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Graphical Abstract 

Highly thermal stable quinazoline-centered derivatives with tunable electron-only or bipolar 
nature were employed as host materials to achieve high efficient red phosphorescent organic 
light-emitting diodes.  
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ABSTRACT: Quinazoline-centered derivatives with benzoimidazole, carbazole, and triphenylene moieties, 

were synthesized. Their relationships between electrochemical, photophysical, and optoelectronic 

properties and structure were discussed in detail. Efficient red phosphorescent organic light-emitting diodes  

with low turn-on voltage were demonstrated by using them as host materials, and achieved maximum 

external quantum efficiencies, current efficiencies, and power efficiencies of 19.2%, 18.3 cd/A, 21.7 lm/W 

for 4-[4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl]-2-[3-(tri-phenylen-2-yl)phen-3-yl]quinazoline,  of 

18.4%, 17.6 cd/A, 19.3lm/W for 4-(9-phenyl-9H-carbazol-3-yl)-2-[3-(triphenylen-2-yl)phenyl]quinazoline, 

of 15.6%, 14.4 cd/A, 16.7 lm/W for 2,4-bis[4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl]quinazoline, 

and of 17.4%, 16.7 cd/A, 15.7 lm/W for 2,4-bis(9-phenyl-9H-carbazol-3-yl)quinazoline, respectively. 
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Moreover, improving the electron-injection/transport abilities of host materials could ideally improve the 

performance of organic light-emitting diodes under low operation voltage, while enhancement of 

hole-transporting abilities by using bipolar materials could balance the carriers to maintain high efficiency 

under high operating voltage. These materials exhibited high glass-transition temperature of 146-154 °C 

and decomposition temperature of 400-447 °C. 

 

Keywords: Synthesis, Photophysical Property, Organic light-emitting diodes, Quinazoline Dyes 

1.  INTRODUCTION 

  During the past two decades, organic light-emitting diodes (OLEDs) have been aroused intensive 

interests due to their potential applications in solid-state lighting and flexible panel displays.1-7 Compared 

to the conventional fluorescent OLEDs, great research efforts have been devoted to development of 

phosphorescent OLEDs (PhOLEDs) because they can mostly approach 100% internal quantum efficiency 

by harvesting both singlet and triplet excitons when they incorporate appropriate transition metal-centered 

phosphorescent dopants as triplet emitters.8-11 Typically, in order to reduce the severe concentration 

quenching and triplet-triplet annihilation (TTA), the emitters are usually doped with suitable host 

materials.12-13 Carbazole-based derivatives were the most popular host materials for PhOLEDs due to their 

intrinsic high triplet energy, attractive hole mobilities and good hole-transporting properties.14  On the 

other hand, molecules with electron-transporting feature based on oxadiazole, triazine, phenanthroline, and 

benzoimidazole units are used widely as functional groups that facilitate electron injection and transport.15 

Up to now, numerous efforts have been carried out to develop efficient host materials for red PhOLEDs to 

improve the efficiencies of EL devices.16-26 A balanced charge carrier recombination is required to achieve 

high efficiency, while the electron mobilities are usually much lower than the hole mobilities in 
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OLEDs.27-28 Thus, a host with bipolar features is highly desired to achieve both high and balanced charge 

transporting ability. Benzoimidazole/carbazole hybrid bipolar material, CPhBzIm29 exhibited an excellent 

bipolar charge transport ability, and was employed to achieve highly efficient electrophosphorescence and 

two-color-based white OLEDs. Recently Wang's and Chen's groups co-reported a new simple 

carbazole-N-benzoimidazole-based bipolar material, mNBICz30, which was utilized as a host for PhOLED 

to demonstrate very high efficiencies too. However, mNBICz exhibits a low glass transition temperature 

(Tg) only at 86 °C mainly due to its low molecular weight. Adachi's group developed an efficient 

triphenylene-based electron transport materials Bpy-TP2, which have both high electron mobility and 

durability. Additional, Bpy-TP2-based OLED showed a significantly lower driving voltage, achieving 

lower power consumption when compared with conventional electron transport materials (ETMs) such as 

aluminium tris(quinolin-8-olate) (Alq3) and 1,3,5-tris(2-phenyl-1H-benzo[d]imidazol-1-yl)benzene 

(TPBi).31 Pyridine is expected to be an electron deficient unit which has been used to construct novel 

cyclometalated organic ligands and electron-transporting materials, as well as pyrimidine and quinazoline 

derivatives.32 Su's group developed a series of pyridine-containing ETMs,33 and their energy levels of 

relative materials could be tuned by introduction of pyridine rings with various of nitrogen atom orientation. 

