Synthesis and Crystal Structure Study of Diethyl Aryl(benzo[*d*]thiazol-2-ylamino)methyl Phosphonates

Mojtaba Lashkari,¹ Nourallah Hazeri,¹ Malek Taher Maghsoodlou,¹ Sayyed Mostafa Habibi Khorassani,¹ Niloufar Akbarzadeh Torbati,¹ Asghar Hosseinian,² Santiago García-Granda,³ and Laura Torre-Fernández³

¹Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, P. O. Box 98135-674 Zahedan, Iran

²Department of Chemistry, College of Sciences, Hormozgan University, Bandar Abbas, Iran ³Department of Physical and Analytical Chemistry, University of Oviedo-CINN, Oviedo, Spain

Received 3 August 2012; revised 20 October 2012

ABSTRACT: A three-component synthesis of α aminophosphonate is described from a reaction between aldehydes, 2-aminobenzothiazole, and triethyl phosphite in the presence of InCl₃ as a catalyst under solvent-free conditions for the generation of the particular α -aminophosphonates. These products have two potentially biologically active parts, aminophosphonate and benzothiazole. This method offers advantages such as short reaction times, good yields, solvent-free conditions, and easy workup with the green aspects by avoiding toxic catalysts and solvents. The crystal structure of **4b** has been determined by X-ray crystallography. This compound crystallizes in the monoclinic space group C2/c with cell parameters a = 21.9285(5) Å, b = 10.3221(2) Å, c = 18.5979(5) Å, $\beta = 108.759(3)^{\circ}$, $V = 3985.99(18) \text{ Å}^3$, $D_{calc} = 1.301 \text{ mg}$ m^{-3} , and Z = 8. The final R value is 0.0501 for 3741 reflections. © 2012 Wiley Periodicals, Inc. Heteroatom Chem. 24:58-65, 2013; View this article online at wilevonlinelibrary.com. DOI 10.1002/hc.21063

INTRODUCTION

 α -Aminophosphonate is a biologically important compound as peptidomimetics, haptens design antibody generation [1], and also in enin zyme inhibitory activity [2]. In addition, α aminophosphonate derivatives have broad applications such as herbicids, insecticides, fungicides, antibiotics, and pharmacological agents [3]. Among the number of synthetic approaches regarding α aminophosphonates, one of the most powerful methods is the Kabachnik-Fields reaction in which aldehyde, amine, and di- or trialkyl phosphite are reacted in a one-pot setup [4]. This reaction can be promoted by several acid catalysts such as NbCl₅ [5], ChCl·2ZnCl₂ [6], InCl₃ [7], YbCl₃ [8], Ce(OTf)₄ [9], Sn(OTf)₂ [10], Mg(ClO₄)₂ [11], LiClO₄ [12], ZrOCl₂·8H₂O [13], CAN [14], Yb(PFO)₃ [15], SmI₂ [16], TaCl₅-SiO₂ [17], SbCl₃/Al₂O [18], sulfamic acid [19], oxalic acid [20], and silica sulfuric acid [21]. In recent years, α -aminophosphonates were synthesized containing the benzothiazole moiety, which has antitumor and antimicrobial activity [11,13,22].

Molecules featuring of the benzothiazole structural motif play a key part in a wide variety of chemistry. Their diverse functions range from electron

Correspondence to: N. Hazeri; e-mail: n_hazeri@yahoo.com. © 2012 Wiley Periodicals, Inc.

SCHEME 1 Synthesis of α -aminophosphonates **4a-j** catalyzed by InCl₃.

TABLE 1 Optimization of Catalyst on a Model Reaction^a

Entry	Catalyst	Isolated Yield (%)
1	_	33
2	<i>p</i> -TsOH⋅H₂O	55
3	ZrCl ₄	21
4	ZrOCl ₂ ·8H ₂ O	57
5	$Zr(NO_3)_4$	41
6	InCl ₃	65
7	CAN	37

^aReaction conditions: 2-Aminobenzothiazole (1.0 mmol), 4chlorobenzaldehyde (1.0 mmol), and triethyl phosphite (1.0 mmol) with 10 mol% catalyst for 30 min at 100°C under solvent-free conditions.

transfer facilitation in the firefly luciferine cycle [23], through antitumor [24] and antidiabetic activity [25] to an Alzheimer disease tracer [26] and an anticancer agent in pharmaceutical chemistry [27]. The 2-aminobenzothiazole nuclei, as a privileged scaffold, are found in many natural products and pharmaceuticals that exhibit remarkable biological activities [28]. In addition, some compounds with this skeleton have application in drugs for the treatment of various diseases [29].

RESULTS AND DISCUSSION

In continuation of our ongoing research [30–36], we investigated the InCl₃-catalyzed three-component reaction between 2-aminobenzothiazole and aldehydes in the presence of triethyl phosphite under solvent-free and thermal conditions for the synthesis of different α -aminophosphonates **4a–j** (Scheme 1).

At the outset of experiment, the onethree-component reaction between 2pot, aminobenzothiazole, 4-chlorobenzaldehyde, and triethyl phosphite was chosen as a pattern to optimize the reaction conditions in the presence of some catalysts such as *p*-TsOH·H₂O, ZrCl₄, ZrOCl₂·8H₂O, $Zr(NO_3)_4$, InCl₃, and CAN. In the absence of catalyst, only 33% of product could be obtained when the mixture of the reaction was heated at 100°C for 30 min. This indicated that the catalyst should be necessary for this transformation (Table 1). The effect of amount of catalyst was also investigated along with effects of temperature and time on the

TABLE 2 Optimization of Reaction Conditions^a

Entry	Catalyst (mol%)	Temperature (° C)	Time (min)	Isolated Yield (%)
1	5	90	30	40
2	10	90	30	56
3	15	90	30	54
4	5	100	30	45
5	10	100	15	67
6	15	100	13	67
7	10	110	11	77
8	15	110	11	70

SCHEME 2 Speculative mechanism for the synthesis of α -aminophosphonates **4a**-j catalyzed by InCl₃.

yield. Herein, a reaction occurred efficiently to afford the corresponding α -aminophosphonates in 77% yield when 10 mol% InCl₃ was used at 110°C under solvent-free conditions (Table 2, entry 7).

