Metal Cation-Exchanged Montmorillonite (Mⁿ⁺-Mont)-Catalyzed Friedel–Crafts Acylation of 1-Methyl-1-cyclohexene and 1-Trimethylsilyl-1-alkynes

Takahiro Nishimura,* Seiji Ohtaka, Keiji Hashimoto,¹ Takayoshi Yamauchi,² Takuji Hasegawa,³ Kaori Imanaka,³ Jun-ichi Tateiwa,³ Hiroshi Takeuchi,^{3,4} and Sakae Uemura*

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510

¹Osaka Municipal Technical Research Institute, 1-6-5 Morinomiya, Joto-ku, Osaka 536-8553

²Nissei Chemical Inc., 2-18-110 Jyuhachijyo, Yodogawa-ku, Osaka 532-0001

³Department of Molecular Science, Graduate School of Science and Technology, Kobe University, Rokkodai-cho, Nada-ku, Kobe 657-8501

⁴Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Rokkodai-cho, Nada-ku, Kobe 657-8501

Received March 29, 2004; E-mail: uemura@scl.kyoto-u.ac.jp

The acylation of 1-methyl-1-cyclohexene and 1-trimethylsilyl-1-alkynes with acyl chlorides has been investigated in the presence of a variety of metal cation-exchanged montmorillonites (abbreviated as M^{n+} -monts), where the catalysts are recyclable for several times after simple washing.

Organic transformation in the presence of a variety of solid catalysts is of recent interest and many useful synthetic methods have been developed.¹ Currently we have been much interested in the use of clay minerals as the solid catalysts, since they are known as environmentally-friendly materials and might work as the substitutes for several homogeneous catalysts.^{2,3} Here we describe the result of our attempts for Friedel–Crafts acylation of 1-methyl-1-cyclohexene and 1-trimethylsilyl-1-alkynes with various acyl chlorides in the presence of cation-exchanged montmorillonites (abbreviated as M^{n+} -monts), a kind of clay mineral. Although aromatic Friedel–Crafts reactions have so far been investigated using various M^{n+} -monts as catalysts,⁴ there are no examples of aliphatic acylation in the presence of M^{n+} -monts to the best of our knowledge.

First, we examined Friedel–Crafts acylation of 1-methyl-1cyclohexene (1) (2 molar amounts) with butyryl chloride (2b) (1 molar amount) in the presence of several M^{n+} -monts

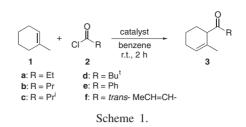


Table 1. Acylation of 1 with 2b in the Presence of M^{n+} -Mont

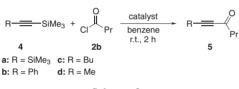
Entry	M ^{<i>n</i>+} -mont	(mmol) ^{a)}	Isolated yield of 3b ^{b)} /%	TON ^{c)}
1	Fe ³⁺	0.105	45	13
2	In ³⁺	0.059	25	13
3	Zr^{4+}	0.220	9	1
4	La ³⁺	0.060	Trace	0
5	Al^{3+}	0.159	0	0
6	Ce ³⁺	0.042	0	0
7	Ce ³⁺ Yb ³⁺ Dy ³⁺	0.097	0	0
8	Dy ³⁺	0.018	0	0
9 ^{d)}			0	0

Reaction conditions: **1** (6.0 mmol), **2b** (3.0 mmol), M^{n+} -mont (300 mg), benzene (8 cm³), rt, 2 h. a) The amount of acid sites of M^{n+} -mont was estimated by NH₃-TPD analysis. b) Mol of **3b**/mol of acid sites. c) Based on the mol of acid sites. d) 24 h.

 $(2-7 \times 10^{-2} \text{ molar amounts})$ (Scheme 1, Table 1). Fe³⁺ and In³⁺-monts were revealed to be effective for this reaction (entries 1 and 2), the TON (turnover number) being 13 in both cases. The catalytic activity of Zr⁴⁺ and La³⁺-monts was lower (entries 3 and 4). On the other hand, Al³⁺, Ce³⁺, Yb³⁺, and Dy³⁺-monts did not show any catalytic activity (entries 5–8). No reaction proceeded in the absence of Mⁿ⁺-mont (entry 9). The amount of Fe³⁺-mont slightly affected the product yield and we found that the use of 0.012 molar amounts of Fe³⁺-mont (100 mg) gave the best result, a larger and a smaller amount of it resulting in a decrease of the product yield.