These materials had become the most popular ETMs to achieve highly efficient PhOLEDs. 

Quinazoline-based derivatives have attracted our interest due to their application on a novel approach of 

white OLED controlled by protonation34 and their promising photophysical properties with potential 

application on colorimetric pH sensors.35 On the other hand, as a branch of pyridine-containing materials, 

they are expected to exhibit potential applications on organic electronics.  

    In this paper we described synthesis of four new quinazoline-centered derivatives, 

4-[4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl]-2-[3-(tri-phenylen-2-yl)phen-3-yl]quinazoline 
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(BITpQz), 4-(9-phenyl-9H-carbazol-3-yl)-2-[3-(triphenylen-2-yl)phenyl]quinazoline (CzTpQz), 

2,4-bis[4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl]quinazoline (BBIQz), and  

2,4-bis(9-phenyl-9H-carbazol-3-yl)quinazoline (BCzQz) with benzoimidazole, carbazole, and triphenylene 

moieties, respectively. Electrochemical, quantum calculation, photophysical, and optoelectronic properties 

were discussed in detail as well as structure-properties relationship. The HOMO prefer to locate on 

electron-donating segment, while the LUMO is mostly dispersed on quinazoline or on strong 

electron-accepting unit. Different substituents resulted in their tunable and promising optoelectronic 

properties. Comparatively, some important merits of multi-layer devices such as carrier balance, exciton 

confinement, and energy-barrier reduction ensured the performance of devices. On the basis of these 

materials as host, efficient red PhOLEDs with low turn on voltage were demonstrated.  

 

2.  EXPERIMENTAL SECTION 

General methods.   The reagents and chemicals such as 2,4-dichloroquinazoline, 

(4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)boronic acid (1), 

9-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (2), and 

4,4,5,5-tetramethyl-2-(3-(triphenylen-2-yl)phenyl)-1,3,2-dioxaborolane (5) were used as received unless 

noted otherwise. The auxiliary materials for OLED fabrication such as 

N,N'-diphenyl-N,N'-bis(9-phenyl-9H-carbazol-3-yl)-[1,1'-biphenyl]-4,4'-diamine (H04), 

4,4',4''-tris(N-carbazolyl)triphenylamine (TCTA), TPBi were purchased from Yurui (Shanghai) Chemical 

Co. Ltd. and Iridium(III)bis(4-methyl-2-(3,5-dimethylphenyl)quinolinato-N,C2') acetylacetonate 

(Ir(mphmq)2acac) was purchased from Ningbo Intimechem Co. Ltd., and were purified further by vacuum 

sublimation prior to use. Nuclear magnetic resonance (NMR) spectral data of 1H NMR and 13C NMR were 
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recorded on Bruker AV-500 spectrometer with CDCl3 or dimethyl suloxide-d6 as deuterium solvent. Mass 

spectra (MS) were obtained on a Finnigan/Thermo Quest MAT 95XL instrument. Elemental analyses (CHN) 

were performed with Elemental Vario EL III instrument. UV-Vis absorption spectra were recorded on 

UV-2501PC instrument, while photoluminescence (PL) spectra were taken using FLSP920 fluorescence 

spectrophotometer, both in dichloromethane (CH2Cl2) solution and in solid state, respectively, and PL 

quantum efficiency was measured by using a six inch integrating sphere. The glass transition temperatures 

(Tg) of compounds were determined under a nitrogen atmosphere by differential scanning calorimetry 

(DSC) on Netzstch STA409PC using a scanning rate of 10 ℃ /min with nitrogen flushing. The 

decomposition temperature (Td) corresponding to 5% weight loss was conducted on a Perkin-Elmer Pyris 1 

TGA thermal analyzer. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were carried 

out using a CH Instrument 660C electrochemical analyzer and with Hg/Hg2Cl2 electrode as state reference 

electrode, with tetra(n-butyl)ammonium hexa-fluorophosphate (TBAPF6) in DMF as supporting 

electrolytes.  

    

General procedure of Suzuki coupling reaction.  2,4-Dichloroquinazoline (5 g, 25 mmol), arylboronic 

acid, palladium acetate (113 mg, 0.5 mmol), triphenylphosphine (264 mg, 1 mmol) and potassium 

carbonate (10.4 g, 75.4 mmol) were suspended in a mixture of 1,4-dioxane (60 mL) and water (30 mL) in a 

three-necked, round-bottomed flask with tightly sealed. The mixture was stirred and heated at 100 oC for 12 

hours under nitrogen atmosphere. After cooling to room temperature, CH2Cl2 (50 mL) and water (50 mL) 

were added. The aqueous layer was extracted with CH2Cl2 (3 × 20 mL). The combined organic layers were 

washed by brine (3 × 30 mL), dried over anhydrous sodium sulfate and solvents were removed under 

reduced pressure to yield the crude product as a light yellow solid, which was further purified by 
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recrystallization (dichloromethane/ethanol) to give pure product.  