A speculative mechanism is presented for the synthesis of compounds **4a–j** in Scheme 2. In the first step, it is believed to involve the formation of activated imine **A** [37]. In the second step, phosphite adds to the C=N bond of the transient imine **A** to afford phosphonium intermediate **B**, which then undergoes the reaction with water generated during formation of imine to give α -amino phosphonates **4** and EtOH.

The chemical structures of all the new compounds (Table 3) were confirmed by IR, ¹H, ¹³C, and

TABLE 3 Synthesis of α -Aminophosphonates **4a**–**j**.

Entry	Ar	Product	Time (min)	Yield (%)
1	Ph	4a	14	77
2	4-MeC ₆ H ₄	4b	13	75
3	4-CIC ₆ H ₄	4c	11	77
4	3-CIC ₆ H ₄	4d	12	76
5	2-CIC ₆ H ₄	4e	12	70
6	3-BrC ₆ H ₄	4f	10	72
7	3-MeOC ₆ H ₄	4g	13	71
8	4-HOC ₆ H ₄	4ĥ	16	80
9	4-HO-3-MeOC ₆ H ₃	4i	16	89
10	5-Br-2-HOC ₆ H ₃	4j	14	78

TABLE 4Hydrogen Bond Geometries of Compound **4b** inthe Crystal Packing (Å, deg)

FIGURE 1 ORTEP view of the molecular geometry of compound 4b. Ellipsoids have been drawn at the 50% probability level.

³¹P NMR spectroscopy, elemental analysis, and mass spectrometry. The structure of compound **4b** established through single-crystal X-ray analysis (Fig. 1). Compound **4b** exhibited characteristic IR stretching frequencies at 3234 and 1232 cm⁻¹ for N–H and P=O, respectively [38]. In the ¹H NMR spectrum of **4b**, the P–C–H proton resonated as a doublet of doublet at δ 5.53 with ²*J*_{PH} = 22.0 Hz and ³*J*_{HH} = 8.4 Hz due to its coupling with phosphorus and NH [39]. A broad singlet at δ 7.46 corresponds to NH proton (using D₂O exchange). The methylene protons of P–O–CH₂–CH₃ showed a multiplet in the region δ 3.76–4.22, and the methyl protons of P–OCH₂–CH₃ gave two triplets at δ 1.18 and 1.31 with ³*J*_{HH} = 6.8 Hz [39].

The carbon chemical shifts were observed in the title compounds for P–CH, P–O–CH₂ (two δ), and P–O–C–CH₃ (two δ) at δ 55.46, 63.50, 63.65, 16.27, and 16.50, respectively with coupling constants involving 154.9 Hz (¹*J*_{CP}), 7.0 Hz (²*J*_{CP}), and 6.0 Hz

D—H…A	D—H	H…A	D…A	D—H…A
N5—H5…O2	0.86	2.64	3.025 (3)	108
C8—H8A…O2	0.97	2.78	3.164 (3)	104
C9—H9C…N5	0.96	2.83	3.527 (4)	131
C10A—H10A…O2	0.97	2.74	3.142 (7)	106
C10A—H10A…O2	0.97	2.74	3.142 (7)	106
C10B-H10DO2	0.97	2.47	2.978 (6)	113
C10B—H10D…O2	0.97	2.47	2.978 (6)	113
C12—H12…N6	0.98	2.48	2.810 (3)	99
C25—H25…N5	0.93	2.77	2.984 (4)	94
N5—H5…O2 ⁱ	0.86	2.17	2.841 (2)	135
C25—H25…O2 ⁱ	0.93	2.86	3.702 (3)	151
C9—H9A…N6 ⁱⁱ	0.96	2.88	3.631 (4)	136
C21—H21…O4 ⁱⁱⁱ	0.93	2.80	3.699 (3)	163
C11B—H11E…N6 ⁱⁱⁱ	0.96	2.86	3.610 (10)	135
C21—H21…O3 ⁱⁱⁱ	0.93	2.66	3.390 (3)	136
C16—H16…O3 ^{iv}	0.93	2.55	3.359 (3)	145

Symmetry codes: (i) -x, -y, -z; (ii) -x, y, -z - 1/2; (iii) -x, -y + 1, -z; (iv) x - 1/2, -y + 1/2, z - 1/2.

FIGURE 2 A pair of hydrogen bonds in a centrosymmetric dimer of **4b**.

 $({}^{3}J_{CP})$, respectively [38, 40, 41]. The ${}^{31}P$ NMR signal appeared at δ 20.90 for **4b** [42].

In this compound, there are weak intermolecular $-P=O\cdots H-N$ hydrogen bond (Table 4) that are effective in the stabilization of the crystal structure. A pair of hydrogen bond can be seen in a centrosymmetric dimer of compound **4b** (Fig. 2).

CONCLUSIONS

In conclusion, we have developed a simple and convenient method for the synthesis of α aminophosphonates through the three-component reaction between 2-aminobenzothiazole, aldehydes, and triethyl phosphite catalyzed by $InCl_3$ (10 mol%) at 110°C under solvent-free conditions. The advantages of the present method are short reaction times, good yields, solvent-free conditions, and easy workup with the green aspects by avoiding toxic catalysts and solvents.

EXPERIMENTAL

General Procedure for Synthesis of α -Aminophosphonates (**4a-j**)

To a mixture of 2-aminobenzothiazole (1.0 mmol), aldehydes (1.0 mmol), and triethyl phosphite (1.0 mmol), InCl₃ (10 mol%) was added and stirred at 110°C for appropriate time (Table 3). After completion of the reaction as monitored by TLC, the mixture was cooled to room temperature and the mixture was washed with EtOAc (3 × 3 mL) to afford pure α -aminophosphonates **4a–j**.

