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Abstract  

A series of novel N-substituted hydrazide derivatives were synthesized by reacting atranorin, 

a compound with a natural depside structure (1), with a range of hydrazines. The natural product 

and 12 new analogues (2-13) were investigated for inhibition of α-glucosidase. The N-substituted 

hydrazide derivatives showed more potent inhibition than the original. The experimental results 

were confirmed by docking analysis. This study suggests that these compounds are promising 

molecules for diabetes therapy. Molecular dynamics simulations were carried out with compound 2 

demonstrating the best docking model using Gromac during simulation up to 20 ns to explore the 

stability of the complex ligand-protein. Furthermore, the activity of all synthetic compounds 2-13 

against a normal cell line HEK293, used for assessing their cytotoxicity, was evaluated.

Key words: Parmotrema tsavoense; atranorin; N-substituted hydrazide derivatives; α-glucosidase 

inhibition; cytotoxicity 

Type 2 diabetes mellitus (T2DM) affects a large population worldwide. It is a serious and 

common chronic disease resulting from a complex inheritance-environment interaction along with 

other risk factors such as obesity and sedentary lifestyle. There are several classes of antidiabetic 

drugs to treat this disease include insulin, metformin, thiazolinediones, sulfonylureas, DPPIV 

inhibitors, and α-glucosidase inhibitors. However, it is difficult to effectively treat T2DM by single 

treatment option in the long term. Therefore, there is a significant unmet medical need for the 

development of new, long term safety and highly effective antidiabetic therapies with novel and 

multiple mode of action. 1

α-Glucosidase is the enzyme that catalyzes the breakage of the α-1,4-glycosidic bonds of 

polysaccharides with concomitant conversion into glucose.2 α-Glucosidase inhibitors are 

therapeutic agents that can reduce the level of glucose in type 2 diabetes (T2DM) by preventing the 

hydrolysis of glucose by α-glucosidase, a carbohydrate metabolizing enzyme. Acarbose is an 

antidiabetic drug used to treat T2DM that causes various side effects including abdominal 

discomfort, diarrhea, bloating, pain, and flatulence. Previous studies have shown that α-glucosidase 

can be related to diseases such as cancer and viral infections.3 Therefore, α-glucosidase is an 

attractive target for developing drugs to treat T2DM and several α-glucosidase inhibitors are already 

in the market or in clinical trial.
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Atranorin, a biologically active lichen metabolite, exhibits a wide range of biological 

activities, being antimicrobial, antiviral, anti-inflammatory, analgesic, and cytotoxic at levels from 

moderate to high.4-6 Interestingly, it is able to inhibit enzymes involved in human diseases, 

including tyrosinase, glucosidase, acetylcholinesterase, and xanthine oxidase.7-12 Atranorin is 

present in large amounts in the Parmotrema lichens.7,13 The preparation of atranorin derivatives is 

receiving wide attraction. Vu and co-workers (2015) modified the aldehyde group at C-3 to yield 

two derivatives that were more active against the hepatitis C virus (HCV) than the parent 

compound.13 Mallavadhani and co-workers (2018) prepared five analogs of atranorin by 

etherification, reduction, and nucleophilic addition. These compounds were evaluated for 

cytotoxicity to multiple cancer cell lines and were more active than atranorin itself.14 However, few 

atranorin derivatives have been synthesized. We report the preparation and structural elucidation of 

N-substituted hydrazide derivatives of atranorin. Evaluation of their α-glucosidase inhibition as well 

as a molecular docking analysis and studies on the inhibitory mode of these synthetic compounds 

were explored. In addition, the docked complexes were refined and validated using molecular 

dynamics simulations to map the interactions between the protein ligand.

Atranorin (1) was purified from the lichens P. tsavoense and P. praesorediosum.15-18 Having 

1 in hand, N-subtituted hydrazine reagents (N2-N13) were prepared (Scheme 1) following 

previously reported procedures.17-22 Nucleophilic addition between 1 and N2-N13 was conducted in 

ethanol/acetic acid at 50oC to yield novel derivatives 2-13, at yield from 50-90% (Scheme 2). The 

chemical structures of the synthetic compounds were identified from the 1D-and 2D-NMR and 

HRESIMS spectra. The aldehyde proton signal at δH 10.36 in 1 was replaced by a singlet methine at 

δH 8.57-8.95 in 2-13. This was assignable to an imine group. Likewise, the aldehyde group at δC 

193.8 of atranorin was replaced by the imine group at δC 144.9-147.4 The structural analysis was 

confirmed by HMBC correlations and mass spectroscopic data.
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Scheme 2. Pathway to preparation of hydrazides N2-N13.

