#### Tetrahedron xxx (2013) 1-9

Contents lists available at SciVerse ScienceDirect

# Tetrahedron

journal homepage: www.elsevier.com/locate/tet

# The Rh<sub>2</sub>(OAc)<sub>4</sub>-catalyzed reactions of 3-trifluoromethyl-4-diazopyrazolinones with aromatic compounds

Huafang Fan<sup>a,b</sup>, Zhenhua Zhang<sup>b</sup>, Xinjin Li<sup>b</sup>, Jingwei Zhao<sup>b</sup>, Jinming Gao<sup>a,\*</sup>, Shizheng Zhu<sup>b,\*</sup>

<sup>a</sup> Shaanxi Engineering Center of Bioresource Chemistry and Sustainable Utilization, College of Science, Northwest A & F University, Yangling 712100, Shaanxi, China <sup>b</sup> Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

#### ARTICLE INFO

Article history: Received 5 November 2012 Received in revised form 19 December 2012 Accepted 31 December 2012 Available online xxx

Keywords: 3-Trifluoromethyl-4-diazopyrazolinones Benzene derivatives Rh<sub>2</sub>(OAC)<sub>4</sub> catalyzed Carbene C-H insertion

#### ABSTRACT

The C–H insertion reactions of 3-trifluoromethyl-4-diazopyrazolinones **1** with benzene and its derivatives catalyzed by  $Rh_2(OAc)_4$  were studied. It was found that the  $Csp^2$ -H insertion products were obtained in good yields when anisole or xylene etc. was used, while the aromatic compounds with electronic-withdrawing groups, such as fluorobenzene, chlorobenzene, and benzonitrile, did not react with the diazo compounds **1**.

© 2013 Elsevier Ltd. All rights reserved.

Tetrahedror

#### 1. Introduction

Diazo compounds are notably versatile building blocks in organic synthesis.<sup>1</sup> Thermally or photochemically induced expulsion of molecular nitrogen provides access to carbene chemistry<sup>2</sup> and transition-metal-catalyzed dediazoniation typically generates short-lived metal-carbene complexes.<sup>3</sup> Several metals have been reported to mediate this transformation effectively, and the appropriate selection of ligands has permitted excellent selectivities.<sup>4</sup> In general, rhodium(II)-catalyzed decomposition of alkyl diazoacetates in a large access of aromatic substrate at room temperature produces kinetically controlled cycloheptatrienyl esters in excellent yield (Scheme 1).<sup>5</sup> To our best knowledge, the functionalization of aromatic Csp<sup>2</sup>-H bonds with this strategy has been somewhat developed for intramolecular processes, while the intermolecular version is still quite rare.<sup>6</sup> It is well known that the introduction of fluorine atoms into a molecule can often bring some unpredictable influence on its bioactivity.<sup>7</sup> However, there are few reports on the synthesis of fluorine substituted pyrazole compounds.<sup>8</sup>

In our group, we have recently successfully prepared 3trifluoromethyl-4-diazopyrazolinones **1** using perfluoroalkane sulfonyl azide as diazo-transfer reagents and reported a facile synthesis of novel CF<sub>3</sub>-substituted ring-fused furo [2,3-c] pyrazoles through Rh<sub>2</sub>(OAc)<sub>4</sub> catalyzed [3+2] cycloaddition of 4-diazo-1phenyl-3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one with aromatic



Scheme 1. Rhodium(II)-catalyzed the reaction of alkyl diazoacetates with aromatic substrate.

\* Corresponding authors. E-mail address: zhusz@mail.sioc.ac.cn (S. Zhu).

0040-4020/\$ — see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2012.12.077

Please cite this article in press as: Fan, H.; et al., Tetrahedron (2013), http://dx.doi.org/10.1016/j.tet.2012.12.077

alkynes (Scheme 2).<sup>9</sup> Herein, we report the reactions of 3trifluoromethyl-4-diazo pyrazolinones **1** with aromatic com-

pounds catalyzed by Rh<sub>2</sub>(OAc)<sub>4</sub>.



H. Fan et al. / Tetrahedron xxx (2013) 1–9



Scheme 2. Reactions of 4-diazo-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-5(4H)-one with aromatic alkynes catalyzed by Rh<sub>2</sub>(OAc)<sub>4</sub>.

#### 2. Results and discussions

The reaction of 3-trifluoromethyl-4-diazo pyrazolinone **1a** (254 mg, 1 mmol) and  $Rh_2(OAc)_4$  (4 mg, 0.01 mmol) in excess of anisole **2a** (5.0 mL) at 140 °C was firstly investigated (Scheme 3). The reaction was complete within 3 h monitored by TLC, the products **3a** and **3a**' were isolated by column chromatography as colorless solids and got in yields of 63% and 13%, respectively. The products **3a** and **3a**' showed a single peak at -60.87 ppm and -59.96 ppm respectively different from the spectrum of the starting diazo compound **1a** (-63.9 ppm). The <sup>1</sup>H NMR spectra of the products showed

withdrawing group, such as fluorobenzene, chlorobenzene or benzonitrile, did not react with the diazo compound **1a**.