Diethyl Phenyl(benzo[d]thiazol-2-ylamino)methyl *Phosphonate* (4a). White powder; mp 155–157°C; IR (KBr): v 3223 (NH), 1249 (P=O) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ 1.16 and 1.31 (2t, J = 6.8 Hz, 2CH₃, 6H), 3.74–4.22 (m, 2CH₂, 4H), 5.44 (dd, $J_{\rm HP} = 22.0$ Hz, $J_{\rm HH} = 6.4$ Hz, CHP, 1H), 6.58 (brs, NH, 1H), 7.08–7.58 (m, H_{arom}, 9H); ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C}$ 16.26 and 16.52 (2d, $J_{\rm CP}$ = 6.0 Hz, $2CH_3$), 55.68 (d, $J_{CP} = 153.9$ Hz, CHP), 63.54 and $63.68 (2d, J_{CP} = 7.0 \text{ Hz}, 2\text{CH}_2), 119.26 (s), 120.67 (s),$ 121.72 (s), 125.70 (s), 128.18 (d, $J_{CP} = 2.0$ Hz), 128.34(d, $J_{CP} = 6.0$ Hz), 128.55 (d, $J_{CP} = 1.0$ Hz), 131.20 (s), 135.29 (s), 152.07 (s), 165.96 (d, $J_{CP} = 12.0 \text{ Hz}$); ³¹P NMR (CDCl₃, 162 MHz): δ_P 20.90; MS (*m/z*) (%): 376 (M⁺, 6), 273 (20), 255 (11), 239 (100), 237 (5), 150 (3); Anal. Calcd for C₁₈H₂₁N₂O₃PS: C, 57.44; H, 5.62; N, 7.44. Found: C, 57.69; H, 5.67; N, 7.53.

Diethyl (4-methylphenyl)(benzo[d]thiazol-2-ylam*ino)methyl Phosphonate* (4b). Yellow powder; mp 176–178°C; IR (KBr): v 3234 (NH), 1232 (P=O) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ 1.18 and 1.31 (2t, J = 6.8 Hz, 2CH₃, 6H), 2.34 (s, CH₃, 3H), 3.76-4.22 (m, 2CH₂, 4H), 5.53 (dd, $J_{\rm HP} = 22.0$ Hz, $J_{\rm HH} = 8.4$ Hz, CHP, 1H), 7.06–7.56 (m, H_{arom}, 8H), 7.46 (br, NH, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ_{C} 16.27 and 16.50 (2d, $J_{CP} = 6.0$ Hz, 2CH₃), 21.22 (s, CH₃), 55.46 (d, $J_{CP} = 154.9$ Hz, CHP), 63.50 and 63.65 (2d, $J_{CP} = 7.0$ Hz, 2CH₂), 119.28 (s), 120.69 (s), 121.76 (s), 125.74 (s), 128.15 (d, $J_{CP} = 6.0 \text{ Hz})$, 129.31 (d, $J_{CP} = 2.0$ Hz), 131.10 (s), 132.02 (s), 138.01 (d, $J_{CP} = 3.0$ Hz), 152.02 (s), 165.93 (d, $J_{\rm CP} = 12.0$ Hz); ³¹P NMR (CDCl₃, 162 MHz): $\delta_{\rm P}$ 20.90; MS (*m*/*z*) (%): 390 (M⁺, 33), 281 (21), 254 (67), 253 (100), 252 (8), 251 (14), 150 (5), 105 (5); Anal. Calcd for $C_{19}H_{23}N_2O_3PS$: C, 58.45; H, 5.94; N, 7.17. Found: C, 58.63; H, 6.01; N, 7.23.

Diethyl (4-chlorophenyl)(benzo[d]thiazol-2-ylamino)methyl Phosphonate (4c). White powder; mp $195-198^{\circ}C$; IR (KBr): ν 3230 (NH), 1230 (P=O) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ 1.17 and 1.24 (2t, J = 6.8 Hz, 2CH₃, 6H), 3.93–4.19 (m, 2CH₂, 4H), 5.79 (d, $J_{\rm HP} = 21.6$ Hz, CHP, 1H), 7.06–7.67 (m, H_{arom}, 8H), 8.19 (brs, NH, 1H); ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C}$ 16.31 and 16.53 (2d, $J_{\rm CP} = 5.0$ Hz, 2CH₃), 54.92 (d, $J_{CP} = 156.0$ Hz, CHP), 63.72 (d, $J_{CP} = 7.0$ Hz, 2CH₂), 119.33 (s), 120.69 (s), 121.72 (s), 125.78 (s), 128.72 (s), 129.67 (d, $J_{CP} = 6.0$ Hz), 131.16 (s), 134.03(s), 151.92 (s), 165.68 (d, $J_{CP} = 12.0 \text{ Hz}$); ³¹P NMR (CDCl₃, 162 MHz): δ_P 20.35; MS (*m*/*z*) (%): 412 (M⁺ $+2, 18), 410 (M^{+}, 48), 275 (100), 273 (83), 255 (16),$ 237 (26), 135 (10); Anal. Calcd for C₁₈H₂₀ClN₂O₃PS: C, 52.62; H, 4.91; N, 6.82. Found: C, 52.81; H, 4.90; N, 6.88

