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Facile Three-Step Synthesis and Photophysical Properties of [8]-, 
[9]-, and [12]Cyclo-1,4-naphthalene Nanorings via Platinum-
Mediated Reductive Elimination  

Hongxing Jia, Yuyue Gao, Qiang Huang, Shengsheng Cui, Pingwu Du*

Herein we report the facile three-step synthesis of [8]-, [9]-, and 

[12]cyclo-1,4-naphthalenes nanorings as the conjugated segments 

of carbon nanotubes. The nanorings were created by platinum-

mediated assembly of 1,4-naphthalene-based units and 

subsequent reductive elimination in the presence of 

triphenylphosphine. This present platinum-mediated approach is 

attractive because of its simple three-step process to produce the 

targeted nanorings in a high overall yield. In addition, their 

photophysical properties were studied using UV-Vis spectroscopy 

and photoluminescence (PL) spectroscopy, which further revealed 

their unique size-dependent properties.  

Cyclic π-conjugated organic materials have attracted much 
attention in recent years. Cycloparaphenylenes (CPPs, Figure 1a) are 
hoop-shaped aromatic hydrocarbons consisting of para-linked 
phenylene rings, which have been received significant interest in the 
last few years due to their highly symmetric topological structures as 
the shortest structural segment of armchair carbon nanotubes (CNTs, 
Figure 1b).1, 2 Moreover, CPPs have demonstrated many potential 
applications in material science and supramolecular chemistry.3-6 It 
has been proposed the CPPs can be serve as seed compounds for 
diameter-controlled growth of CNTs.7, 8 The bottom-up chemical 
synthesis of CPPs was proposed a few decades ago1, 9, 10 but despite 
the simple structure, this synthesis was only recently achieved, with 
Bertozzi and Jasti reporting the first synthesis of [9]-, [12]-, and 
[18]CPPs in 2008.11 After long-
term exploration and unremitting efforts, CPPs with different 
diameters ([5]-[16], [18]CPPs) have been achieved by different 
research groups.11-18 

Based on these fundamental studies, further π-extended CPP 
structures can be considered as closer precursors of CNTs and have 
attracted great attention. In the literature, different derivatives of 

CPPs have been synthesized using polycyclic aromatic hydrocarbons 
(PAHs) as the building blocks, such as chrysene,19 anthracene,1, 10 and 
pyrene.20 Our group reported the use of a larger PAH, hexa-peri-
hexabenzocoronene (HBC), as the building unit to synthesize highly 
conjugated giant nanorings.6, 21 The first synthesis of a π-extended 
naphthalene-based nanoring, [9]cyclo-1,4-naphthalene ([9]CN), has 
been achieved from a L-shaped building unit by Itami and coworkers 
in 2012.22 More recently, they have also synthesized a few even-
numbered carbon nanorings, [n]CNs (n = 8, 10, 12, and 16), 
using a similar strategy.23 Unfortunately, despite the successful 
synthesis, these studies displayed very poor yields for the final 
products (0.1% for [8]CN, 1.2% for [9]CN, and 1.5% for [12]CN), which 
has seriously hampered the further physical studies of naphthalene-
based CPPs and their utilization in bottom-up synthesis of uniform 
CNTs. Therefore, the development of a new facile synthesis route is 
highly desired. 
 

 
 

Figure 1. (a) Structure of [n + 4]CPP. (b) Structure of (8,8)armchair 

carbon nanotubes (CNTs). The constituent [8]CN unit is shown in blue. 

(c) Molecular structure of [8]CN. 

In 2010, Yamago and coworkers developed a platinum-
mediated assembly strategy to synthesize [8]CPP.17 After that, more 
CPPs with difference sizes were also successfully synthesized by the 
same group.12-14 Similar to the synthesis of CPPs, the major 
bottleneck for achieving CNs also lies in the increased strain energy 
resulting from the curved structure. Inspired by the platinum-
mediated assembly strategy for the synthesis of CPPs,6, 17 we envision 
that CNs could also be synthesized by the platinum-mediated 
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assembly of naphthalene-based units and subsequent reductive 
elimination of platinum to form our target molecules, although the 
para position in the naphthalene unit is more bulky which probably 
causes more hindrance than that in the phenylene unit. Herein we 
report the synthesis of [8]-, [9]-, and [12]CNs with higher yields based 
on this platinum-mediated strategy. In addition, the CNs’ 
photophysical properties using both steady-state and time-resolved 
spectroscopies in THF are experimentally investigated. 

