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Suzuki−Miyaura Cross-Coupling of 1,8-Diaminonaphthalene (dan)-
Protected Arylboronic Acids
Yuichiro Mutoh,* Kensuke Yamamoto, and Shinichi Saito*

Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 
162-8601, Japan.

ABSTRACT: We report a Suzuki−Miyaura cross-coupling reaction of 1,8-diaminonaphthalene (dan)-protected 
arylboronic acids in the presence of KOt-Bu, which does not require the removal of the dan moiety. Notably, the use of 
aryl-B(dan) in the Suzuki−Miyaura reaction provides a complementary solution to the protodeboronation problems. The 
base KOt-Bu plays a crucial role for the promotion of these cross-coupling reactions as it enables the formation of a 
borate salt. This reaction protocol was extended to the one-pot sequential Suzuki−Miyaura cross-coupling reaction of 4-
[(pin)B]C6H4−B(dan), wherein the "less reactive" aryl-B(dan) moiety was cross-coupled preferentially.

KEYWORDS: B(dan), borate, boronic acid,  cross-coupling, palladium, Suzuki−Miyaura

Suzuki−Miyaura cross-coupling reactions between 
organoboronic acids and aryl halides represent one of the 
most useful and straightforward methods to synthesize 
biaryl compounds.1 Given the utility of B-protected 
(masked) boronic acids in iterative Suzuki−Miyaura 
reactions,2 it is not surprising that substantial research 
efforts have been devoted to the development of a diverse 
range of effective protecting (masking) groups.2 Among 
these, much attention has been focused on nitrogen-
containing protective groups,2a−c particularly the 
naphthalene-1,8-diaminato (dan) group,3,4 as aryl-B(dan) 
derivatives are stable toward protodeboronation under 
aqueous basic conditions.4−6 Yet the removal of the dan 
group from Ar−B(dan) under acidic conditions is 
necessary to provide the latent boronic acids that engage 
in the subsequent Suzuki−Miyaura reaction.2,4a,b,e

The direct use of Ar−B(dan) derivatives in 
Suzuki−Miyaura cross-coupling reactions would thus be 
highly desirable in terms of step- and atom-economy,7 
which would help to streamline the synthesis of complex 
molecules. Moreover, it would contribute to a significant 
broadening of the utility of Ar−B(dan) derivatives, which 
could provide a complementary solution to the 
protodeboronation problems known as the 
“polyfluorophenyl8 and 2-pyridyl9 problems”. Although 
palladium- or copper-catalyzed reactions of alkynyl-
B(dan), RC≡C−B(dan), with aryl halides have been 
reported,10 examples of the formation of carbon−carbon 
bonds via direct cross-coupling reactions of Ar−B(dan) 
derivatives remain elusive.11 Herein, we report 
Suzuki−Miyaura cross-coupling reaction of Ar−B(dan) 
derivatives with aryl halides, where the removal of the dan 
moiety is not required.12 The key to the success of these 
cross-coupling reactions is the use of KOt-Bu as the base, 
as KOt-Bu enables the formation of an active borate, 
which was characterized by NMR spectroscopy and 
single-crystal X-ray diffraction analysis.

Initially, we examined the impact of various bases on 
the reaction of Ph−B(dan) (1a) and 4-iodoanisole (2a) in 
the presence of Pd-PEPPSI-IPr13 at 70 °C in toluene 
(Table 1). When KOt-Bu was used as the base, the cross-
coupled product (3aa) was obtained in 95% yield (entry 
1). When NaOt-Bu or LiOt-Bu were used, the cross-
coupling of 1a and 2a did not proceed (entries 2 and 3). 
Other basic potassium salts were also examined, but only 
KOt-Bu promoted the desired reaction in high yield 
(entries 4−6). Subsequently, we varied the amount of 
KOt-Bu and discovered that 2.5 equiv of the base was 
optimal for this reaction (entries 7−9). The addition of 
water, which is essential to promote the Suzuki−Miyaura 
cross-coupling of R−B(pin) (pin = pinacolato), inhibited 
the reaction (entry 10). 
Table 1. Impact of the Nature of the Base on the 
Palladium-Catalyzed Cross-Coupling of 1a and 2aa

entry base equiv yield (%)b

1 1.0 M KOt-Bu/THF 3.0 95
2 1.0 M NaOt-Bu/THF 3.0 trace
3 1.0 M LiOt-Bu/THF 3.0 no reaction
4 KOt-Bu 3.0 95
5 KOEt 3.0 28
6 KF 3.0 no reaction
7 1.0 M KOt-Bu/THF 3.75 99
8 1.0 M KOt-Bu/THF 2.5 99
9 1.0 M KOt-Bu/THF 1.25 40
10c 1.0 M KOt-Bu/THF 2.5 trace