With the optimized reaction condition in hand, a series of CF<sub>3</sub>substituted pyrazolol derivatives (**3a**–**3k**) were obtained in moderate to good yields. The results were summarized in Table 2. The results showed that both *para*- and *ortho*-substituted products were formed when anisole was participated in the reaction. When xylene or 1,3,5-trimethylbenzene was employed, only one product was isolated in a moderate yield (Table 2, **entries 2–4**). However, the yield was lower when the aromatic compound was toluene.

All of the novel CF<sub>3</sub>-substituted pyrazolols were characterized by  $^{1}$ H,  $^{13}$ C, and  $^{19}$ F NMR spectroscopy and mass spectrometry. For the



Scheme 3. The reaction of 3-trifluoromethyl-4-diazo pyrazolinone with anisole catalyzed by Rh<sub>2</sub>(OAc)<sub>4</sub>.

that the typical peaks were observed at  $\delta$  7.25 and 6.91 ppm, which indicated to be a *para*-methoxyl-compound **3a**. Meanwhile, a higher-order spectrum indicated an *ortho*-isomer compound **3a**'. Mass spectra showed that the molecular weight of **3a** and **3a**' are both 334.

After that, we screened conditions for the reactions of 3-trifluoromethyl-4-diazo pyrazolinone **1a** with other aromatic compounds and the results were listed in Table 1. It was not a surprise that no reaction took place without  $Rh_2(OAc)_4$  (Table 1, **entry 1**). After different catalysts were examined, 1 mol %  $Rh_2(OAc)_4$  was effective to catalyze this reaction. It was also noticed that the product was obtained in a low yield when the substrate was benzene (Table 1, **entry 6**). What is more, the aromatic compounds with an electronic-

| Table 1                                                                                |
|----------------------------------------------------------------------------------------|
| Reactions of <b>1a</b> with aromatic compounds under different conditions <sup>4</sup> |

| Entry | Substrate     | Cat. (mol %)     | Temp   | Time (h) | Yield (%) <sup>b</sup> |
|-------|---------------|------------------|--------|----------|------------------------|
| 1     | Anisole       | _                | 140 °C | 8        | N.R                    |
| 2     | Anisole       | $Rh_2(OAc)_4(1)$ | 100 °C | 16       | 56 and11               |
| 3     | Anisole       | $Rh_2(OAc)_4(1)$ | 140 °C | 3        | 63 and 13              |
| 4     | Anisole       | CuI (10)         | 140 °C | 15       | N.R                    |
| 5     | Anisole       | $Cu(OTf)_2(1)$   | 140 °C | 8        | N.R                    |
| 6     | Benzene       | $Rh_2(OAc)_4(1)$ | Reflux | 20       | 2                      |
| 7     | Fluorobenzene | $Rh_2(OAc)_4(1)$ | 140 °C | 3        | N.R                    |
| 8     | Chlorobenzene | $Rh_2(OAc)_4(1)$ | 140 °C | 3        | N.R                    |
| 9     | Benzonitrile  | $Rh_2(OAc)_4(1)$ | 140 °C | 3        | N.R                    |

 $^a\,$  Reactions were carried out with 1a (1 mmol), 2 (5 mL) and Rh\_2(OAc)\_4 (4 mg).  $^b\,$  Isolated yields by column chromatography.

compound **3e**, it was further confirmed by X-ray single crystal diffraction analysis (Fig. 1). It disclosed that the dihedral angle between pyrazole ring and benzene ring is 83.73 °C, and that is 86.22 °C between pyrazole ring and the methyl substituted benzene ring.

In our previous study, the reaction of 3-trifluoromethyl-4diazopyrazolinones with aromatic terminal alkynes catalyzed by  $Rh_2(OAc)_4$  in toluene indeed afford the corresponding products and no C–H products were found (Scheme 2).<sup>9</sup> It was indicated that the metal-carbene intermediate was much easier to occur [3+2] cycloaddition reaction. According to the above results, it was indicated that the reaction activity of metal-carbene intermediate was [3+2] cycloaddition > Csp<sup>2</sup>-H insertion.

It was also found that the reaction of **1a** with pyridine or its derivatives did not give corresponding products or C–H insertion products (Scheme 4).

Under the same reaction conditions, 3-trifluoromethyl-4diazopyrazolinethione **4**, which was obtained by the reaction of **1** with Lawesson's, did not react with toluene, anisole or xylene and **4** was recovered quantitatively in all these reactions (Scheme 5).

In our studies, we also noticed that in case of cyclohexene with compound **1a**, no corresponding cyclopropanation products were isolated, which indicated the resulting metal-carbene intermediate did not add to the carbon–carbon double bond (Scheme 6).