2,4-Bis[4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl]quinazoline (BBIQz) was synthesized according to the 

general procedure from 2,4-dichloroquinazoline (5 g, 25 mmol) and 1 (55.4 mmol) in 71% isolated yield. 

1H NMR (500 MHz, CDCl3, δ): 8.62 (d, J = 8.5 Hz, 2H), 8.12 (d, J = 8.5 Hz, 1H), 8.06 (d, J = 8.5 Hz, 1H), 

7.93 (t, J = 7.0 Hz, 2H), 7.89 (t, J = 7.5 Hz, 1H), 7.85-7.81 (m, 4H), 7.74 (d, J = 9.5 Hz, 2H), 7.58-7.47 (m, 

7H), 7.42-7.34 (m, 6H), 7.33-7.27 (m, 4H); 13C NMR (125 MHz, CDCl3, δ): 159.4, 152.1, 152.0, 151.5, 

143.1, 143.1, 138.9, 138.3, 137.5, 137.4, 137.0, 136.9, 133.9, 131.8, 131.6, 130.2, 130.1, 130.0, 129.7, 

129.5, 129.3, 128.9, 128.6, 128.5, 127.5, 127.5, 126.8, 123.7, 123.5, 123.3, 123.1, 121.6, 120.0, 120.0, 

110.6, 110.5; MS (m/z, EI) Calcd for C46H30N6 666.25, found: 666.20. Anal. calcd. for C46H30N6: C 82.86, 

H 4.54, N, 12.60; Found: C 82.74, H 4.53, N, 12.61. 

[4-(1-Phenyl-1H-benzo[d]imidazol-2-yl)phenyl]-2-chloroquinazoline (3) was synthesized according to the 

general procedure from 2,4-dichloroquinazoline (5 g, 25 mmol) and 1 (25 mmol) in 79% isolated yield as a 

white solid. 1H NMR (500 MHz, CDCl3, δ): 8.08 (d, J = 8.5 Hz, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.95-7.91 

(m, 2H), 7.80 (d, J = 8.5 Hz, 2H), 7.75 (d, J = 8.5 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.57-7.50 (m, 3H), 

7.39-7.36 (m, 3H), 7.32-7.27 (m, 2H); 13C NMR (125 MHz, CDCl3, δ): 172.1, 157.1, 153.2, 142.3, 141.6, 

137.1, 134.6, 130.1, 128.4, 128.0, 127.8, 127.6, 127.2, 126.8, 123.7, 123.2, 123.1, 121.9, 120.7, 110.2, 

110.0. 

4-[4-(1-Phenyl-1H-benzo[d]imidazol-2-yl)phenyl]-2-[3-(tri-phenylen-2-yl)phen-3-yl]quinazoline (BITpQz) 

was synthesized according to the general procedure from 3 (5 g, 11.5mmol) and 5 (4.97g, 11.5 mmol) in 

88% isolated yield as white solid (7.2 g). 1H NMR (500 MHz, CDCl3, δ): 9.10 (s, 1H), 8.94 (s, 1H), 8.78 (t, 

J = 3.5 Hz, 1H), 8.72 (t, J = 7.5 Hz, 2H), 8.65 (m, 3H), 8.20 (d, J = 8.5 Hz, 1H), 8.09 (d, J = 7.5 Hz, 1H), 

8.00 (dd, J = 8.5 Hz, J = 2.0 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.90 (m, 4H), 7.85 (d, J = 8.5 Hz, 2H), 7.66 
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(m, 5H), 7.55 (t, J = 7.0 Hz, 1H), 7.53 (t, J = 8.0 Hz, 2H), 7.46 (t, J = 7.5 Hz, 1H), 7.41 (m, 3H), 7.32 (t, J 

= 8.0 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H); 13C NMR (125 MHz, CDCl3, δ): 137.5, 136.9, 133.8, 131.5, 130.3, 

130.1, 130.1, 130.0, 129.9, 129.8, 129.7, 129.5, 129.3, 129.2, 129.0, 128.9, 127.9, 127.6, 127.5, 127.3, 

127.3, 127.3, 127.2, 126.8, 126.6, 123.9, 123.8, 123.5, 123.4, 123.4, 123.3,123.3, 122.0,121.7, 120.0,110.6; 

MS (m/z, EI) Calcd for C51H32N4 700.26, found: 700.20. Anal. calcd. for C51H32N4: C 87.40, H 4.60, N, 

7.99; Found: C 86.30, H 4.90, N, 7.63. 

