Synthesis and Preliminary Biological Evaluation of Chrysin Derivatives as Potential Anticancer Drugs

Xing Zheng^{1,*}, Fei Fei Zhao¹, Yun Mei Liu, Xu Yao, Zi Tong Zheng, Xing Luo and Duan Fang Liao

Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China

Abstract: A series of chrysin derivatives were prepared from 2-hydroxyacetophenone, 2,4-dihydroxyacetophenone, 2,4,6-trihydroxy- acetophenone, using modified Baker-Venkataraman transformation. Their anticancer activities *in vitro* were evaluated by the standard MTT method. The results of biological test showed that some of chrysin derivatives showed stronger anticancer activity than 5-fluorouracil.

INTRODUCTION

Chrysin, a natural flavonoid widely distributed in plants, has been reported to have various biological activities such as anticancer [1], anti-inflammatory [2], anti-oxidant [3], anti-anxiolytic [4], vasodilatory actions [5]. In anticancer area, chrysin has been found to possess anti-proliferative activity through inhibiting malignant cell growth by downregulated expression of PCNA in Hela cells [6], and induced apoptosis through caspase activation and Akt inactivation in U937 cells [7]. However, the anticancer activity of chrysin in vivo studies on animals and humans has been disappointing mainly due to extremely poor oral bioavailability [8]. The crucial feature of chrysin in this respect is their unprotected hydroxyl groups, which are rapidly and efficiently metabolized *via* glucuronidation and sulfation [9]. As a part of our current work on the search for anticancer substances with high efficacy, low toxicity and minimum of side effects [10-12], herein, we describe the synthesis of chrysin derivatives and their anticancer activities against human gastric carcinoma SGC-7901, human colon cancer HT-29, and human promyelocytic leukemia HL-60 cell lines.

SYNTHESIS CHRYSIN DERIVATIVES

Among the reported methods to synthesize flavonoids, the Baker-Venkataraman transformation is a largely applied one. The synthesis of compounds **4a-4m** were carried out according to modified Baker-Venkataraman transformation (Fig. 1). Commercially available 2,4-dihydroxyacetophenone **1a** and 2,4,6-trihydroxyaceto- phenone **1b** were treated with anhydrous potassium carbonate and dimethyl sulfate in acetone to give **2a** and **2b**, respectively. **2a** and **2b** were reacted with substituted benzoyl chlorides in the anhydrous potassium carbonate in acetone to afford the corresponding 1,3diketones **3a-3c** and **3d-3h**, respectively. Treatment of **3a-3c** and **3d-3h** with glacial acetic acid and anhydrous sodium acetate gave 5-methoxy-flavones **4a-4c** and 5,7-dimethoxyflavones **4d-4h**, respectively. Reaction of 2-hydroxyacetophenone **2c** with substituted benzoyl chlorides followed by the flavone ring formation in same conditions gave the flavone analogues **4i-4m**.