Considering all the results, neither cyclopropanation compounds nor cycloheptatriene derivatives were found in the reaction of 1 with benzene derivatives. We proposed a possible mechanism

#### H. Fan et al. / Tetrahedron xxx (2013) 1–9

#### Table 2

Reactions of 3-trifluoromethyl-4-diazopyrazolinones with aromatic compounds catalyzed by Rh<sub>2</sub>(OAc)<sub>4</sub>



4

# **ARTICLE IN PRESS**

H. Fan et al. / Tetrahedron xxx (2013) 1–9

Table 2 (continued)



<sup>a</sup> Isolated yields by column chromatography.





Fig. 1. (a) The structure of compound 3e. (b) Packing map of molecular 3e.

for the formation of CF<sub>3</sub>-substituted pyrazolols on the basis of previous investigations.<sup>10</sup> A  $\pi$ - or  $\sigma$ -complex was postulated as the intermediate for these reactions. That is to say, the cyclopropane product was not formed in this reaction. However, a  $\pi$ - or  $\sigma$ -complex may be formed first, by the donor-acceptor interaction between the aromatic compounds and the electron-deficient diazo compounds. The  $\pi$ - or  $\sigma$ -complex is followed by 1,2-H shift to give the final product 3-trifluoromethyl-4-aryl-pyrazolol (Scheme 7).

#### 3. Conclusions

In summary, we developed a convenient method for preparation of CF<sub>3</sub>-substituted pyrazolols through C–H insertion reactions of diazocarbonyl compounds with electronic-rich benzene derivatives catalyzed by Rh<sub>2</sub>(OAc)<sub>4</sub>. However, the aromatic compounds with an electronic-withdrawing group, such as fluorobenzene, chlorobenzene or benzonitrile, did not react with diazo compounds **1**.

#### 4. Experimental

#### 4.1. General remarks and methods

Commercial reagents were used without further purification. All solvents used were dried and purified by distillation. The starting pyrazolinones 1 were prepared according to described procedure. Melting points were measured in Temp-Melt apparatus without calibration. <sup>1</sup>H and <sup>19</sup>F NMR spectra were recorded in CDCl<sub>3</sub> on Bruker AM-300 instruments with Me<sub>4</sub>Si and CFCl<sub>3</sub> (with upfield negative) as the internal and external standards, respectively.  $^{13}C$ NMR spectra were recorded in CDCl<sub>3</sub> with Bruker AMX at 100 MHz and chemical shifts were given in parts per million relative to Me<sub>4</sub>Si. IR spectra were obtained with a Nicolet AV-360 spectrophotometer. Lower resolution mass spectra or high-resolution mass spectra (HRMS) were obtained on a FinniganMAT-8430 instrument using the electron impact ionization technique (70 eV). X-ray diffraction crystal structure analysis was obtained on Bruker P4 instrument. All reaction as well as column chromatography were monitored routinely with the aid of TLC or <sup>19</sup>F NMR spectroscopy.



Scheme 4. No reactions of 3-trifluoromethyl-4-diazo pyrazolinone with pyridine or its derivatives under the same conditions.

H. Fan et al. / Tetrahedron xxx (2013) 1–9



Scheme 5. Synthesis of 3-trifluoromethyl-4-diazopyrazolinethione and the reactions of it with toluene, anisole or xylene.



Scheme 6. Compared reaction of 3-trifluoromethyl-4-diazo pyrazolinone with cyclohexene under the same conditions.

#### 4.2. General procedure for the synthesis of compounds 3

3-Trifluoromethyl-4-diazopyrazolinones **1** (254 mg, 1 mmol) and  $Rh_2(OAc)_4$  (4 mg) were dissolved in anisole (5 mL). The reaction mixture was stirred at 140 °C for about 3 h, until the starting material of CF<sub>3</sub>-substituted diazo compound disappeared while monitoring by TLC. The solvent was removed in vacuum and the residue was purified on silica gel using petroleum ether/ethyl acetate (20:1) as eluent to afford the corresponding products.

4.2.1. 4-(4-Methoxyphenyl)-1-phenyl-3-(trifluoromethyl)-1H-pyr-azol-5-ol (**3a**).

Yield 63%, 210.5 mg; white solid; mp 147–148 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ =7.64 (d, *J*=7.8 Hz, 2H), 7.43 (t, *J*=7.8 Hz, 2H), 7.35 (d, *J*=7.2 Hz, 1H), 7.25 (d, *J*=8.1 Hz, 2H), 6.91 (d, *J*=8.1 Hz, 2H), 3.80 (s, 3H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$ =-60.87 (s, 3F). IR (KBr) cm<sup>-1</sup>: 2934, 2837, 1530, 1503, 1484, 1337, 1256, 1125, 985, 762. MS: *m*/*z* (%)=334 (M<sup>+</sup>, 57), 210 (22), 135 (50), 91 (19), 78 (18), 77 (100), 51 (24), 41 (19). HRMS (EI): Calcd for C<sub>17</sub>H<sub>13</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>: 334.0929; found: 334.0927.

4.2.2. 4-(2-Methoxyphenyl)-1-phenyl-3-(trifluoromethyl)-1H-pyr-azol-5-ol (**3a**').