Thus, Fe^{3+} and In^{3+} -monts were applied to the reaction of **1** with a variety of acyl chlorides **2a–2f** (Scheme 1, Table 2). As a result, the corresponding 6-acyl-1-methyl-1-cyclohexene was obtained in up to 58% yield, but some unidentified isomeric compounds were detected by GC–MS analysis.

The recovered Fe³⁺-mont was successfully reused in the reaction of **1** with **2b** to afford **3b** at least three times after washing it with 50% aqueous acetone and drying at 120 °C for 24 h (1st use, 45%: 2nd use, 40%: 3rd use, 40%).


Separately, we confirmed that the acylation of 1 with 2b proceeded even in the presence of a catalytic amount of FeCl₃ and InCl₃, but the catalytic activity of these Lewis acids was not as high as that of Fe³⁺ and In³⁺-monts in terms of the isolated yields of **3b** (15–31%).

Next, we investigated the reaction of several 1-trimethylsilyl-1-alkynes **4** with **2b** (Scheme 2, Table 3). Treatment of **4** with **2b** in the presence of Fe³⁺ and In³⁺-monts at room temperature for 2 h produced the corresponding acyl compounds in moderate yields by replacing a trimethylsilyl group with an acyl group; the yield was up to 64% (entry 2). Even when an excess amount of **2b** to **4a** was employed, only a monosubstituted product **5a** was obtained without any formation of a disubstituted product.

Table 2. Acylation of 1 with 2 in the Presence of Fe^{3+} and In^{3+} -Mont

Entry	2	M ⁿ⁺ -mont	Isolated yield of $3/\%$	TON ^{a)}
1	2a	Fe ³⁺ -mont	49	42
2	2b	Fe ³⁺ -mont	58	50
3	2c	Fe ³⁺ -mont	38	33
4	2d	Fe ³⁺ -mont	19	16
5	2e	Fe ³⁺ -mont	16	14
6	2f	Fe ³⁺ -mont	20	17
7	2a	In ³⁺ -mont	45	69
8	2b	In ³⁺ -mont	58	89
9	2c	In ³⁺ -mont	34	52
10	2d	In ³⁺ -mont	34	52
11	2e	In ³⁺ -mont	23	35
12	2f	In ³⁺ -mont	27	42

Reaction conditions: **1** (6.0 mmol), **2** (3.0 mmol), M^{n+} -mont (100 mg; Fe³⁺-mont, 0.0349 mmol, 0.012 mol amt, In³⁺-mont, 0.0197 mmol, 0.0066 mol amt), benzene (8 cm³), rt, 2 h. a) Mol of **3**/mol of acid sites.

Scheme 2.

Table 3. Acylation of **4** with **2a** or **2b** in the Presence of M^{n+} -Mont

Entry	R	M ^{<i>n</i>+} -mont	Isolated yield of 5 /%	TON ^{a)}
1	SiMe ₃	Fe ³⁺ -mont	54	46
2	Ph	Fe ³⁺ -mont	64	55
3	Bu	Fe ³⁺ -mont	36	31
4	Me	Fe ³⁺ -mont	9	8
5	SiMe ₃	In ³⁺ -mont	31	48
6	Ph	In ³⁺ -mont	51	78
7	Bu	In ³⁺ -mont	31	48
8	Me	In ³⁺ -mont	9	14

Reaction conditions: **4** (6.0 mmol), **2b** (3.0 mmol), M^{n+} -mont (100 mg; Fe³⁺-mont, 0.0349 mmol, 0.012 mol amt, In³⁺-mont, 0.020 mmol, 0.0066 mol amt), benzene (8 cm³), rt, 2 h. a) Mol of **5**/mol of acid sites.

We have applied this reaction to many other substrates, such as cyclohexene, α -pinene, norbornene, trimethyl(vinyl)silane, and allyltrimethylsilane, but all reactions resulted in a formation of many unidentified products unfortunately. The treatment of 2-phenylpropene produced only the corresponding dimer.^{2e}

Experimental

General Procedures. All commercially available organic and inorganic compounds were used without further purification.