Diethyl (3-chlorophenyl)(benzo[d]thiazol-2-ylam*ino)methyl Phosphonate* (4d). White powder; mp 153–156°C; IR (KBr): ν 3224 (NH), 1237 (P=O) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ 1.20 and 1.32 (2t, J = 7.2 Hz, 2CH₃, 6H), 3.82–4.31 (m, 2CH₂, 4H), 6.00 $(dd, J_{HP} = 22.4 Hz, J_{HH} = 6.8 Hz, CHP, 1H), 7.09-7.61$ (m, H_{arom}, 8H), 7.23 (br, NH, 1H); ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C}$ 16.27 and 16.50 (2d, $J_{\rm CP}$ = 5.0 Hz, $2CH_3$), 55.08 (d, $J_{CP} = 154.9$ Hz, CHP), 63.79 and $63.82 (2d, J_{CP} = 4.0 \text{ Hz}, 2\text{CH}_2), 119.35 (s), 120.70 (s),$ 121.87 (s), 125.75 (s), 126.48 (d, $J_{CP} = 6.0$ Hz), 128.34(s), 128.38 (d, $J_{CP} = 6.0$ Hz), 129.79 (d, $J_{CP} = 2.0$ Hz), 131.24 (s), 134.44 (d, $J_{CP} = 2.0$ Hz), 151.93 (s), 165.67(d, $J_{CP} = 12.0 \text{ Hz}$); ³¹P NMR (CDCl₃, 162 MHz): δ_P 20.31; MS (m/z) (%): 412 $(M^+ + 2, 3)$, 410 $(M^+, 8)$, 275 (44), 273 (100); Anal. Calcd for C₁₈H₂₀ClN₂O₃PS: C, 52.62; H, 4.91; N, 6.82. Found: C, 52.78; H, 4.99; N, 6.90.

Diethyl (2-chlorophenyl)(benzo[d]thiazol-2-ylamino)methyl Phosphonate (**4e**). White powder; mp 193–195°C; IR (KBr): ν 3219 (NH), 1247 (P=O) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ 1.14 and 1.36 (2t, J = 7.2 Hz, 2CH₃, 6H), 3.72–4.31 (m, 2CH₂, 4H), 6.00 (dd, $J_{\rm HP} = 22.8$ Hz, $J_{\rm HH} = 6.8$ Hz, CHP, 1H), 7.07–7.73 (m, H_{arom}, NH, 9H); ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C}$ 16.18 and 16.50 (2d, $J_{\rm CP} = 6.0$ Hz, 2CH₃), 52.46 (d, $J_{\rm CP} = 155.9$ Hz, CHP), 63.74 and 63.87 (2d, $J_{\rm CP} = 7.0$ Hz, 2CH₂), 119.57 (s), 120.71 (s), 121.84 (s), 125.77 (s), 127.24 (d, $J_{\rm CP} = 3.0$ Hz), 129.28 (d, $J_{\rm CP} = 4.0$ Hz), 129.36 (d, $J_{\rm CP} = 5.0$ Hz), 129.56 (d, $J_{\rm CP} = 7.0$ Hz), 131.26 (s), 133.65 (s), 134.32 (d, $J_{\rm CP} = 7.0$ Hz), 152.12 (s), 165.81 (d, $J_{CP} = 13.0 \text{ Hz}$; ³¹P NMR (CDCl₃, 162 MHz): δ_P 20.21; MS (*m*/*z*) (%): 412 (M⁺ + 2, 7), 410 (M⁺, 19), 275 (85), 273 (100), 237 (25), 84 (19); Anal. Calcd for C₁₈H₂₀ClN₂O₃PS: C, 52.62; H, 4.91; N, 6.82. Found: C, 52.77; H, 4.96; N, 6.85.

Diethyl (3-bromophenyl)(benzo[d]thiazol-2-ylamino)methyl Phosphonate (4f). White powder; mp 159–162°C; IR (KBr): v 3227 (NH), 1235 (P=O) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ 1.21 and 1.32 (2t, J = 6.8 Hz, 2CH₃, 6H), 3.86–4.31 (m, 2CH₂, 4H), 5.55 $(dd, J_{HP} = 22.0 \text{ Hz}, J_{HH} = 6.4 \text{ Hz}, \text{ CHP}, 1\text{H}), 7.02-7.75$ (m, H_{arom}, 8H), 7.18 (br, NH, 1H); ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C}$ 16.30 and 16.53 (2d, $J_{\rm CP}$ = 6.0 Hz, $2CH_3$), 54.94 (d, $J_{CP} = 154.9$ Hz, CHP), 63.83 and 63.90 (2d, $J_{CP} = 4.0$ Hz, 2CH₂), 119.30 (s), 120.68 (s), 121.81 (s), 122.60 (d, $J_{CP} = 3.0$ Hz) 125.71 (s), 126.98 (d, $J_{CP} = 5.0$ Hz), 130.07 (d, $J_{CP} = 1.0$ Hz), $131.21 (d, J_{CP} = 2.0 Hz), 131.21 (s), 131.27 (s), 131.31$ (d, $J_{CP} = 2.0$ Hz) 137.96 (s), 151.94 (s), 165.75 (d, $J_{\rm CP} = 14.0 \, {\rm Hz}$; ³¹P NMR (CDCl₃, 162 MHz): $\delta_{\rm P}$ 20.38; $MS(m/z)(\%): 456(M^+ + 2, 7), 454(M^+, 7), 319(100),$ 317 (96), 238 (3); Anal. Calcd for C₁₈H₂₀BrN₂O₃PS: C, 47.48; H, 4.43; N, 6.15. Found: C, 47.70.; H, 4.51; N, 6.19.