The α-glucosidase inhibition of 1 and all the newly synthetic compounds 2-13 was evaluated 

according to the literature protocol.23 Acarbose, an α-glucosidase inhibitor used to treat T2DM, was 

chosen as a positive control for activity comparison. The results of our activity study were compiled 

in Table 1. As can be seen from the data in Table 1, all synthetic compounds showed potency with 

IC50 values from 6.67 to 54.71 µM. The relationship between the structure and activity was 

investigated. All products were more active than both the starting material (1) and a positive 

control, acarbose (IC50 200 µM of 1 and 93.6 µM of acarbose). Compound 2 was the most active, 

indicating the important role played by the benzyl group of hydrazide N2. The order of potency 

reflected the R substituent: phenyl group (12 and 13) > arylamino (3) > aryloxy (4-9). The 

substituents on the R group also affected potency. The chlorine atom in 13 conferred more potency 

than the iodine atom in 12.  Among the aryloxy groups, the electron-donating methyl group in 4-6 

decreased potency while the electron-withdraw bromo group in 8 increased it. Interestingly, the 

sulfur-containing compound 10 showed good activity, with IC50 value of 9.12 µM (compared to the 

similar scaffolds 8 and 9). In addition, all synthetic compounds 2-13 exhibited just weak or no 

cytotoxicity toward HEK293 cell line (Table 2). 
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Table 1. α-Glucosidase inhibitory activity of compounds 1-13.

No. IC50
a (M) No. IC50

a (M)
1 >100 8 18.86±0.70
2 6.67±0.60 9 39.66±0.85
3 31.47±0.87 10 9.12±0.45
4 53.33±1.38 11 28.15±1.55
5 40.56±1.18 12 41.17±1.27
6 54.71±0.76 13 9.91±0.36
7 17.31±0.56 Acaboseb 93.6±0.49

a Values are the mean ± SD. All experiments were performed at least three times.
b Reference compound.

Table 2. Cytotoxicity of synthetic compounds 2-13 against HEK293 cell line.

a Values are the mean ± SD. All experiments were performed at least three times.
b Reference compound

In order to gain some structural insight into the inhibitory mechanisms for the α-glucosidase 

inhibitors,  the  binding  modes in the  active  site  were  investigated. Figures 1-9 illustrates the  

molecular  interactions  of 2 and 13 with α-glucosidase. The IC50 value of 2 was 2.4 times the 

inhibition constant, while the free energy of binding was also negative, indicating that 2 had good 

inhibitory activity again enzyme 3TOP. Ligand (2) docked well to 3TOP because the free energy 

of binding was more negative. The IC50 value was also close to the estimated value. The stable 

conformation (2) formed 5 hydrogen bonds with target-receptors. These were stable hydrogen 

atoms in the following decreasing order :(2):H-A:GLN1109:OE1, 1.86 Å > A:LYS1088:HZ3-

:(2):O, 2.00 Å > :(2):H-B:GLU1095:OE1, 2.01 Å > B:LYS1088:HZ2-:(2):O, 2.07 Å > 

A:ARG1097:HH11- :(2):O, 2.45 Å. See Table S3 and Figure 4. The hydrogen atoms in 2, A: 

LYS1088, A:LYS1088, B:LYS1088, and A:ARG1097 donated, whereas those ligand (2) and the 

receptor accepted. The hydrogen bond :(2):H-A:GLN1109:OE1, with bond length of 1.86 Å linked 

No. IC50
a (M) No. IC50

a (M)
2 >100 9 84.4 ± 4.4
3 >100 10 70.1 ± 1.7
4 >100 11 >100
5 >100 12 94.1 ± 8.3
6 >100 13 63.2 ± 13.3
7 >100 Doxorucibinb 7.92 ± 0.07
8 52.7 ± 2.3
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to receptor, 3 TOP compared with that of bond length of 1.61 Å B:ARG1097:HH11-:(10):O 

suggesting that hydrogen bond B:ARG1097:HH11-:(10):O was more stable than :(2):H-

A:GLN1109:OE1. As shown in Figure 5, other interactions were pi-cation, pi-anion between 

residual amino acids, LYS A: 1088, GLU A: 1095, alkyl interactions between ILE A:1104, ARG 

1097, and methyl groups of aromatic (2). The ligand map also exposed secondary interactions as 

hydrogen bonds-LYS 1088, ARG 1097, GLU 1095, and GLN 1109, steric- LYS 1088, ARG 1097, 

GLU 1095, GLN 1109, and THR 1101, with overlaps (Figure 6). The best conformation (13) linked 

to docking poses on 3TOP, forming three hydrogen bonds (Table S3 and Figure 7). The most stable 

hydrogen bond was :(13):H-B:GLU1095:OE2, with a bond length of 1.86 Å: The hydrogen bond 

strengths ranked :(13):H-B:GLU1095:OE2, 1.86 Å > A:ARG1097:HH11-:(13):O, 2.05 Å > :(1):H-