Yield 13%, 43.4 mg; white solid; mp 118–119 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ =7.81 (d, *J*=8.4 Hz, 2H), 7.46-7.56 (m, 3H), 7.35–7.40 (m, 2H), 7.08–7.18 (m, 2H), 3.99 (s, 3H). <sup>19</sup>F NMR (CDCl<sub>3</sub>, 282 MHz):  $\delta$ =-59.96 (s, 3F). IR (KBr) cm<sup>-1</sup>: 2948, 1485, 1456, 1333, 1275, 1250, 1170, 1133, 1114, 987, 759, 693. MS: *m/z* (%)=334 (M<sup>+</sup>, 40), 299 (17), 146 (18), 77 (100), 58 (18), 51 (25), 44 (25), 41 (21). HRMS (EI): Calcd for C<sub>17</sub>H<sub>13</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>: 334.0929; found: 334.0931.

4.2.3. 4-(2,5-Dimethylphenyl)-1-phenyl-3-(trifluoromethyl)-1H-pyr-azol-5-ol (**3b**).





**Scheme 7.** Possible mechanism for this reaction.

(3d).

332.1136; found: 332.1131.

Yield 56%, 186.0 mg; white solid; mp 162–163 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ =7.73 (d, *J*=8.1 Hz, 2H), 7.47 (t, *J*=7.5 Hz, 2H), 7.36 (t, *J*=7.5 Hz, 1H),  $\delta$ =7.17 (d, *J*=7.8 Hz, 1H), 7.11 (d, *J*=7.6 Hz, 1H), 7.03 (s, 1H), 2.33 (s, 3H), 2.14 (s, 3H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$ =-61.60 (s, 3F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ =148.8, 139.4 (q, <sup>2</sup>*J*<sub>C-F</sub>=40.8 Hz), 137.4, 135.3, 135.2, 132.3, 130.0, 129.6, 129.0, 127.7, 127.4, 123.0, 121.1 (q, <sup>1</sup>*J*<sub>C-F</sub>=268.4 Hz), 102.3 (m, <sup>3</sup>*J*<sub>C-F</sub>), 20.8, 19.2. IR (KBr) cm<sup>-1</sup>: 3418, 2924, 1598, 1485, 1409, 1329, 1127, 1006, 768, 693. MS: *m*/*z* (%)=332 (M<sup>+</sup>, 81), 333 (20), 289 (35), 128 (21), 93 (26), 78 (23), 77 (100), 57 (18). HRMS (EI): Calcd for C<sub>18</sub>H<sub>15</sub>F<sub>3</sub>N<sub>2</sub>O: 332.1136; found: 332.1141.

4.2.4. 4-(2,4-Dimethylphenyl)-1-phenyl-3-(trifluoromethyl)-1H-pyr-azol-5-ol (**3c**).



Yield 61%, 202.6 mg; white solid; mp 159–160 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ =7.74 (d, *J*=8.1 Hz, 2H), 7.47 (t, *J*=7.5 Hz, 2H), 7.36 (t, *J*=7.5 Hz, 1H),  $\delta$ =7.03–7.11 (m, 3H), 2.36 (s, 3H), 2.16 (s,



3H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta = -61.60$  (s, 3F). <sup>13</sup>C NMR

(100 MHz, CDCl<sub>3</sub>):  $\delta$ =149.3, 139.4 (q, <sup>2</sup>J<sub>C-F</sub>=36.4 Hz), 138.4, 138.2,

137.2, 131.6, 130.9, 128.9, 127.7, 126.4, 124.7, 123.1, 120.0 (q,

 $^{1}J_{C-F}$ =269.0 Hz), 102.2 (m,  $^{3}J_{C-F}$ ), 21.2, 19.6. IR (KBr) cm<sup>-1</sup>: 2924,

1599, 1481, 1457, 1406, 1291, 1192, 1156, 1122, 988,767, 692. MS:

*m*/*z* (%)=332 (M<sup>+</sup>, 82), 333 (18), 289 (32), 135 (25), 105 (21), 93

(19), 77 (100), 51 (26). HRMS (EI): Calcd for C<sub>18</sub>H<sub>15</sub>F<sub>3</sub>N<sub>2</sub>O:

4.2.5. 4-Mesityl-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-5-ol

Yield 45%, 155.8 mg; white solid; mp 165–166 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ =7.81 (d, *J*=8.1 Hz, 2H), 7.49 (t, *J*=7.8 Hz, 2H), 7.36 (t, *J*=7.5 Hz, 1H), 6.97 (s, 2H), 2.33 (s, 3H), 2.10 (s, 6H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$ =-63.09 (s, 3F). <sup>13</sup>C NMR (100 MHz, acetone*d*<sub>6</sub>):  $\delta$ =139.0, 138.4, 137.8, 137.2 (q, <sup>2</sup>*J*<sub>C-F</sub>=30.8 Hz), 129.7, 129.0, 128.9, 128.1, 127.9, 127.2, 127.1, 122.2, 121.8 (q, <sup>1</sup>*J*<sub>C-F</sub>=267.6 Hz),

118.5 (m,  ${}^{3}J_{C-F}$ ), 20.2, 19.7. IR (KBr) cm<sup>-1</sup>: 3418, 2923, 1598, 1506, 1482, 1457, 1284, 1154, 1128, 987, 770. MS: m/z (%)=346 (M<sup>+</sup>, 29), 213 (51), 212 (64), 119 (96), 106 (55), 91 (46), 78 (100), 77 (69), 63 (45). HRMS (EI): Calcd for C<sub>19</sub>H<sub>17</sub>F<sub>3</sub>N<sub>2</sub>O: 346.1293; found: 346.1296.

