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Sequential Conia-Ene-Type Cyclization and Negishi Coupling by 
Cooperative Functions of B(C6F5)3, ZnI2, Pd(PPh3)4 and an Amine
Min Cao,a Ahmet Yesilcimen,a Soumil Prasad,a Jason Genova,a Tanner Myers,a and

Masayuki Wasa*a 

We disclose a method for sequential Conia-ene-type 
cyclization/Negishi coupling for the union of alkynyl ketones and 
aryl iodides. This process is promoted through cooperative actions 
of Lewis acidic B(C6F5)3, ZnI2, Pd-based complex, and a Brønsted 
basic amine. The three Lewis acid catalysts with potential 
overlapping functions play their independent roles as activators of 
carbonyl group, alkyne moiety, and alkenyl zinc intermediate, 
respectively. A variety of 1,2,3-substituted cyclopentenes can be 
synthesized with high efficiency.

Cooperative Lewis acid/Lewis base catalysts can promote 
the union of nucleophilic and electrophilic intermediates that 
are generated in situ from substrates that would not react 
efficiently using a single acid or base catalyst.1-2 This mode of 
substrate activation has been widely applied to the synthesis of 
essential intermediates for bioactive compounds and natural 
product synthesis.1-2 However, a fundamental problem remains 
unaddressed. Specifically, undesirable catalyst deactivation 
often occurs in a reaction mixture which contains Lewis acid and 
base catalysts, together with other acid- and/or base-sensitive 
substrates, intermediates, and products. Consequently, these 
processes typically possess limited substrate scopes, poor 
efficiency, and modest functional group tolerance.1-2 Such acid–
base complexation becomes more problematic when three or 
more independent catalysts that can form stable acid/base 
adducts are involved.

One approach to overcome the mutual quenching problem 
has been to utilize a pair of Lewis acid and base catalysts that 
have limited affinity to form stable adducts due to their steric 
hindrance and electronic disparity.3 Using these “frustrated” 
Lewis pair catalysts,4 we developed enantioselective Conia-ene-
type cyclization5 of alkynyl ketones 1a (Scheme 1A). We 
proposed that Brønsted basic 1,2,2,6,6-pentamethylpiperidine 
(PMP) deprotonates B(C6F5)3-activated carbonyl unit of 1a to 
afford a boron–enolate and [H–PMP] (I). Enantioselective 5-
endo-dig carbocyclization involving the boron–enolate and 

chiral BoxZn-activated alkyne units, followed by protonation 
of the resulting alkenyl ZnLn intermediate by [H–PMP] provides 
the desired cyclopentene derivative 2a in up to 97:3 er. No C–C 
bond formation was observed in the absence of each one of the 
three catalysts. However, the roles of LnZn–Box complex, which 
could activate either carbonyl and/or alkyne units of 1a, 
remained undetermined.6
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To shed light on the mechanism of the Conia-ene-type 
reaction, we investigated if the proposed alkenyl ZnI 
intermediate IV derived from 1 by 5-endo-dig carbocyclization 
(via 1  II  III  IV; Scheme 1B) can undergo transmetallation 
with an appropriate Pd(II)-based complex (IV  V). The latter 
species may be formed in situ through oxidative addition of 
Pd(PPh3)4 and an aryl iodide 3. The resulting [(Ar)(I)PdII(PPh3)n] 
V can undergo CAr bond forming reductive elimination to 
afford 1,2,3-substituted cyclopentene derivative 4. The 
sequential Conia-ene-type carbocyclization/Negishi coupling 
reactions could provide evidence supporting the mechanistic 
hypothesis that the -philic Zn-based catalyst is responsible for 
activation of alkyne unit in 1, thereby generating IV.7-8 Here, we 
describe a process promoted by B(C6F5)3, N-alkylamine, ZnI2, 
and Pd(PPh3)4 that play their independent catalytic roles while 
overcoming the undesirable acid–base complexation to afford 
1,2,3-substituted cyclopentenes in high efficiency.

To begin, we probed the ability of B(C6F5)3, PMP, ZnI2, and 
Pd(PPh3)4 to catalyze the cyclization of 1-phenylnon-5-yn-1-one 
1b to give the alkenyl ZnI complex IV, followed by Negishi 
coupling of IV with iodobenzene 3a (CH2Cl2, 12 h, 22 °C) to 
generate 4b (Table 1). The combination of 10 mol% B(C6F5)3, 1.0 
equivalent of PMP, 50 mol% ZnI2, and 2.0 mol% Pd(PPh3)4, 
produced 4b in >95% yield (entry 1). In addition, cyclopentene 
derivative 2b formed by protonation of cyclopentene–ZnI 
intermediate was obtained in <5% yield. In the absence of 
Pd(PPh3)4, only 2b was generated in >95% yield (entry 2). When 
ZnI2 or PMP was not added, neither 4b nor 2b were produced 
(entries 3–4). However, PMP, ZnI2, and Pd(PPh3)4 were found to 
promote the formation of 4b in the absence of B(C6F5)3, 
although only 20% yield of 4b was obtained (entry 5). This 
observation suggests that deprotonation of alkynyl ketone 1b
Table 1. Evaluation of Reaction Parameters a,b
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0

0
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(mol%)
PMP yield(%)
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a Conditions: 1-phenylnon-5-yn-1-one (1a, 0.10 mmol), iodobenzene (3a, 0.12 mmol) 
B(C6F5)3, 1,2,2,6,6-pentamethylpiperidine, ZnI2, Pd(PPh3)4, CH2Cl2 (0.5 mL), under N2, 22 
°C, 12 h. b Yield was determined by 1H NMR analysis of unpurified reaction mixtures with 
mesitylene as the internal standard.