2,4-Bis(9-phenyl-9H-carbazol-3-yl)quinazoline (BCzQz) was synthesized according to the general 

procedure from 2,4-dichloroquinazoline (5 g, 25 mmol) and 2 (55.4 mmol) in 67% isolated yield. 1H NMR 

(500 MHz, CDCl3, δ): 9.59 (s, 1H), 8.90 (d, J = 8.5 Hz, 1H), 8.77 (s, 1H), 8.34 (d, J = 8.0 Hz, 2H), 8.29 (t, 

J = 8.5 Hz, 2H), 8.22 (d, J = 8.5 Hz, 1H), 8.06 (d, J = 8.5 Hz, 1H), 7.90 (t, J = 7.0 Hz, 1H), 7.69-7.62 (m, 

9H), 7.56-7.49 (m, 6H), 7.44 (m, 2H), 7.39-7.33 (m, 2H); 13C NMR (125 MHz, CDCl3, δ): 152.4, 142.6, 

141.9, 141.6, 141.6, 137.6, 137.4, 133.3, 130.6, 130.1, 130.0, 129.8, 128.9, 128.5, 127.9, 127.6, 127.6, 

127.2, 127.1, 126.5, 126.4, 126.1, 124.0, 123.8, 123.6, 123.5, 122.9, 121.9, 121.5, 120.9, 120.7, 120.5, 

120.3, 110.2, 110.0, 109.9,109.7; MS (m/z, EI) Calcd for C44H28N4 612.23, found: 612.20. Anal. calcd. for 

C44H28N4: C 86.25, H 4.61, N, 9.14; Found: C 85.88, H 4.56, N, 9.11. 

3-(2-Chloroquinazolin-4-yl)-9-phenyl-9H-carbazole (4) was synthesized according to the general 

procedure from 2,4-dichloroquinazoline (5 g, 25 mmol) and 2 (25 mmol) in 76 % isolated yield. 1H NMR 

(500 MHz, CDCl3, δ): 8.64 (s, 1H), 8.30 (d, J = 8.5 Hz, 1H), 8.20 (d, J = 7.5 Hz, 1H), 8.05 (d, J = 8.5 Hz, 

1H), 7.93 (t, J = 7.0 Hz, 1H), 7.87 (dd, J = 8.5 Hz, J = 2.0 Hz, 1H), 7.67-7.59 (m, 5H), 7.56-7.51 (m, 2H), 

7.49-7.44 (m, 2H), 7.35 (t, J = 8.0 Hz, 1H); 13C NMR (125 MHz, CDCl3, δ): 170.7, 156.9, 153.1, 151.2, 

143.0, 137.4, 136.7, 136.6, 135.1, 132.3, 130.2, 130.2, 129.7, 128.9, 128.2, 128.2, 127.4, 127.2, 123.9, 

123.3, 121.5, 120.1, 110.6.  
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4-(9-Phenyl-9H-carbazol-3-yl)-2-[3-(triphenylen-2-yl)phenyl]quinazoline (CzTpQz) was synthesized 

according to the general procedure from 4 and 5 in 78% isolated yield. 1H NMR (500 MHz, CDCl3, δ): 

9.22 (s, 1H), 8.99 (s, 1H), 8.83 (d, J = 8.0 Hz, 1H), 8.80 (dd, J = 7.5 Hz, J = 2.0 Hz, 1H), 8.77 (s, 1H), 8.70 

(d, J = 8.5 Hz, 1H), 8.65 (m, 3H), 8.33 (d, J = 8.5 Hz, 1H), 8.24 (d, J = 8.0 Hz, 1H), 8.05 (dd, J = 4.5 Hz, J 

= 1.5 Hz, 1H), 8.03 (dd, J = 4.5 Hz, J = 1.5 Hz, 1H), 7.93 (m, 2H), 7.72 (t, J = 7.5 Hz, 1H), 7.62 (m, 10H), 

7.52 (tt, J = 7.0 Hz, J = 2.0 Hz, 1H), 7.47 (d, J = 3.5 Hz, 2H), 7.34 (m, 1H); 13C NMR (125 MHz, CDCl3, 

δ): 137.4, 133.4, 130.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.2, 129.2, 129.2, 128.9, 128.6, 128.0, 

127.9, 127.7, 127.5, 127.3, 127.3, 127.1, 127.0, 126.6, 126.6, 123.9, 123.6, 123.5, 123.4, 123.3, 122.9, 

122.1, 122.0, 120.7, 120.6, 110.2, 109.9; MS (m/z, EI) Calcd for C50H31N3 673.25, found: 673.10. Anal. 

calcd. for C50H31N3: C 89.13, H 4.64, N, 6.24; Found: C 89.26, H 4.58, N, 6.26. 