 
Figure 2. Synthesis procedures for [8]CN and [10]CN. Reagents and 

conditions: (i) 1 (1.0 equiv.), Bpin-bpin (3.0 equiv.), Pd(dppf)Cl2 (5 

mol%), KOAc (5.0 equiv.), 1,4-dioxane, 100 °C, 36 h; (ii) 2 (1.0 equiv.), 

Pt(COD)Cl2 (1.0 equiv.), CsF (4.0 equiv.), THF, 40 °C, 24 h; (iii) PPh3 

(10.0 equiv.), toluene, 110 °C, 36 h. 

To accomplish the above-mentioned goal, the naphthalene-
based units should be functionalized with boronate esters or 
trialkyltin groups, which can be readily reacted with the platinum 
complex to form macrocycle precursors.6, 17, 24-26 With these 
macrocycle precursors in hand, the final [n]CNs products can be 
obtained after reductive elimination of platinum. Initially, 4,4′-
bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-1,1′-
binaphthalene (2) was synthesized from 4,4′-dibromo-1,1′-
binaphthyl (1) via the Miyaura borylation reaction in the presence of 
Pd(dppf)Cl2, bis(pinacolato)diboron, and KOAc. The synthesis details 
are provided in the supporting information (SI). The molecular 
structure of compound 3 was characterized by 1H NMR (Figure S1), 
13C NMR (Figure S2) and ESI mass spectrometry (Figure S3). Next, 
compound 2 was treated with one equivalent of Pt(COD)Cl2 (COD = 
1,5-cyclooctadiene) in the presence of four equivalents of cesium 
fluoride in THF for 24 hours under argon. The resulting platinum-
mediated complex 2 was obtained in a 40% yield as a white 
precipitate, which was subsequently subjected to reductive 
elimination by treating with ten equivalents of triphenylphosphine as 
a coordination ligand under refluxing anhydrous toluene for 36 hours. 
After purification through preparative thin-layer chromatography, 
the target product, [8]CN (2.6%) was obtained. These results indicate 
that the assembly of compound 2 with Pt(COD)Cl2 can successfully 
provide a tetra-nuclear platinum macrocycle precursor. Interestingly, 
[10]CN was also detected by mass spectroscopy (Figure S10), but 
pure [10]CN was very difficult to isolate because of its much lower 
yield. The synthesis procedure of [8]CN is summarized and shown in 
Figure 2. 

Encouraged by these results, we turned our attention to 
synthesizing larger [n]CNs using this approach. The starting material 
was functionalized with one more naphthalene unit to get 4,4′′-
dibromo-1,1′:4′,1′′-ternaphthalene (4). After a similar Miyaura 
borylation reaction, compound 4 was readily transformed into 4,4′′-
bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-1,1′:4′,1′′-

ternaphthalene (5), which is another key precursor for the synthesis 
of [n]CNs. Compound 5 was well characterized by 1H (Figure S4) and 
13C NMR (Figure S5), as well as ESI mass spectrometry (Figure S6). 
The synthesis details can be found in the SI. Following a similar 
procedure to that of [8]CN, compound 5 was reacted with Pt(COD)Cl2 
to form the intermediate 6. Finally, two types of carbon nanorings 
[9]CN (3.0%) and [12]CN (3.5%) were obtained after reductive 
elimination of the intermediate 6. This result suggests that the 
assembly of compound 5 with Pt(COD)Cl2 mainly afforded a mixture 
of tri- and tetra-nuclear platinum macrocycle precursors. The 
synthesis procedure for [9]CN and [12]CN is shown in Figure 3. 
 

 
 

Figure 3. Synthesis procedures for [9]CN and [12]CN. Reagents and 

conditions: (i) 4 (1.0 equiv.), Bpin-bpin (3.0 equiv.), Pd(dppf)Cl2 (5 

mol%), KOAc (5.0 equiv.), DMF, 120 °C, 36 h; (ii) 5 (1.0 equiv.), 

Pt(COD)Cl2 (1.0 equiv.), CsF (4.0 equiv.), THF, 40 °C, 24 h; (iii) PPh3 

(10.0 equiv.), toluene, 110 °C, 36 h. 