can be promoted by cooperative functions of the Pd-based complex 
and PMP.9 This process was found to require a stoichiometric 
amount of PMP because the formation of [PMP–H]+[I]– in the 5-endo-
dig carbocyclization step (III  IV; Scheme 1B) may inhibit the 
regeneration of PMP; when the loading of PMP was lowered to 50 
mol%, 4b was obtained in 52% (entry 6). When the loading of ZnI2 
was lowered to 20 mol%, the yield of 4b declined to 41% (entry 7).10 
This sequential cycloaddition/cross-coupling reaction could proceed 
with a minimal amount of Pd(PPh3)4 (1.0 mol%), as 4b could be 
obtained in >95% yield (entry 8). Under none of the reaction 
conditions tested, PdLn-catalyzed -arylation of 1b-derived enolate 
was observed.11

A variety of alkynyl ketones with different carbonyl and 
alkyne substituents proved to be suitable substrates for the 
sequential Conia-ene-type carbocyclization/Negishi coupling 
with iodobenzene 3a (4b–4g; Table 2). Phenyl, naphthalen-2-yl, 
2-methoxyphenyl, and furan-2-yl-substituted ketones gave the 
corresponding products (4b–4f) in 65 to 98% yield. An alkyl 
substituted ketone was also found to be a suitable substrate as 
4g was obtained in 91% yield. However, the use of internal 

Table 2. Sequential Conia-Ene-Type Carbocyclization/Negishi 
Coupling Reactions with Different Ketones a,b

R1

O

R2

1

H

B(C6F5)3
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10 mol%

100 mol%
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1.0 mol% Pd(PPh3)4

+
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O O
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O
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Ph Ph Ph
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O

4i, 95% yield

4m, 85% yield

Me
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Me
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O

4h, 92% yield

4l, 92% yield

Me
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Me
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a Conditions: Alkynl ketone (1, 0.10 mmol), aryl iodide (3, 0.12 mmol), B(C6F5)3 (10 mol%), 
1,2,2,6,6-pentamethylpiperidine (100 mol%), ZnI2 (50 mol%), Pd(PPh3)4 (1.0 mol%), 
CH2Cl2 (0.5 mL), under N2, 22 °C, 12 h. b Yield of isolated and purified product.
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alkynes was found to be necessary; with 1-phenylhex-5-yn-1-
one, containing a terminal alkyne moiety (R2 = H), the 
transformation was inefficient (<5% yield, see the Supporting 
Information for details).

An array of aryl- and heteroaryl-iodides reacted efficiently 
with 1b to afford 4h–4m. Cyclopentene derivatives with 1-
naphthyl group (4h) as well as those containing arenes with 
electron-donating (4i) and electron-withdrawing (4j–4l) groups 
were obtained in 91 to 95% yield. Thiophen-2-yl-substituted 4m 
could also be produced in 85% yield. The reaction of 1b with 
more sterically hindered 2,6-dimethyliodebenzene and 1-iode-
2-methoxynaphthalele only gave the Conia-ene-type product 
2b (see the Supporting Information for details). This sequential 
Conia-ene-type cycloaddition/Negishi coupling reaction was 
found to proceed only with iodoarenes; bromoarenes gave no 
desired product (Conia-ene-type product 2b was obtained using 
bromobenzene: see the Supporting Information for details). 
Furthermore, for the reaction of 1b and 1-chloro-3-
iodobenzene to afford 4l, no byproduct formed through 
oxidative addition into Ar–Cl bond was detected. The treatment 
of 1b with allyl iodide under the standard catalytic conditions 
lead to the formation of 2b (see the Supporting Information for 
details). These results suggest, in order to effectively trap the 
alkenyl ZnI species by Pd(II) complexes through 
transmetallation (IV  V; Scheme 1B), the use of aryl iodides that 
undergo facile oxidative addition with Pd(PPh3)4 to afford 
reactive [(Ar)(I)PdII(PPh3)n] intermediates is necessary.

Conclusions
In brief, we have developed a cooperative catalyst system 

which constitutes of B(C6F5)3, an amine, ZnI2, and Pd(PPh3)4 to 
promote sequential Conia-ene-type cycloaddition/Negishi 
coupling reactions. This process affords 1,2,3-substituted 
cyclopentenes with various carbonyl, alkyl, and aryl substitutes from 
readily available alkynyl ketones and aryl iodides. Furthermore, 
the results obtained provide a mechanistic insight into how the Lewis 
acidic catalysts with potential overlapping functions serve as 
activators of carbonyl, alkyne, and alkenyl–ZnI intermediate. The 
principles outlined here demonstrate that a combination of four 
different catalyst units with different functions can be used to 
promote the union of in situ generated reactive intermediates from 
poorly acid- and base-sensitive starting materials. This discovery 
provides a rational framework for further development of 
cooperative multi-catalyst systems that facilitate transformations 
that cannot be realized by single or dual-catalyst systems. Studies 
aimed at achieving these objectives are currently underway.
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Sequential Conia-ene-type cyclizations/Negishi coupling reaction

B(C6F5)3 NR3cat. 1.0 equiv.
R

O

H

cat.

"Frustrated" acid/base catalysts

R1

R2
R1

R

O

R2

Ar

1 4
cat.ZnI2 Pd(PPh3)n

Ar I+

3

A hybrid catalyst system for sequential Conia-ene-type cyclization/Negishi coupling for union of 

alkynyl ketones and aryl iodides has been developed.
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