In³⁺-mont was newly prepared from Kunipia[®] G (<100 mesh, 6 g) and In(NO₃)₃·3H₂O (21.3 g, 60 mmol).^{2a} The amount of acid sites (Brønsted and Lewis acid sites) was estimated by the temperature-programmed desorption of ammonia gas (NH₃-TPD) analysis to be 0.195 mmol g⁻¹. The basal spacing (d_{001}) of In³⁺-mont was estimated by a sharp peak obtained on XRD analysis to be 15.4 Å, showing that the compound has an interlayer structure. The acyl compounds 3a-3f and 5a-5d are known and were characterized by their spectral data after their isolation.⁵⁻¹³

General Procedure for M^{n+} -Mont-Catalyzed Friedel-Crafts Acylation of 1-Methyl-1-cyclohexene (1) with Acyl Chloride 2. To a mixture of acyl chloride 2 (3 mmol) and benzene (8 cm³) was added Fe³⁺-mont (100 mg, 0.0349 mmol as acid sites estimated by NH₃-TPD) in one portion at room temperature with magnetic stirring. After the mixture was stirred at the temperature for a few minutes, 1-methyl-1-cyclohexene (1) (0.71 mL, 6 mmol) was added to it and the mixture was stirred vigorously at room temperature for 2 h. The catalyst was filtered off and rinsed with Et₂O (50 cm³). The solvent in a mixture of the filtrate and the ethereal washings was removed under the reduced pressure to leave an oil, which was subjected to silica gel column chromatography (eluent, hexane:diethyl ether = 10:1) to give the corresponding 6-acyl-1-methyl-1-cyclohexene **3**.

References

1 a) M. Balogh and P. Laszlo, "Organic Chemistry Using Clays," Springer-Verlag, New York (1993). b) R. L. Augustine, "Heterogeneous Catalysis for the Synthetic Chemist," Marcel Dekker, New York (1996). c) R. A. Sheldon and R. S. Downing, *Appl. Catal.*, A, **189**, 163 (1999). d) J. H. Clark, *Acc. Chem. Res.*, **35**, 791 (2002).

2 a) J. Tateiwa, H. Horiuchi, K. Hashimoto, T. Yamauchi, and S. Uemura, J. Org. Chem., **59**, 5901 (1994). b) J. Tateiwa, T. Nishimura, H. Horiuchi, and S. Uemura, J. Chem. Soc., Perkin Trans. 1, **1994**, 3367. c) J. Tateiwa, E. Hayama, T. Nishimura, and S. Uemura, Chem. Lett., **1996**, 59. d) J. Tateiwa, A. Kimura, K. Hashimoto, T. Yamauchi, and S. Uemura, Bull. Chem. Soc. Jpn., **69**, 2361 (1996). e) J. Tateiwa, A. Kimura, M. Takasuka, and S. Uemura, J. Chem. Soc., Perkin Trans. 1, **1997**, 2169.

3 a) T. Nishimura, N. Kakiuchi, M. Inoue, and S. Uemura, *Chem. Commun.*, **2000**, 1245. b) N. Kakiuchi, T. Nishimura, M. Inoue, and S. Uemura, *Bull. Chem. Soc. Jpn.*, **74**, 165 (2001).

4 a) J. H. Clark, A. P. Kybett, D. J. Macquarrie, S. J. Barlow, and P. Landon, J. Chem. Soc., Chem. Commun., **1989**, 1353. b) A. Cornélis, C. Dony, P. Laszlo, and K. M. Nsunda, Tetrahedron Lett., **32**, 1423 (1991). c) A. Cornélis, C. Dony, P. Laszlo, and K. M. Nsunda, Tetrahedron Lett., **32**, 2901 (1991). d) M. Davister and P. Laszlo, Tetrahedron Lett., **34**, 533 (1993). e) O. Sieskind and P. Albrecht, Tetrahedron Lett., **34**, 1197 (1993). f) L.-J. Li, B. Lu, T.-S. Li, and J.-T. Li, Synth. Commun., **28**, 1439 (1998).

5 J. K. Groves and N. Jones, J. Chem. Soc. C, 1968, 2215.

6 R. Jacquier, M. Mousseron, and S. Boyer, *Bull. Soc. Chim. Fr.*, **1956**, 1653.

7 P. Beak and K. R. Berger, J. Am. Chem. Soc., **102**, 3848 (1980).

8 T. Shono, I. Nishiguchi, M. Sasaki, H. Ikeda, and M. Kurita, J. Org. Chem., 48, 2503 (1983).

9 E. A. Braude and C. J. Timmons, J. Chem. Soc., 1955, 3766.

10 B. B. Snider and A. C. Jackson, J. Org. Chem., 47, 5393 (1982).

11 C. H. Wong and C. W. Bradshaw, U. S. Patent 5225339 (1993); *Chem. Abstr.*, **119**, 115519u (1993).

12 N. Rosas, P. Sharma, C. Alvarez, A. Cabrera, R. Ramirez, A. Delgado, and H. Arzoumanian, *J. Chem. Soc., Perkin Trans. 1*, **2001**, 2341.

13 A. V. Kel'in, A. W. Sromek, and V. Gevorgyan, J. Am. Chem. Soc., **123**, 2074 (2001).