A:GLU1095:OE1, 2.13 Å. The donor atoms were hydrogen on A: ARG1097 and on 13, while 

accepters were on receptor or conformation (13).  The residual amino acids were highly 

hydrophilic: B:GLU1095, A:ARG1097, and A:GLU1095. The different interactions forming 

between residual amino acids of receptor-3TOP and the optimal conformation (13) as shown in 

Figure 8 as pi-cation between LYS B: 1088 and aromatic ring, alkyl, ILE B: 1104 with methyl 

group, pi alkyl from ILE B: 1104, ILE A: 1104 to aromatic ring, and unfavorable acceptor-acceptor 

from GLU A: 1095 to the nitrogen atom of azomethin (CH=N). In Figure 9, the ligand map shows 

hydrogen bonds between ARG1097, GLU1095, and docking poses, and steric interactions between 

ASP1107, ILE1104, Gly1102, GLU1095, LYS1088, and 13. 

Figure 1. Binding of structure (10) with active sites of 3TOP. Hydrogen bonds between 
residual amino acids of 3TOP and conformation (10).
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Figure 2. Interactions between receptor (3TOP) and stable conformation (10) as a 2D 
diagram. 

Figure 3. Ligand map showing secondary interactions to be hydrogen bonds, electrostatic, 
steric, and overlaps between (10) and docking poses of 3TOP at 4 Å.

Figure 4. Binding of structure (2) with active sites of 3TOP. Hydrogen bonds between 
residual amino acids of 3TOP and conformation (2).
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Figure 5. Interactions between receptor (3TOP) and the stable conformation (2) as a 2D 
diagram.

Figure 6. Ligand map showing secondary interactions to be hydrogen bonds, electrostatic, 
steric, and overlaps between (2) and docking poses of 3TOP at 4 Å.
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Figure 7. Binding of structure (13) with active sites of 3TOP. Hydrogen bonds between 
residual amino acids of 3TOP and conformation (13).

Figure 8. Interactions between receptor (3TOP) and stable conformation (2) as a 2D 
diagram.
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Figure 9. Ligand map showing secondary interactions to be hydrogen bonds, electrostatic, 
steric, and overlaps between (13) and docking poses of 3TOP at 4Å.

Based on docking results, molecular dynamics (MD) simulation was performed on the 

selected lowest energy and best docking complex (compound 2). Using Gromacs, we performed 

time-based MD simulation at 20 ns to test the durability and overall stability of the docked 

complexes. The residual deviations in the complexes were calculated using the RMSD graph 

produced by Xmgrace software. Figure 10 showed the residual deviation of the ligand docked into 

the receptor. The upward trend was observed in the best docked posing model with different RMSD 

values of 0.5-1.0 nm at 0.25 ns, followed by a downward trend of 1.0-0.75 nm at 7.5 ns, after then 

RMSD values in equilibrium (starting) from 7.5 to 20 ns during the simulation period. Observation 

from MD simulation, stable nature of compound 2 interacted complex throughout MD trajectories 

thereby increasing the efficiency of the docking result. The H-bond resulted in the simulation of 

molecular dynamics showed that, in most frames, two hydrogen bonds were found between ligand 

and protein structure (Figure 10B). Coulomb and Lennard-Jones (LJ) interaction potentials between 

the ligand (compound 2) and the protein in the course of the simulation were considered short range 

types of energies obtained from MD simulation trajectory files (Figure S61a). LJ-SR is normal non-

bonded interactions within the short-range cutoff (Figure S61a, red). Overall, the LJ-SR energy 

values ranged between −100 to −150 kJ/mol and were fairly stable. On the other hand, short-range 

coulomb energy values (Coul-SR) are used to know the equilibrium of the during the simulation 

run. Coul-SR 's energy values (Figure S61a, black) are highly fluctuated at system initialization and 
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indicate the system stability, but LJ-SR energies was considered rationally as binding predictors.24 

Graphs of Gromacs energy according to various parameters such as Coulomb-SR & Lennard-Jones-

SR interactions, density, potential, pressure, and temperature were presented in supplementary 

information. The values of the parameters mentioned above were within system equilibrium limits. 

The parameter explications were given separately in the Figure S61 legends.

Figure 10.  Analysis of the protein backbone associated with ligand (2) structure during 
simulation (A) RMSD plot; (B) Hbond distribution plot vs time.

In conclusion, we here report the synthesis of a series of novel N-substituted hydrazide 

derivatives through nucleophilic additions between 1 and N-subtituted hydrazine reagents. The 

synthesized N-substituted hydrazide derivative 2 showed the most powerful inhibition of yeast α-

glucosidase (IC50 6.67 μM). The potent inhibition of 2 was elaborated by molecular docking 

studies, in which its binding profile towards key residual amino acids in the α-glucosidase’s active 

site. The simulation of the molecular dynamics was performed for compound 2 and emphasized 

both the affinity and stability of the ligand with the protein during contacting in the 20 ns time 

period. Therefore, synthetic compound 2 should hold a great potential as a leading compound for 

the treatment of T2DM. 
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