Page 1 of 7

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



aGeneral reaction conditions: 1a (1.25 equiv), 2a (1.0 equiv), 
Pd-PEPPSI-IPr (2.0 mol %), toluene ([2a]0 = 0.05 M). 
bIsolated yield. cA mixture of toluene/H2O (5:1, v/v) was used 
as the solvent. 

Subsequently, we briefly screened various palladium 
complexes for the Suzuki−Miyaura cross-coupling of 1a 
and 2a in the presence of KOt-Bu in toluene (Table 2). 
The use of Pd-PEPPSI-IPr as the catalyst is not 
mandatory. When other palladium(II) complexes such as 
[PdCl2(dppf)]·CH2Cl2 and [PdCl2(PPh3)2] were employed, 
the cross-coupling reaction proceeded smoothly (entries 
1−3). A combination of [Pd(OAc)2] and XPhos14 also 
provided 3aa in high yield (entry 4). The cross-coupling 
reaction also proceeded in the presence of common 
palladium(0) complexes such as [Pd2(dba)3]·CHCl3/PPh3 
and [Pd(PPh3)4] (entries 5 and 6). These results 
demonstrate that common palladium-based catalyst 
systems can be used for the cross-coupling of Ar−B(dan).
Table 2. Screening of Palladium Complexes for the 
Cross-Coupling of 1a and 2a in the Presence of KOt-
Bua

entry [Pd] complex additive yield (%)b

1c Pd-PEPPSI-IPr − 99
2 [PdCl2(dppf)]·CH2Cl2 − 95
3 [PdCl2(PPh3)2] − 91
4 [Pd(OAc)2] XPhosd 97
5 [Pd2(dba)3]·CHCl3 PPh3

d 97
6 [Pd(PPh3)4]e − 94

aGeneral reaction conditions: 1a (1.25 equiv), 2a (1.0 equiv), 
[Pd] (2.0 mol %), KOt-Bu (2.5 equiv), toluene ([2a]0 = 0.05 
M). bIsolated yield. cTaken from entry 8 in Table 1. d4 mol % 
of the additive were used. ePurified by recrystallization prior 
to use.

Then, we investigated the substrate scope of this 
Suzuki−Miyaura cross-coupling reaction under the 
established optimal conditions (Table 3). When 4-
substituted phenyl-B(dan) (1b−f) and 4-iodoanisole (2a) 
were used, the corresponding biaryls (3ba−fa) were 
obtained in high yield. Notably, the cross-coupling of the 
B(dan) group in benzenediboronic acid derivative 1e 
proceeded selectively to afford 3ea in 89% yield, which 
shows that the B(pin) group in 1e remains unaffected 
under the established cross-coupling conditions, and that 
3ea should be susceptible to further functionalization of 
the C(sp2)−B(pin) bond under conventional 
Suzuki−Miyaura coupling conditions. Although the 
reactivity of Ar−B(dan) derivatives with silylether and 
cyclic ether moieties (1f and 1g) are low, biaryls 3fa and 
3ga were obtained in high yield when XPhos was used as 
the ligand. Moreover, the bromo functionality in Ar−B(dan) 
substrates 1h and 1i is tolerated in this cross-coupling 
reaction, and the corresponding products (3ha and 3ia) 

were obtained regardless of the position of the bromine 
atom on the benzene ring. These results suggest that the 
products should be readily amenable to further 
functionalization of the C(sp2)−Br bond. Sterically 
demanding 2,4,6-trimethylphenyl-B(dan) (1j) reacted with 
2a using XPhos as the ligand, and 3ja was isolated in 75% 
yield.