4.2.6. 4-(o-Tolyl)-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-5-ol (**3e**).



Yield 15%, 47.7 mg; white solid; mp 102–103 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ =7.72 (d, *J*=8.1 Hz, 2H), 7.48 (t, *J*=8.1 Hz, 2H), 7.37 (t, *J*=7.5 Hz, 1H), 7.26–7.28 (m, 4H), 2.40 (s, 3H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$ =–61.35 (s, 3F). IR (KBr) cm<sup>-1</sup>: 2924, 1597, 1531, 1502, 1481, 1334, 1127, 987, 765, 690. MS: *m*/*z* (%)=318 (M<sup>+</sup>, 100), 319 (15), 275 (15), 194 (42), 115 (23), 78 (19), 77 (88), 51 (18). HRMS (EI): Calcd for C<sub>17</sub>H<sub>13</sub>F<sub>3</sub>N<sub>2</sub>O: 318.0980; found: 318.0981.

Crystal data of **3e**. CCDC reference number is 872812. C<sub>17</sub>H<sub>13</sub>F<sub>3</sub>N<sub>2</sub>O: MW=318.29, Monoclinic, space group P2(1)/c, *a*=18.3444(10), *b*=20.8512(11), *c*=18.2354(10) Å, *α*=90.00,  $\beta$ =116.9840(10),  $\gamma$ =90.00, V=6215.7(6) Å<sup>3</sup>, Z=16, *bc*=1.361 mg/m<sup>3</sup>, *F* (000)=2624, radiation, Mo Ka ( $\lambda$ =0.71073 Å), 1.58 $\leq 2\theta \leq 25.25$ , intensity data were collected at 293 K with a Bruker AXS D8 diffractometer, and employing  $\omega/2\theta$  scanning technique, in the range of  $-22\leq h\leq 22$ ,  $-25\leq k\leq 21$ ,  $-20\leq l\leq 20$ .

4.2.7. 4-(4-Methoxyphenyl)-1-(p-tolyl)-3-(trifluoromethyl)-1H-pyr-azol-5-ol (**3***f*).



Yield 65%, 226.3 mg; white solid; mp 165–166 °C. <sup>1</sup>H NMR (300 MHz, acetone- $d_6$ ):  $\delta$ =7.70 (d, J=8.1 Hz, 2H), 7.34 (t, J=8.4 Hz, 4H), 6.98 (d, J=8.7 Hz, 2H), 3.83 (s, 3H), 2.40 (s, 3H). <sup>19</sup>F NMR (282 MHz, acetone- $d_6$ ):  $\delta$ =-60.85 (s, 3F). <sup>13</sup>C NMR (100 MHz, acetone- $d_6$ ):  $\delta$ =159.4, 149.8, 138.4 (q,  $^2J_{C-F}$ =35.7 Hz), 137.3, 135.9, 131.4, 129.5, 122.8, 122.0 (q,  $^1J_{C-F}$ =267.8 Hz), 121.7, 113.8, 103.2 (m,  $^3J_{C-F}$ ), 54.7, 20.1. IR (KBr) cm<sup>-1</sup>: 2963, 2837, 1527, 1508, 1483, 1135, 1251, 1179, 1127, 938, 822. MS: m/z (%)=348 (M<sup>+</sup>, 6), 228 (88), 161 (40), 118 (28), 105 (36), 91 (35), 78 (19), 77 (100), 51 (25). HRMS (EI): Calcd for C<sub>18</sub>H<sub>15</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>: 348.1086; found: 348.1081.

4.2.8. 4-(2-Methoxyphenyl)-1-(p-tolyl)-3-(trifluoromethyl)-1H-pyrazol-5-ol (**3f**).



Yield 17%, 59.2 mg; white solid; mp 134–135 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ =7.66 (d, *J*=8.1 Hz, 2H), 7.54 (d, *J*=7.8 Hz, 1H), 7.38 (t, *J*=8.4 Hz, 1H), 7.29 (d, *J*=8.7 Hz, 2H), 7.15 (t, *J*=7.8 Hz, 1H), 7.10 (d, *J*=7.5, 1H), 3.99 (s, 3H), 2.41(s, 3H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$ =-60.34 (s, 3F). IR (KBr) cm<sup>-1</sup>: 3006, 2947, 1535, 1487, 1290, 1276, 1251, 1130, 1113, 986, 821, 759. MS: *m*/*z* (%)=348 (M<sup>+</sup>, 63), 131 (44), 91 (100), 77 (38), 69 (47), 68 (43), 43 (38). HRMS (EI) Calcd for C<sub>18</sub>H<sub>15</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>: 348.1086; found: 348.1088.