Diethyl (3-methoxyphenyl)(benzo[d]thiazol-2-yla*mino*)*methyl Phosphonate* (**4g**). Yellow powder; mp 138–140°C; IR (KBr): ν 3231 (NH), 1257 (P=O) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ 1.18 and 1.31 (2t, *J* = 7.2 Hz, 2CH₃, 6H), 3.78 (s, OCH₃, 3H), 3.80–4.30 (m, $2CH_2$, 4H), 5.54 (dd, $J_{HP} = 22.0$ Hz, $J_{HH} = 4.00$ Hz, CHP, 1H), 6.84–7.56 (m, H_{arom}, 8H), 7.44 (br, NH, 1H); ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C}$ 16.27 and 16.49 (2d, $J_{CP} = 6.0$ Hz, 2CH₃), 55.23 (s, OCH₃), 55.82 (d, $J_{CP} = 153.9$ Hz, CHP), 63.55 and 63.71 $(2d, J_{CP} = 7.0 \text{ Hz}, 2CH_2), 113.82 (d, J_{CP} = 2.0 \text{ Hz}),$ 119.32 (s), 120.54 (d, $J_{CP} = 6.0 \text{ Hz}$), 120.70 (s), 121.80 (s), 125.75 (s), 129.56 (d, $J_{CP} = 2.0$ Hz), 131.14 (s), 136.64 (s), 152.03 (s), 159.72 (d, $J_{CP} = 2.0 \text{ Hz}$) 165.93 (d, $J_{CP} = 13.0 \text{ Hz}$); ³¹P NMR (CDCl₃, 162 MHz): δ_P 20.71; MS (*m*/*z*) (%): 406 (M⁺, 7), 269 (100), 255 (19), 150 (16), 135 (8); Anal. Calcd for C₁₉H₂₃N₂O₄PS: C, 56.15; H, 5.70; N, 6.89. Found: C, 56.25; H, 5.79; N, 6.86.

Diethyl (4-hydroxyphenyl)(benzo[d]thiazol-2-ylamino)methyl Phosphonate (**4h**). White powder; mp 215–218°C; IR (KBr): ν 3209 (NH), 3431–3147 (br, OH), 1228 (P=O) cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz): $\delta_{\rm H}$ 1.07 and 1.14 (2t, *J* = 7.2 Hz, 2CH₃, 6H), 3.86–4.05 (m, 2CH₂, 4H), 5.53 (d, *J*_{HP} = 20.8 Hz, CHP, 1H), 6.75–7.68 (m, H_{arom}, 8H), 8.97 and 9.55 (2br, OH, NH, 2H). ¹³C NMR (DMSO-*d*₆, 100 MHz): δ_{C} 16.56 and 16.73 (2d, $J_{CP} = 6.0$ Hz, 2CH₃), 54.20 (d, $J_{CP} = 156.0$ Hz, CHP), 62.84 and 63.01 (2d, $J_{CP} = 6.0$ Hz, 2CH₂), 115.39 (s), 118.75 (s), 121.48 (s), 121.78 (s), 126.04 (s), 129.83 (d, $J_{CP} = 6.0$ Hz), 131.20 (s), 152.06 (s), 157.34 (s) 165.80 (d, $J_{CP} = 10.0$ Hz); ³¹P NMR (DMSO- d_6): δ_P 21.37; MS (m/z) (%): 392 (M+, 4), 283 (9), 273 (19), 255 (100), 150 (8), 135 (10), 83 (11), 65 (11); Anal. Calcd for C₁₈H₂₁N₂O₄PS: C, 55.09; H, 5.39; N, 7.14. Found: C, 55.31; H, 5.47; N, 7.19.

(4-hydroxy-3-methoxyphenyl)(benzo[d] Diethvl thiazol-2-ylamino)methyl Phosphonate (4i). White powder; mp 206–208°C; IR (KBr): v 3206 (NH), 3425–3160 (br, OH), 1246 (P=O) cm⁻¹; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta_{\rm H}$ 1.08 and 1.14 (2t, J = 7.2 Hz, 2CH₃, 6H), 3.78 (s, OCH₃, 3H), 3.86–4.06 (m, 2CH₂, 4H), 5.62 (d, $J_{\rm HP}$ = 20.8 Hz, CHP, 1H), 6.75–7.69 (m, H_{arom}, 7H), 8.97 and 9.10 (2br, OH, NH, 2H). ¹³C NMR (DMSO- d_6 , 100 MHz): δ_C 16.58 and 16.74 (2d, $J_{CP} = 5.0$ Hz, 2CH₃), 54.47 (d, $J_{CP} = 155.0$ Hz, CHP), 56.14 (s, OCH₃), 62.86 and 63.02 (2d, $J_{CP} = 7.0$ Hz, 2CH₂), 112.84 (d, $J_{\rm CP} = 5.0$ Hz), 115.46 (s), 118.74 (s), 121.30 (d, $J_{\rm CP} = 6.0$ Hz), 121.49 (s), 121.80 (s), 126.07 (s), 126.72 (s), 131.17 (s), 146.56 (s), 147.72 (s), 152.07 (s), 165.78 (d, $J_{CP} = 8.0$ Hz); ³¹P NMR (DMSO- d_6 162 MHz): δ_P 21.25; MS (m/z) (%): 422 (M⁺, 5), 317 (12), 285 (100), 273 (7), 178 (8), 150 (89), 123 (10), 96 (8); Anal. Calcd for C₁₉H₂₃N₂O₅PS: C, 54.02; H, 5.49; N, 6.63. Found: 54.33; H, 5.44; N, 6.70.

Diethyl (5-bromo-2-hydroxyphenyl)(benzo[d]thiazol-2-ylamino)methyl Phosphonate (4j). White powder; mp 193–195°C; IR (KBr): v 3220 (NH), 3420–3154 (br, OH), 1238 (P=O) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ 1.23 and 1.34 (2t, *J* = 7.2 Hz, 2CH₃, 6H), 4.02–4.31 (m, 2CH₂, 4H), 5.62 (d, $J_{\rm HP} = 24.0$ Hz, CHP, 1H), 6.58 (br, NH, 1H), 6.90– 7.86 (m, H_{arom}, NH, 8H), 10.67 (br, OH, 1H); ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C}$ 16.20 and 16.51 (2d, $J_{\rm CP} = 6.0$ Hz, 2CH₃), 49.84 (d, $J_{\rm CP} = 162.0$ Hz, CHP), 64.10 and 64.17 (2d, $J_{CP} = 4.0$ Hz, 2CH₂), 112.73 (s), 118.88 (s), 121.09 (s), 121.56 (s), 125.54 (s), 126.24 (s), 130.46 (s), 131.66 (d, $J_{CP} = 5.0$ Hz), 133.07 (s), 149.81 (s), 155.12 (d, $J_{CP} = 10.0$ Hz), 167.14 (d, $J_{\rm CP} = 14.0$ Hz); ³¹P NMR (CDCl₃, 162 MHz): $\delta_{\rm P}$ 20.90; MS (m/z) (%): 472 (M⁺ + 2, 16), 470 (M⁺, 16), 426 (25), 397 (8), 335 (100), 333 (99), 317 (14), 150 (13), 135 (26); Anal. Calcd for C₁₈H₂₀BrN₂O₄PS: C, 45.87; H, 4.28; N, 5.94. Found: C, 46.11; H, 4.34; N, 6.03.