To investigate the “polyfluorophenyl and 2-pyridyl 
problems” in these Suzuki−Miyaura cross-coupling 
reactions, polyfluorophenyl-B(dan) derivatives 1k and 1l 
and a 2-pyridyl-B(dan) derivative 1m,4c which are stable 
and can be easily purified by column chromatography, 
were subjected to the established cross-coupling protocol. 
When the reactions of 1k and 1l were carried out in the 
presence of a reduced amount (1.25 equiv) of KOt-Bu, the 
corresponding polyfluorobiaryls 3ka and 3la were isolated 
in high yield. The reaction of 1m with 2a provided coupling 
product 3ma in 92% yield. These results indicate that the 
cross-coupling using 1k−m complements the previous 
solutions15−18 for the “polyfluorophenyl and 2-pyridyl 
problems”.
Table 3. Substrate Scope of the Suzuki−Miyaura 
Cross-Coupling Reaction Between Ar−B(dan) (1) and 
ArX (2).
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aGeneral reaction conditions: 1 (1.25 equiv), 2a (1.0 equiv), 
[Pd2(dba)3]·CHCl3 (2.0 mol %), PPh3 (4.0 mol %), KOt-Bu 
(2.5 equiv), toluene ([2a]0 = 0.05 M). bTHF was used as the 
solvent. cXPhos (4.0 mol %) was used instead of PPh3. dThe 
reaction was carried out at 110 °C. e1.25 equiv of KOt-Bu was 
used.

We also briefly explored the scope with respect to aryl 
halides (2) in these cross-coupling reactions. Various 
substituted iodobenzene derivatives (2b−e) were tested, 
and, as expected, the corresponding coupling products 
(3ab−ae) were obtained in high yield, regardless of the 
substituents and their positions on the benzene ring. 
Finally, 4-bromo- and 4-chloroanisole were used in the 
cross-coupling of 1a, which afforded 3aa, albeit slightly 
modified reaction conditions were required.

To gain insight into the mechanism underlying the 
Suzuki−Miyaura cross-coupling of Ar−B(dan), we carried 
out several control experiments (Scheme 1). The cross-
coupling of 1a and 2a in
Scheme 1. Preliminary Mechanistic Studies

+

Pd-PEPPSI-IPr (2.0 mol %)
1.0 M KOt-Bu/THF (2.5 equiv)

toluene
70 °C, 24 h

2a
(1.0 equiv)

1a
(1.25 equiv)

3aa

with TEMPO (1.0 equiv): 56%
with 1,4-benzoquinone (1.0 equiv): 34%
without Pd-PEPPSI-IPr: no reaction

(a) Control experiments

(b) Effect of the addition of 18-crown-6

B
N
H

N
H

B
N
H

N
H

O
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1a
(1.0 equiv)

δ11B: 29.0 ppm
K[1a(Ot-Bu)]

δ11B: – 1.9 ppm

toluene
rt, 10 min

1.0 M KOt-Bu/THF (1.0 equiv)

(c) Formation and molecular structurea of the borate K[1a(Ot-Bu)]
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+

[Pd2(dba)3]·CHCl3 (2 mol%)
PPh3 (4 mol %)
1.0 M KOt-Bu/THF (2.5 equiv)
18-crown-6 (0 or 2.5 equiv)

THF
70 °C, 24 h

2a
(1.0 equiv)

1a
(1.25 equiv)

3aa
0 equiv: 80%

2.5 equiv: 25%

B
N
H

N
H

O
t-Bu

K+

K[1a(Ot-Bu)]
(1 equiv)

(d) Stoichiometric reaction of K[1a(Ot-Bu)] with [PdI(4-MeOC6H4)(PPh3)2]

3aa
toluene

70 °C, 4 h

PPh3 (0.2 equiv)

92%
+ Pd

I PPh3

Ph3P

OMe

(1 equiv)

aFor clarity, only one of the repeat units of the one-
dimensional coordination polymer of {[K(thf)][1a(Ot-Bu)]} is 
shown. Thermal ellipsoids are shown at 50% probability and 
only selected atoms are labeled. 