All the new compounds were characterized by detailed spectroscopic analysis. 4a White powder, mp 142-143 °C. HRFABMS m/z 321.0733 $[M+H]^+$ (C₁₇H₁₁F₃O₃, calc. 321.0738). IR (cm⁻¹, KBr): 1365, 1438, 1501, 1589, 1613, 1642(C=O), 2948, 2976; ¹H NMR (300MHz, CDCl₃): 3.967(3H, s), 6.815(1H, s), 7.007-7.047(2H, m), 7.648-7.701(1H, m), 7.791-7.817(1H, m), 8.065-8.091(1H, m), 8.139-8.171(1H, m), 8.194(1H, s). 4d White powder, mp 156-157 °C. HRFABMS m/z 351.0839 [M+H]⁺ (C₁₈H₁₃F₃O₄, calc. 351.0844). IR (cm⁻¹, KBr): 1390, 1437, 1460, 1489, 1602, 1614, 1653(C=O), 2945, 2971; ¹H NMR (300MHz, $CDCl_3$): 3.942(3H, s), 3.973(3H, s), 6.308(1H, d, J = 2.1Hz), 6.718(1H, d, J = 2.1Hz), 6.745(1H, s), 7.617-7.670(1H, m),7.760-7.788(1H, m), 8.023-8.050(1H, m), 8.150(1H, s). 4f White powder, mp 186-187 °C. HRFABMS m/z 317.0586 $[M+H]^+$ (C₁₇H₁₃O₄Cl, calc. 317.0580). IR (cm⁻¹, KBr): 1417, 1459, 1487, 1584, 1605, 1660(C=O), 2847, 2944; ¹H NMR (300MHz, CDCl₃): 3.920(3H, s), 3.964(3H, s), 6.392(1H, d, J = 2.4Hz), 6.566(1H, d, J = 2.4Hz), 6.653(1H, s), 7.454-7.500(2H, m), 7.788-7.834(2H, m). 4h White powder, mp 177-178 °C. HRFABMS m/z 313.1076 [M+H]⁺ (C₁₈H₁₆O₅, calc. 313.1075). IR (cm⁻¹, KBr): 1429, 1458, 1493, 1574, 1592, 1601, 1634(C=O), 2954; ¹H NMR (300MHz, CDCl₃): 3.900(3H, s), 3.933(3H, s), 3.958(3H, s), 6.367(1H, d, J =2.1Hz), 6.535(1H, d, J = 2.1Hz), 7.012-7.060(2H, m), 7.082-7.110(1H, m), 7.423-7.481 (1H, m), 7.853-7.885(1H, m) 4i White needles, mp 146-147 °C. HRFABMS m/z 291.0633 $[M+H]^+$ (C₁₆H₉F₃O₂, calc. 291.0632). IR (cm⁻¹, KBr): 1382, 1445, 1466, 1577, 1605, 1625, 1667(C=O), 3139; ¹H NMR (300MHz, CDCl₃): 6.879(1H, s), 7.437-7.491(1H, m), 7.609-7.831(4H, m), 8.090-8.120(1H, m), 8.202-8.268(2H, m).

BIOLOGICAL ACTIVITY

All of the chrysin derivatives were tested for their anticancer activity *in vitro* against HL-60, HT-29 and SGC-7901 cells by MTT-Based Assay, using 5-Fluorouracil as control.

^{*}Address correspondence to this author at the Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China; Tel: +86-734-8281408; Fax: +86-734-8281239;

E-mail :zhengxing5018@yahoo.com

¹These two authors contributed equally to this article.

R : = 3'-CF₃, 4'-NO₂, 4'-Cl, 4'-OMe, 2'-OMe

Fig. (1). Reagents and conditions: (a) dimethyl sulfate, K₂CO₃, acetone, rt; (b) substituted benzoyl chlorides, K₂CO₃, acetone, reflux; (c) NaOAc, HAc, reflux.

Table 1. The Structures and Anticancer Activities of the Target Compounds In Vitro

÷	R ₁	R ₂	R	IC ₅₀ (μmol/L)		
				HL-60	НТ-29	SGC-7901
4 a	Н	OMe	3'-CF ₃	5.38	6.19	5.78
4b	Н	OMe	4'-NO ₂	5.56	5.86	3.57
4c	Н	OMe	4'-C1	6.92	4.37	6.89
4d	OMe	OMe	3'-CF ₃	3.03	3.80	2.46
4e	OMe	OMe	4 ⁻ NO ₂	5.29	5.81	4.86
4f	OMe	OMe	4 ⁻ -Cl	5.00	5.22	6.08
4g	OMe	OMe	4 -OMe	11.37	10.16	12.05
4h	OMe	OMe	2 ['] -OMe	16.57	14.90	12.24
4i	Н	Н	3'-CF ₃	13.03	14.00	13.28
4j	Н	Н	4 ⁻ NO ₂	8.84	11.79	6.25
4k	Н	Н	4 ['] -Cl	6.34	8.33	6.15
41	Н	Н	4 -OMe	18.45	15.56	14.92
4m	Н	Н	2 ['] -OMe	11.98	9.88	7.98
5-Fluorouracil				12.92	9.56	5.28

The assays were performed in 96-well plates essentially as described by Mosmann [13].