Empirical formula	C ₁₉ H ₂₃ N ₂ O ₃ PS
Formula weight	390.42
Temperature	120(2)
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	<i>a</i> = 21.9285(5) Å
	b = 10.3221(2) Å
	c = 18.5979(5) Å
	$\beta = 108.759(3)$
Volume	3985.99(18) Å ³
Ζ	8
Density (calculated)	1.301 mg m ⁻³
Absorption coefficient	2.375
Crystal size	$0.04 \times 0.11 \times 0.33 \text{ mm}^3$
θ range for data collection	2.3–35.25°
Index ranges	$-24 \le h \le 26, -8 \le k \le 12,$
C C	<i>–</i> 22 ≤ <i>l</i> ≤ 21
Reflections collected	8067
Independent reflections	3741 [<i>R</i> (int) = 0.03]
Goodness-of-fit on F2	1.069
Data/restraints/parameters	3741/4/244
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R1 = 0.0501 \ wR2 = 0.1205$
R indices (all data)	$R1 = 0.0606 \ wR2 = 0.1290$
CCDC number	888011
·	

TABLE 5Crystal Data and Structure Refinement for Compound 4b

CRYSTAL STRUCTURE ANALYSIS

The single crystals were grown from a CH_2Cl_2/n -hexane solution. The X-ray diffraction measure-

ments of **4b** were made on an Oxford Diffraction Xcalibur Gemini R CCD single crystal diffractometer 120K (Cu K α radiation, graphite monochromator, $\lambda = 1.54180$ Å). The structure of title compound was solved by SIR2004 [43] and refined by full matrix least squares on F2 (SHELXL-97) [44]. Absorption correction, data collection, cell refinement, and data reduction have been carried out using CrysAlisPro [45], PARST97 [46] for the geometrical calculations, ORTEP-3 for windows [47] and Mercury [48] for molecular graphics, and WinGX (publication material) [49].

CRYSTALLOGRAPHIC DATA

CCDC 888011 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center. Copies of the data can be obtained, free of qcharge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223–336033, e-mail: deposit@ccdc.cam.ac.uk), or via www.ccdc.cam.ac.uk/data_request/cif

Crystallography

Compound **4b** was synthesized from the reaction between 2-aminobenzothiazole, benzaldehyde, triethyl

TABLE 6 Selected Bond Lengths, Bond Angles, and Torsion Angles for Compound 4b

Bond Lengths	(Å)	Bond Angles	<i>(°)</i>	Torsion Angles	(°)
P102	1.4718(17)	C13–S7–C14	88.26(10)	C14-S7-C13-N5	-178.4(2)
P1 –O3	1.5712(19)	C13–N6–C19	109.92(19)	C14–S7–C13–N6	0.7(2)
P1–O4	1.5625(17)	S7–C13–N6	116.65(17)	O2-P1-O3-C8	47.0(2)
P1–C12	1.823(2)	C12–N5–C13	118.15(18)	O4–P1–O3–C8	172.9(2)
O3–C8	1.442(4)	P1-C12-C20	112.63(17)	C12-P1-O3-C8	-78.5(2(
C8–C9	1.493(5)	O2-P1-O3	115.03(10)	O2-P1-O4-C10B	-28.1(3)
O4–C10B	1.450(6)	P1-O3-C8	123.82(17)	O3–P1-O4–C10B	-152.9(3)
C10B-C11B	1.427(10)	O3–C8–C9	108.8(3)	O3-P1-O4-C10B	-152.9(3
O4–C10A	1.477(7)	O2–P1–O4	116.61(10)	O2-P1-C12-N5	-48.75(18)
C10A-C11A	1.448(11)	P1O4C10B	118.4(3)	O2-P1-C12-C20	76.37(17)
N5–C12	1.461(3)	P1–O4–C10A	127.2(3)	O3-P1-C12-N5	78.35(16)
N5 -C13	1.360(3)	O4-C10B-C11B	109.5(5)	O3-P1-C12-C20	-156.53(14)
S7–C13	1.766(2)	O4-C10A-C11A	110.9(6)	O4-P1-C12-N5	-176.02(14
S7–C14	1.747(2)	O2–P1–C12	112.37(10)	O4-P1-C12-C20	-50.90(17
N6–C13	1.295(3)	O3–P1–O4	100.22(9)	P1-O3-C8-C9	111.1(3)
N6–C19	1.392(3)	O3–P1–C12	106.91(10)	P1O4C10BC11B	137.7(5)
C12-C20	1.512(3)	O4–P1–C12	104.39(10)	C13-N5-C12-P1	-157.40(17)
		P1–O4–C10A	127.2(3)	C13-N5-C12-C20	78.0(3)
		P1–C12–N5	106.67(15)	C12-N5-C13-S7	-163.39(17)
		N5-C12-C20	113.48(19)	C12-N5-C13-N6	17.6(3)
		S7–C13–N5	119.05(16)	C19–N6 -C13–S7	-1.1(3)
		N5–C13–N6	124.3(2)	C19–N6–C13–N5	178.0(2)
		S7–C14–C19	109.23(17)	C13–N6–C19 -C14	0.9(3)
		S7 -C14 -C15	128.95(19)	C13-N6-C19-C18	-179.4(2)
				P1-C12-C20-C21	106.7(2
				P1-C12-C20-C25	-74.0(3)

phosphite, and $InCl_3$ as a catalyst. The molecular structure of compound **4b**, showing the atom numbering scheme is presented in Fig. 1.