the presence of radical scavengers such as TEMPO and 
1,4-benzoquinone afforded 3aa in moderate yields, while 
the reaction in the absence of a palladium complex did not 
proceed, which renders single-electron-transfer 
pathways19 unlikely (Scheme 1a). Moreover, in the 
presence of 18-crown-6, the reaction of 1a and 2a 
afforded 3aa only in 25% yield (Scheme 1b),20 indicating 
that the potassium ion is of crucial importance for this 
reaction.21 Subsequently, we examined the chemical 
species present in the reaction mixture. When a toluene 
solution of 1a was treated for 10 min at room temperature 
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with a THF solution of KOt-Bu, the 11B{1H} NMR spectrum 
of the resulting colored reaction mixture showed the 
complete conversion of 1a (δ11B: 29 ppm) into a new boron 
compound (δ11B: −1.9 ppm) (Scheme 1c).22 The molecular 
structure of this boron compound was unambiguously 
determined as potassium borate K[1a(Ot-Bu)] by a single-
crystal X-ray diffraction study. As evident from the 11B{1H} 
NMR spectra, treatment of 1a with LiOt-Bu or NaOt-Bu did 
not afford the corresponding borate (Figure S29). The 
stoichiometric reaction between K[1a(Ot-Bu)] and [PdI(4-
MeOC6H4)(PPh3)2] at 70 °C furnished cross-coupled 
product 3aa in 92% yield (Scheme 1d),23 which indicates 
that the formation of the potassium borate should be 
responsible for the present cross-coupling reaction.

Given the stoichiometric reaction of the borate salt 
from 1a and the use of common palladium(0) complexes 
as the catalysts, the present cross-coupling reaction 
probably proceeds via a catalytic cycle that is generally 
accepted for Suzuki−Miyaura cross-coupling reactions 
(Scheme 2). Initially, the oxidative addition of haloarene 2 
to 
Scheme 2. A Plausible Reaction Pathway

the palladium(0) species affords arylpalladium(II) A, 
which may undergo ligand exchange24 with KOt-Bu to 
yield butoxide complex (X = Ot-Bu). Subsequently, 
transmetalation (step B) between A and K[1(Ot-Bu)], 
which is generated from 1 and KOt-Bu, would deliver 
diarylpalladium(II) C and K[BX(Ot-Bu)(dan)]. The high 
basicity of KOt-Bu enables the delivery of the borate salt. 
Moreover, the potassium ion may serve as the template 
to accelerate the transmetalation step B,20,21 possibly 
through a cation-π interaction.25 Finally, the reductive 
elimination of C affords biaryl 3 under concomitant 
regeneration of the palladium(0) catalyst.

Finally, we extended the present reaction to a one-pot 
sequential Suzuki−Miyaura cross-coupling reaction, 
wherein the "less reactive" aryl-B(dan) moiety was cross-

coupled first (Scheme 3).26,27 The 
Scheme 3. One-Pot Iterative Suzuki−Miyaura Cross-
Coupling via a B(dan)−B(pin) Sequence 

reaction of 4-[(pin)B]C6H4B(dan) (1e) with 2a generated 
3ea as the initial product under the previously established 
cross-coupling conditions. The reaction mixture 
containing 3ea was subsequently treated with 4-
iodotoluene (2i), KOt-Bu, and H2O. The reaction mixture 
was stirred for 24 h at 70 °C, and terphenyl derivative 4 
was isolated in 80% yield. This procedure provides a 
complementary method to the previously reported 
synthesis of oligo(arene)s by sequential or iterative cross-
coupling reactions.2,4a,b,e Moreover, this reaction is step- 
and pot-economic, a feature that has received much 
attention in recent years.7

In conclusion, we have developed a Suzuki−Miyaura 
cross-coupling protocol for Ar−B(dan) derivatives that 
proceeds without removal of the dan moiety. The use of 
KOt-Bu as a base is of crucial importance to deliver the 
borate that readily undergoes the transmetalation, and the 
formation of the borate was unequivocally confirmed by 
NMR spectroscopy and X-ray diffraction analysis. This 
study opens up new possibilities for the use of R−B(dan) 
substrates in various coupling reactions.28
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