4.2.9. 4-(2,5-Dimethylphenyl)-1-(p-tolyl)-3-(trifluoromethyl)-1H-pyrazol-5-ol (**3g**).



Yield 68%, 235.4 mg; white solid; mp 152–153 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ =7.61 (d, *J*=8.1 Hz, 2H), 7.27 (d, *J*=6.9 Hz, 2H), 7.12-7.20 (m, 2H), 7.06 (s, 1H), 2.41 (s, 3H), 2.34 (s, 3H), 2.16 (s, 3H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$ =-62.14 (s, 3F). <sup>13</sup>C NMR (100 MHz, acetone-*d*<sub>6</sub>):  $\delta$ =149.8, 138.8 (q, <sup>2</sup>*J*<sub>C-F</sub>=35.7 Hz), 137.1, 136.1, 135.5, 134.7, 132.5, 129.7, 129.5, 129.2, 128.7, 122.5, 121.9 (q, <sup>1</sup>*J*<sub>C-F</sub>=267.6 Hz), 102.0 (m, <sup>3</sup>*J*<sub>C-F</sub>), 20.1, 20.0, 18.8. IR (KBr) cm<sup>-1</sup>: 2925, 1521, 1490, 1330, 1309, 1208, 1158, 1119, 1005, 822. MS: *m/z* (%)=346 (M<sup>+</sup>, 100), 347 (19), 303 (31), 249 (17), 107 (17), 106 (13), 91 (53), 65 (16). HRMS (EI): Calcd for C<sub>19</sub>H<sub>17</sub>F<sub>3</sub>N<sub>2</sub>O: 346.1293; found: 346.1291.

4.2.10. 4-(2,4-Dimethylphenyl)-1-(p-tolyl)-3-(trifluoromethyl)-1H-pyrazol-5-ol (**3h**).



8

H. Fan et al. / Tetrahedron xxx (2013) 1–9

Yield 71%, 245.8 mg; white solid; mp 176–177 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ =7.57 (d, *J*=8.4 Hz, 2H), 7.25 (d, *J*=8.1 Hz, 2H), 7.08 (d, *J*=8.4 Hz, 2H), 7.04 (s, 1H), 2.40 (s, 3H), 2.35 (s, 3H), 2.13 (s, 3H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$ =-62.16 (s, 3F). <sup>13</sup>C NMR (100 MHz, acetone-*d*<sub>6</sub>):  $\delta$ =149.9, 138.9 (q, <sup>2</sup>*J*<sub>C-F</sub>=35.0 Hz), 138.4, 138.0, 137.1, 136.1, 132.0, 130.5, 129.5, 126.2, 125.9, 122.4, 121.9 (q, <sup>*1*</sup>*J*<sub>C-F</sub>=267.6 Hz), 101.7 (m, <sup>3</sup>*J*<sub>C-F</sub>), 20.2, 20.1, 19.2. IR (KBr) cm<sup>-1</sup>: 2925, 1520, 1484, 1417, 1330, 1182, 1142, 1128, 991, 821. MS: *m/z* (%)=346 (M<sup>+</sup>, 100), 347 (23), 303 (30), 249 (13), 222 (12), 107 (10), 91 (40), 65 (11). HRMS (EI): Calcd for C<sub>19</sub>H<sub>17</sub>F<sub>3</sub>N<sub>2</sub>O: 346.1293; found: 346.1297.

4.2.11. 4-(4-Methoxyphenyl)-1-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-5-ol (**3i**).



Yield 71%, 261.3 mg; white solid; mp 144–145 °C. <sup>1</sup>H NMR (300 MHz, acetone- $d_6$ ):  $\delta$ =7.90 (d, *J*=9.0 Hz, 2H),  $\delta$ =7.59 (d, *J*=9.0 Hz, 2H), 7.32 (d, *J*=8.4 Hz, 2H), 6.99 (d, *J*=8.7 Hz, 2H), 3.84 (s, 3H). <sup>19</sup>F NMR (282 MHz, acetone- $d_6$ ):  $\delta$ =-62.63 (s, 3F). <sup>13</sup>C NMR (100 MHz, acetone- $d_6$ ):  $\delta$ =159.5, 150.1, 139.2 (q, <sup>2</sup>*J*<sub>C-F</sub>=35.8 Hz), 137.1, 132.4, 131.5, 129.1, 124.0, 121.8 (q, <sup>1</sup>*J*<sub>C-F</sub>=267.6 Hz), 121.4, 113.9, 103.4 (m, <sup>3</sup>*J*<sub>C-F</sub>), 54.7. IR (KBr) cm<sup>-1</sup>: 2967, 2839, 1526, 1498, 1480, 1340, 1252, 1182, 1129, 984, 838. MS: *m*/*z* (%)=368 (M<sup>+</sup>, 100), 370 (32), 369 (20), 200 (28), 113 (23), 111 (67), 77 (30), 75 (32). HRMS (EI): Calcd for C<sub>17</sub>H<sub>12</sub>ClF<sub>3</sub>N<sub>2</sub>O<sub>2</sub>: 368.0539; found: 368.0541.