Crystallographic data and the refinement procedures are given in Table 5, and selected bond lengths, bond angles, and torsion angles of **4b** are listed in Table 6. As can be seen, there is good agreement between the crystallographic and theoretical data.

ACKNOWLEDGMENTS

We gratefully acknowledge the funding support received for this project from the Research Council of the University of Sistan and Baluchestan. This work was partially supported by FEDER funding, the Spanish Ministerio de Economía y Competitividad MAT2006–01997 and MAT2010-15094 and the Factoría de Cristalización (Consolider Ingenio 2010).

REFERENCES

- Hirschmann, R.; Smith, A. B.; Taylor, C. M.; Benkovic, P. A.; Taylor, S. D.; Yager, K. M.;- Sprengler, P. A.; Venkovic, S. J. Science 1994, 265, 234.
- [2] Ållen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. J Med Chem 1989, 32, 1652.
- [3] (a) Foss, F. W.; Snyder, A. H.; Davis, M. D.; Rouse, M.; Okusa, M. D.; Lynch, K. R.; Macdonald, T. L. Bioorg Med Chem 2007, 15, 663; (b) Sienczyk, M.; Oleksyszyn, J. Curr Med Chem 2009, 16, 1673.
- [4] (a) Kabachinic, M. J.; Medved, T. Izv Akad Nauk SSSR 1953, 1126; (b) Kabachinic, M. J.; Medved, T. Izv Akad Nauk SSSR 1954, 1024; (c) Fields, E. K. J Am Chem Soc 1952, 74, 1528.
- [5] Hou, J.-T.; Gao, J.-W.; Zhang, Z.-H. Appl Organometal Chem 2011, 25, 47.
- [6] Disale, S. T.; Kale, S. R.; Kahandal, S. S.; Srinivasan, T. G.; Jayaram, R. V. Tetrahedron Lett 2012, 53, 2277.
- [7] Ranu, B. C.; Hajra, A.; Jana, U. Org Lett 1999, 1, 1141.
 [8] Xu, F.; Luo, Y. Q.; Wu, J. T.; Shen, Q.; Chen, H. Het-
- eroatom Chem 2006, 17, 389.
- [9] Sobhani, S.; Tashrifi, Z. Heteroatom Chem 2009, 20, 109.
- [10] Gallardo-Macias, R.; Nakayama, K. Synthesis 2010, 57.
- [11] Bhagat, S.; Chakraborti, A. K. J Org Chem 2007, 72, 1263.
- [12] Azizi, N.; Saidi, M. R. Eur J Org Chem 2003, 4630.
- [13] Bhagat, S.; Chakraborti, A. K. J Org Chem 2008, 73, 6029.
- [14] Kasthuraiah, M.; Kumar, K. A.; Reddy, C. S.; Reddy, C. D. Heteroatom Chem 2007, 18, 2.
- [15] Shen, L.; Cao, S.; Liu, N. J.; Wu, J. J.; Zhu, L. J.; Qian, X. H. Synlett 2008, 1341.
- [16] Xu, F.; Luo, Y. Q.; Deng, M. Y.; Shen, Q. Eur J Org Chem 2003, 4728.
- [17] Chandrasekhar, S.; Prakash, S. J.; Jagadeshwar, V.; Narsihmulu, C. Tetrahedron Lett 2001, 42, 5561.
- [18] Ambica; Kumar, S. S.; Taneja, C.; Hundal, M. S.; Kapoor, K. K. Tetrahedron Lett 2008, 49, 2208.