The subsequent increase of the naphthalene unit to make 
larger nanorings was hampered by the poor solubility. As a result, 
using the platinum-mediated assembly and reductive elimination 
approach, [8]-, [9]-, [10]-, and [12]CNs were synthesized and pure [8]-, 
[9]-, and [12]CNs were obtained by careful separation. The structures 
of these three nanorings were confirmed by MALDI-TOF-MS 
spectrometry (Figures S7-S9). Moreover, the 1H NMR data (Figures 
S11-S13) are consistent with the data reported by Itami and 
coworkers.23 Compared with the yields of the reported method using 
a curved naphthalene-based precursor (0.1% for [8]CN, 1.2% for 
[9]CN, and 1.5% for [12]CN),23 our present approach has much higher 
yields (2.6% for [8]CN, 3.0% for [9]CN, and 3.5% for [12]CN). 
Therefore, platinum-mediated assembly strategy is another 
interesting pathway for synthesis of [n]CNs from easily 
prepared starting materials 1 and 4. 
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Figure 4. (a) UV-vis absorption (solid line) and fluorescence (dash line) 

spectra of [8]CN (black), [9]CN (red), and [12]CN (blue). (b) 

Luminescent photographs of [8]CN (yellow), [9]CN (green), and 

[12]CN (blue) in THF under UV irradiation at λ = 365 nm. 

 
Table 1. Absorption and emission data for [n]CNsa  

 
a Data obtained at room temperature in THF. b Maximum absorption. 
c Maximum emission upon excitation at 350 nm. d Lifetime. e 

Fluorescence quantum yields. 

The photophysical properties of the [8]-, [9]-, and [12]CNs in 
THF were further investigated using UV-vis absorption spectroscopy, 
steady-state fluorescence spectroscopy, and time-resolved 
fluorescence decay. The absorption and emission spectra are shown 
in Figure 4 and the data are summarized in Table 1. Interestingly, 
unlike CPPs, which absorb UV-vis light at similar wavelength 
regardless of their different sizes,12 the UV-vis absorption spectra of 
the [8]-, [9]-, and [12]CNs clearly exhibit size-dependent properties: 
The maximum absorption (λabs) were blue-shifted with an increase in 
the size of the [n]CNs nanorings. This behavior is consistent with 
reports by Itami and coworkers.23 The fluorescence emission 
measurements were performed under an excitation at 350 nm, and 
all [n]CNs emitted strong fluorescence in a variety of colors (yellow 
for [8]CN, green for [9]CN, and blue for [12]CN) in THF solutions). The 
fluorescence spectra also exhibit size-dependent properties. With 
increasing size of [n]CNs, the maximum emission (λem) were 
significantly blue-shifted. The λem peaks are 556 nm, 486 nm, and 463 
nm for [8]-, [9]-, and [12]CNs, respectively. The fluorescence 
quantum yields (ΦF) of [n]CNs were determined by using anthracene 
in ethanol as the reference. The ΦF values are provided in Table 1 
and the highest ΦF is 0.42 for [12]CN. Similarly, the ΦF values of 
[n]CNs increased with increasing size. 

 

 
Figure 5. Luminescent decay profiles of (a) [8]CN, (b) [9]CN, and (c) 

[12]CN in THF at 298 K. 

Fluorescence decay tests were conducted using a nanosecond 
pulsed laser system in degassed THF solution at room temperature. 
The fluorescence decay of [n]CNs followed first-order kinetics with a 
lifetime (τ) = 5.3 ns for [8]CN, 1.7 ns for [9]CN, and 1.0 ns for [12]CN, 
as measured by the single-photon counting method (Figure 5). 
According to the equation kr = ΦF/τ,27 their radiation decay rate 
constant (kr) could also be determined to be 4.2 × 107 s-1 for [8]CN, 
2.0 × 108 s-1 for [9]CN, and 4.2 × 108 s-1 ns for [12]CN. 

Conclusions 

In conclusion, we developed a novel and efficient three-step 
synthesis approach to achieve [8]-, [9]-, and [12]CNs nanorings based 
on the platinum-mediated assembly of naphthalene units and 
subsequent reductive elimination. This synthesis route provides a 
good strategy to overcome the strain energy resulting from the 
curved structure and successfully achieved the target molecules with 
a relatively high yield. This method may open a new way for the 
synthesis of [n]CNs from easily prepared starting materials 2 and 5 
and facilitate their further utilization in bottom-up synthesis of 
uniform CNTs. In addition, their photophysical properties in THF 
were experimentally investigated, revealing their unique size-
dependent properties. 
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