4.2.12. 4-(2-Methoxyphenyl)-1-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-5-ol (**3i**').



Yield 7%, 25.8 mg; white solid; mp 183–184 °C. <sup>1</sup>H NMR (300 MHz, acetone- $d_6$ ):  $\delta$ =7.92 (d, J=9.0 Hz, 2H), 758 (d, J=9.3 Hz, 2H), 7.28–7.41 (m, 2H), 7.06 (d, J=9.3 Hz, 1H), 7.00 (d, J=7.2 Hz, 1H), 3.82 (s, 3H). <sup>19</sup>F NMR (282 MHz, acetone- $d_6$ ):  $\delta$ =-62.34 (s, 3F). IR (KBr) cm<sup>-1</sup>: 3007, 2948, 1591, 1486, 1414, 1276, 1170, 1131, 1096, 986, 833, 756. MS: m/z (%)=368 (M<sup>+</sup>, 58), 113 (31), 111 (100), 75 (37), 57 (25), 56 (30), 43 (41), 41 (36). HRMS (EI): Calcd for C<sub>17</sub>H<sub>12</sub>ClF<sub>3</sub>N<sub>2</sub>O<sub>2</sub>: 368.0539; found: 368.0537.

4.2.13. 4-(2,5-Dimethylphenyl)-1-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-5-ol (**3j**).



Yield 69%, 252.6 mg; white solid; mp 146–147 °C. <sup>1</sup>H NMR (300 MHz, acetone- $d_6$ ):  $\delta$ =7.93 (d, *J*=8.7 Hz, 2H),  $\delta$ =7.59 (d, *J*=9.0 Hz, 2H), 7.09-7.18 (m, 2H), 7.05 (s, 1H), 2.30 (s, 3H), 2.16 (s, 3H). <sup>19</sup>F NMR (acetone- $d_6$ , 282 MHz):  $\delta$ =-62.66 (s, 3F). <sup>13</sup>C NMR (100 MHz, acetone- $d_6$ ):  $\delta$ =150.1, 139.5 (q, <sup>2</sup> $J_{C-F}$ =35.0 Hz), 137.3, 135.5, 134.8, 132.5, 132.2, 129.8, 129.3, 129.1, 128.4, 123.7, 121.7 (q, <sup>1</sup> $J_{C-F}$ =267.6 Hz), 102.2 (m, <sup>3</sup> $J_{C-F}$ ), 20.0, 18.8. IR (KBr) cm<sup>-1</sup>: 2927, 1597, 1533, 1486, 1416, 1330, 1207, 1132, 1004, 833, 808. MS: *m*/*z* (%)=366 (M<sup>+</sup>, 85), 323 (48), 111 (100), 75 (56), 57 (68), 56 (44), 43 (87), 41 (67). HRMS (EI): Calcd for C<sub>18</sub>H<sub>14</sub>ClF<sub>3</sub>N<sub>2</sub>O: 366.0747; found: 366.0750.

4.2.14. 4-(2,4-Dimethylphenyl)-1-(4-chlorophenyl)-3-(tri-fluoromethyl)-1H-pyrazol-5-ol (**3k**).



Yield 63%, 230.6 mg; white solid; mp 181–182 °C. <sup>1</sup>H NMR (300 MHz, acetone- $d_6$ ):  $\delta$ =7.93 (d, J=9.0 Hz, 2H),  $\delta$ =7.59 (d, J=8.7 Hz, 2H), 7.02–7.12 (m, 3H), 2.33 (s, 3H), 2.16 (s, 3H). <sup>19</sup>F NMR (acetone- $d_6$ , 282 MHz):  $\delta$ =-62.68 (s, 3F). <sup>13</sup>C NMR (100 MHz, acetone- $d_6$ ):  $\delta$ =150.2, 139.6 (q, <sup>2</sup> $J_{C-F}$ =35.8 Hz), 138.5, 138.1, 137.3, 132.2, 131.9, 130.5, 129.1, 126.3, 125.7, 125.5, 123.7, 121.7 (q, <sup>1</sup> $J_{C-F}$ =267.6 Hz), 101.9 (m, <sup>3</sup> $J_{C-F}$ ), 20.2, 19.1. IR (KBr) cm<sup>-1</sup>: 2924, 1594, 1482, 1413, 1331, 1180, 1130, 991, 833, 808. MS: m/z (%)=366 (M<sup>+</sup>, 100), 368 (32), 323 (41), 127 (28), 115 (28), 111 (85), 77 (32), 43 (35). HRMS (EI): Calcd for C<sub>18</sub>H<sub>14</sub>ClF<sub>3</sub>N<sub>2</sub>O: 366.0747; found: 366.0746.