- [19] Mitragotri, S. D. Pore, D. M.; Desai, U. V.; Wadgaonkar, P. P. Catal Commun 2008, 9, 1822.
- [20] Vahdat, S. M.; Baharfar, R.; Tajbakhsh, M.; Heydari, A.; Baghbanian, S. M.; Haksar, S. Tetrahedron Lett 2008, 49, 6501.
- [21] Yang, J. J.; Dang, N.; Chang, Y. W. Lett Org Chem 2009, 6, 470.
- [22] (a) Jin, L. H.; Song, B. A.; Zhang, G. P.; Xu, R. Q.; Zhang, S. M.; Gao, X. W.; Hu, D. Y.; Yang, S. Bioorg Med Chem Lett 2006, 16, 1537; (b) Xu, Y. S.; Yan, K.; Song, B. A.; Xu, G. F.; Yang, S.; Wei Xue, W.; Hu, D.; Lu, P.; Ouyang, G.; Jin, L. H.; Chen Z Molec 2006, 11, 666; (c) Rao, A. J.; Rao, P. V.; Rao, V. K.; Mohan, C.; Raju, C. N.; Reddy, C. S. Bull Korean Chem Soc 2010, 31, 1863; (d) Narayana Reddy, M. V.; Siva Kumar, B.; Balakrishna, A.; Reddy, C. S.; Nayak, S. K.; Reddy, C. D. Arkivoc 2007 (xv) 246–254.
- [23] (a) White, E. H.; McCapra, F.; Field, G. F. J Am Chem Soc 1963, 85, 337; (b) Rhodes, W. C.; McElroy, W. D. J Biol Chem. 1958, 233, 1528.
- [24] (a) Mortimer, C. G.; Wells, G.; Crochard, J.-P.; Stone, E. L.; Bradshaw, T. D.; Stevens, M. F. G.; Westwell, A. D. J Med Chem 2006, 49, 179; (b) Chakraborty, M.; Jin, K. J.; Brewer, A. C.; Peng, H.-L.; Platz, M. S.; Novak, M. Org Lett 2009, 11, 4862.
- [25] Zandt, M. C. V.; Jones, M. L.; Gunn, D. E.; Geraci, L. S.; Jones, J. H.; Sawicki, D. R.; Sredy, J.; Jacot, J. L.; DiCioccio, A. T.; Petrova, T.; Mitschler, A.; Podjarny, A. D. J Med Chem 2005, 48, 3141.
- [26] Rodrigues-Rodrigues, C.; Groot, N. S.; Rimola, A.; Alvarez-Larena, A.; Lloveras, V.; Vidal-Gancedo, J.; Ventura, S.; Vendrell, J.; Sodupe, M.; Gonzalez-Duarte, P. J Am Chem Soc 2009, 131, 1436.
- [27] Huang, S.-T.; Hsei, I.-J. Chen, C. Bioorg Med Chem 2006, 14, 6106.
- [28] For example, see: (a) Frentizole (immunosuppressive agent): Paget, C. J.; Kisner, K.; Stone, R. L.; DeLong, D. C. J Med Chem 1969, 12, 1016; (b) Methanezthiazuron (herbicide): Lours, P. Def Veg 1970, 24, 91; (c) Zolantidine (centrally acting H2 receptor histamine antagonist): Young, R. C.; Mitchell, R. C.; Brown, T. H.; Ganellin, C. R.; Griffiths, R.; Jones, M.; Rana, K. K.; Saunders, D.; Smith, I. R.; Sore, N. E.; Wilks, T. J. J Med Chem 1988, 31, 656.
- [29] (a) Suter, H.; Zutter, H. Helv Chim Acta 1967, 50, 1084; (b) Shirke, V. G.; Bobade, A. S.; Bhamaria, R. P.; Khadse, B. G.; Sengupta, S. R. Indian Drugs 1990, 27, 350; (c) Hays, S. J.; Rice, M. J.; Ortwine, D. F.; Johnson, G.; Schwartz, R. D.; Boyd, D. K.; Copeland, L. F.; Vartanian, M. G.; Boxer, P. A. J Pharm Sci 1994, 83, 1425; (d) Jimonet, P.; Audiau, F.; Barreau, M.; Blanchard, J. C.; Stutzmann, J. M.; Mignani, S. J Med Chem 1999, 42, 2828; (e) Aelterman, W.; Lang, Y.; Willemsens, B.; Vervest, I.; Leurs, S.; Knaep, F. D. Org Process Res Dev 2001, 5, 467.
- [30] Maghsoodlou, M. T.; Heydari, R.; Habibi-Khorassani, S. M.; Hazeri, N.; Sajadikhah, S. S.; Rostamizadeh, M.; Lashkari, M. Synth Commun 2012, 42, 136.
- [31] Rostamizadeh, M.; Maghsoodlou, M. T.; Hazeri, N.; Habibi-Khorassani, S. M.; Keishams, L. Phosphorus Sulfur Silicon 2011, 186, 334.
- [32] Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Heydari, R.; Hazeri, N.; Sajadikhah, S. S.; Rostamizadeh, M. Arab J Chem 2011, 4, 481.

- [33] Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Heydari, R.; Hazeri, N.; Sajadikhah, S. S.; Rostamizadeh, M.; Keishams, L. Turk J Chem 2010, 34, 565.
- [34] Rostamizadeh, M.; Maghsoodlou, M. T.; Hazeri, N.; Habibi-khorassani, S. M.; Sajadikhah, S. S.; Maleki, N.; Shahkarami, Z. Lett Org Chem 2010, 7, 542– 544;
- [35] Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Heydari, R.; Hazeri, N.; Sajadikhah, S. S.; Rostamizadeh, M. Chin J Chem 2010, 28, 285.
- [36] Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Hazeri, N.; Rostamizadeh, M.; Sajadikhah, S. S.; Shahkarami, Z.; Maleki, N. Heteroatom Chem 2009, 20, 316.
- [37] (a) Banik, A.; Batta, S.; Bandyopadhyay, D.; Banik, B. K. Molecules 2010, 15, 8205; (b) Akbari, J.; Heydari, A. Tetrahedron Lett 2009, 50, 4236; (c) Karimi-Jaberi, Z.; Amiri, M. Heteroatom Chem 2010, 21, 96; (d) Shinde, P. V.; Kategaonkar, A. H.; Shingate, B. B.; Shingare, M. S. Tetrahedron Lett 2011, 52, 2889; (e) Paraskar, A. S.; Sudalai, A. ARKIVOC 2006 (x), 183.

- [38] Silverstein, R. M.; Webster, F. X. Spectrometric Identification of Organic Compounds, 6th ed.; Wiley: New York, 1998.
- [39] Tongcharoensirikul, P.; Suarez, A. I.; Voelker, T.; Thomson, C. M. J Org Chem 2004, 69, 2322.
- [40] Qian, C.; Huang, T. J Org Chem 1998, 63, 4125.
- [41] Semenzin, D.; Moghadam, G. E.; Albiouy, D.; Diallo O.; Koenig, M. J Org Chem 1997, 62, 2414.
- [42] Quin, L. D.; Verkade, J. G. Phosphorus-31 NMR Spectral Properties in Compound Characterization and Structural Analysis; VCH: New York, 1994.
- [43] Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J Appl Cryst 2005, 38, 381.
- [44] Sheldrick, G. M. Acta Cryst A 2008, 64, 112.
- [45] Agilent. CrysAlis PRO. Agilent Technologies UK: Yarnton, UK, 2011.
- [46] Nardelli, M. Comput Chem 1983, 7, 95.
- [47] Farrugia, L. J. J Appl Cryst. 1997, 30, 565.
- [48] Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J Appl Cryst 2008, 41, 466.
- [49] Farrugia, L. J. J Appl Cryst 1999, 32, 837.