As shown in Table 1, although general structure-activity relationship of these compounds was not elucidated from these data, the following points were noteworthy: (1) compound 4d was the most active one, showing a significant activity toward all the tested cell lines. This is probably due to the presence of CF_3 at 3-position which is the most electronegative group. (2) Compounds **4g**, **4h**, **4l**, **4m** with a methoxy group as a substituent on B-ring were found to be inactive against all the tested cell lines, which may imply that B-ring substituted with electron-donating groups would diminish the anticancer activity. (3) Analyses of compounds **4e** and **4f** against HL-60 and HT-29, showed that a Chlorine atom in position 4 had higher activity than a nitro group. (4) Only compounds **4b**, **4d**, **4e** showed better inhibitory activity towards SGC-7901 cell than 5-fluorouracil.

In conclusion, we have synthesized a series of chrysin derivatives. The preliminary biological activity screening tests indicated that **4d** was the most active compound against all the tested cell lines.

ACKNOWLEDGMENTS

This research was supported by the Key Project of Chinese Ministry of Education.(No. 20809), Fund of Hunan Provincial Education Department (No. 2008-269-132), Scientific Research Fund of Hunan Provincial Education Department (No. 07B065) Science and Technology Bureau of Hunan Province (No. 2007FJ4155), and Hunan Provincial Natural Science Foundation (No. 07JJ6157).

REFERENCES

- Habtemariam, S. Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-alpha in L-929 tumor cells. J. Nat. Prod., 1997, 60, 775-778.
- [2] Woo, K. J.; Jeong, Y. J.; Inoue, H.; Park , J.W.; Kwon; T.K. Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity. *FEBS Lett.*, 2005, 579, 705-711.

Received: August 30, 2009 Revised: December 12, 2009 Accepted: December 13, 2009

- [3] Chan, E. C. H.; Patchareewan, P.; Owen, L. W. Relaxation of flavones and flavonols in rat isolated thoracic aorta:mechanism of action and structure-activity relationships. *J. Cardiovasc. Pharmacol.*, 2000, 35, 326-333.
- [4] Zanoli, P.; Avallone, R.; Baraldi, M. Behavioral characterisation of the flavonoids apigenin and chrysin. *Fitoterapia*, 2000, 71, s117-123.
- [5] Ajay, M.; Gilani, A. H.; Mustafa, M. R. Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta. *Life Sci.*, 2003, 74, 603-612.
- [6] Zhang, T.; Chen, X. L.; Qu, L. B.; Cui, R.; Zhao; Y. Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells. *Bioorg. Med. Chem. Lett.*, 2004, 12, 6097-6105.
- [7] Woo, K. J.; Jeong, Y. J.; Park, J.W.; Kwon, T.K. Chrysin-induced apoptosis is mediated through caspase activation and Akt inactivation in U937 leukemia cells. *Biochem. Biophys. Res. Comm.*, 2004, 325, 1215-1222.
- [8] Tsuji, P. A.; Winn, R. N.; Walle, T. Accumulation and metabolism of the anticancer flavonoid 5,7-dimethoxyflavone compared to its unmethylated analog chrysin in the Atlantic killifish. *Chem.-Biol. Interact.*, 2006, 164, 85-92.
- [9] Otake, Y.; Hsieh, F.; Walle, T. Glucuronidation versus oxidation of the flavonoid galangin by human liver microsomes and hepatocytes. *Drug Metab. Dispos.*, 2002, 30, 576-581.
- [10] Zheng, X.; Meng, W. D.; Xu, Y. Y.; Cao, J. G.; Qing, F. L. Synthesis and anticancer effect of chrysin derivatives. *Bioorg. Med. Chem. Lett.*, 2003, 13, 881-884.
- [11] Zheng, X.; Cao, J. G.; Meng, W. D.; Qing, F. L. Synthesis and anticancer effect of B-Ring trifluoro-methylated flavonoids. *Bioorg. Med. Chem. Lett.*, 2003, 13, 3423-3427.
- [12] Zheng, X.; Cao, J. G.; Liao, D. F.; Zhu, B. Y.; Liu, H. T. Synthesis and anticancer effect of gem-difluoromethylenated chrysin derivatives. *Chin. Chem. Lett.*, **2006**, *17*, 1439-1442.
- [13] Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Method, 1983, 65, 55-63.