#### 4.3. General procedure for the synthesis of compounds 4

3-Trifluoromethyl-4-diazopyrazolinones **1a** (254 mg, 1 mmol) and Lawesson reagent (404 mg, 1 mmol) were dissolved in xylene (10 mL). The reaction mixture was stirred at reflux for about 5 h, until the starting material of **1** disappeared while monitoring by TLC. The solvent was removed in vacuum and the residue was purified on silica gel using petroleum ether/ethyl acetate (10:1) as eluent to afford the corresponding product **4**.

4.3.1. 4-Diazo-1-phenyl-3-(trifluoromethyl)-1H-pyrazole-5(4H)-thione (4).

# 

Yield 86%, 232.2 mg; white solid; mp 93–95 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ =7.76 (d, *J*=7.5 Hz, 2H), 7.59 (t, *J*=7.5 Hz, 2H), 7.45 (t, d, *J*=7.5 Hz, 1H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$ =-61.15 (s, CF<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ =156.1, 147.8, 138.0, 132.2 (q, <sup>2</sup>*J*<sub>C-F</sub>=41.5 Hz), 130.1, 128.3, 119.8 (q, <sup>1</sup>*J*<sub>C-F</sub>=268.4 Hz), 118.2. IR (KBr) cm<sup>-1</sup>: 2354, 1594, 1532, 1504, 1478, 1427, 1296, 1197, 1029, 894, 758. MS: *m/z* (%)=270 (M+, 18), 242 (21), 105 (9), 87 (11), 77 (100), 51 (23), 50 (7). HRMS (EI): Calcd for C<sub>10</sub>H<sub>5</sub>F<sub>3</sub>N<sub>4</sub>S: 270.0187; found: 270.0191.

#### Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (NNSFC) (No. 21032006 and No. 21102163).

#### Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.tet.2012.12.077. These data include MOL files and InChiKeys of the most important compounds described in this article.

#### **References and notes**

- (a) Regitz, M.; Maas, G. Diazo Compounds Properties and Synthesis; Academic: Orlando, FL, 1986; (b) Maas, G. Angew. Chem., Int. Ed. 2009, 48, 8186–8195.
- Smith, M. R.; Blake, A. J.; Hayes, C. J.; Stevens, M. F. G.; Moody, C. J. J. Org. Chem. 2009, 74, 9372–9380.
- (a) Rosenfeld, M. J.; Ravi Shankar, B. K.; Shechter, H. J. Org. Chem. 1988, 53, 2699–2703; (b) Yang, M.; Webb, T. R.; Livant, P.J. Org. Chem. 2001, 66, 4945–4948.
- Fructos, M. R.; Belderrain, T. R.; Fremont, P.; Scott, N. M.; Nolan, S. P.; Diaz-Requejo, M. M.; Perez, P. J. Angew. Chem., Int. Ed. 2005, 44, 5284–5288.
- (a) Anciaux, A. J.; Demonceau, A.; Hubert, A. J.; Noels, A. F.; Petiniot, N.; Teyesil, P. J. *Chem. Soc., Chem. Commun.* **1980**, *16*, 765–766; (b) Anciaux, A. J.; Demonceau, A.; Noels, A. F.; Hubert, A. J.; Warin, R.; Teyssil, P. J. Org. Chem. **1981**, *46*, 873–876.
- Rivilla, I.; Gomez-Emeterio, B. P.; Fructos, M. R.; Díaz-Requejo, M. M.; Perez, P. J. Organometallics 2011, 30, 2855–2860.
- (a) Jiang, B.; Zhang, X. B.; Luo, Z. H. Org. Lett. 2002, 4, 2453–2455; (b) Shi, G. Q.; Xu, Y. Y.; Xu, M. J. Fluorine Chem. 1991, 52, 149–157; (c) Shi, G. Q.; Cao, Z. Y.; Cai, W. L. Tetrahedron 1995, 51, 5011–5018; (d) Hoffmann, M. G.; Wenkert, E. Tetrahedron 1993, 49, 1057–1062.
- (a) Abdou, I. M.; Saleh, A. M.; Zohdi, H. F. *Molecules* **2004**, *9*, 109–116; (b) Beverina, L.; Crippa, M.; Sassi, M.; Monguzzi, A.; Meinardi, F.; Tubino, R.; Pagani, G. A. *Chem. Commun.* **2009**, 5103–5105; (c) Soliman, A. A. *Spectrochim. Acta, Part A* **2007**, 67, 852–857; (d) Zhang, Z. H.; Wang, X. W.; Song, T.; Zhu, S. Z. *Tetrahedron* **2012**, *68*, 5969–5978.
- 9. Zhang, Z. H.; Han, J. W.; Zhu, S. Z. Tetrahedron 2011, 67, 8496-8501.
- 10. Zhu, S. Z.; He, P. Tetrahedron 2005, 61, 5679-5685.