl, Br). J. Am. Chem. Soc. 2010, 132, 14400-14402. (d) Abada, E.; Zavalij, P. Y.; Vedernikov, A. N. Reductive C(sp²)-N elimination from isolated Pd(IV) amido aryl complexes prepared using H₂O₂ as oxidant. J. Am. Chem. Soc. 2017, 139, 643-646.

(22) For examples of C-H activation of arenes at Pd(IV), see: (a) Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E. Palladium-catalyzed carboamination of alkenes promoted by *N*fluorobenzenesulfonimide via C-H activation of arenes. *J. Am. Chem. Soc.* **2009**, *131*, 9488-9489. (b) Sibbald, P. A.; Rosewall, C. F.; Swartz, R. D.; Michael, F. E. Mechanism of *N*-fluorobenzenesulfonimide promoted diamination and carboamination reactions: divergent reactivity of a Pd(IV) species. *J. Am. Chem. Soc.* **2009**, *131*, 15945-15951.