  

OLED fabrication and measurements.   OLED devices were fabricated under high vacuum (~10-4 Pa) 

chamber by thermal evaporation of organic layers onto a clean glass substrate precoated with a 150nm thick, 

~10 Ω/sq indium tin oxide (ITO) layer. Prior to use, the substrate was degreased in an ultrasonic bath by the 

following sequence: in detergent, de-ionized water, acetone, and isopropanol, and then cleaned in a 

UV-ozone chamber for 15 min. The typical deposition rates, monitored by oscillating quartz, were 0.6, 0.1, 

and 5.0Å/s for organic materials, lithium fluoride (LiF), and aluminum (Al), respectively. The device active 

area defined by the overlap between the electrodes was 9 mm2 in all case. The organic layers consisted of 

H04 as a hole-injection and -transporting layer (HIL, HTL), TCTA as an electron-blocking and 

hole-transporting layer, these host materials doped with Ir(mphmq)2acac as emissive layer (EML), TPBi as 

an electron-transporting and hole-blocking layer, 4,7-diphenyl-1,10-phenanthroline (BPhen) as an 

electron-injection and transporting layer. The current-voltage characteristics of devices were measured by a 
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Keithley 2400 electrometer in dark at room temperature and only the luminance from the front face of the 

devices was collected with MinoltaL110 luminance meter. The electroluminescence (EL) spectra were 

measured with the PR650 spectrometer. All measurements were carried out immediately under ambient 

atmosphere without device encapsulation after the devices have been fabricated. 

 

3.  RESULTS AND DISCUSSION 

Synthesis and characterization.   The synthetic routes of  BITpQz, CzTpQz, BBIQz, and BCzQz were 

shown in Scheme 1. A classic and convenient Suzuki coupling reaction of 2,4-dichloroquinazoline with 

aryl boronic acid under suitable condition could easily produce corresponding quinazoline-centered 

materials. 2,4-Dichloroquinazoline reacted with 1 or 2 catalyzed by Pd(OAc)2 to afford BBIQz, 3, 4 and 

BCzQz in 71%, 79%, 76% and 67% yields, respectively. Then 3 or 4 reacted with 5 to afford BITpQz or 

CzTpQz in 88% and 78% yields, respectively. BITpQz, CzTpQz, BBIQz, and BCzQz were characterized 

by 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis. These host materials were 

further purified by a five-zone thermal-gradient sublimator under a reduced pressure of 6 ×10-4 Pa before 

devices fabrication. 

Electrochemical and photophysical Properties.  The electrochemical behaviours of BITpQz, CzTpQz, 

BBIQz, and BCzQz were examined by using CV and DPV, respectively, the results were listed in Table 1. 

Electrochemical reversibility was determined using CV, while all redox potentials were found using DPV 

and reported relative to a ferrocenium/ferocene (Fc+/Fc) redox couple as an internal standard.36 All of the 

four materials displayed one or two quasi-reversible reduction waves with peak potentials at -1.90 ~ -2.21 

V, and irreversible oxidation waves with peak potentials above 0.91 V (Figure 1, Figure S1, in supporting 

information). It is worth noting that CzTpQz and BCzQz showed a clear oxidation potential peak (Eox) 
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contributed to N-phenyl-9H-carbazole moieties at 0.95 and 0.91 V respectively, and a reduction potential 

peak (Ered) at -2.11 and -2.16 V respectively attributed to quinazoline components. However, BITpQz and 

BBIQz didn't show any oxidation signal in testing range of DPV due to strong electron affinities of 

benzoimidazole and quinazoline parts and resulted in pretty feeble irreversible oxidation waves and 

increasing oxidation potentials.37-38 Moreover, BITpQz and BBIQz showed two quasi-reversible reduction 

waves with peak potentials at -1.92, -2.21 V and -1.9, -2.19 V respectively, which suggests that quinazoline 

or benzoimidazole moieties in these compounds undergo one or two electron reduction at certain potential. 

Comparing with BCzQz and CzTpQz, the reduction potential around -1.9 V of BITpQz and BBIQz could 

be assigned to the addition of benzoimidazole moiety. 

   UV-vis absorption, photoluminescence (PL) spectra of BITpQz, CzTpQz, BBIQz, and BCzQz 

recorded at room temperature in CH2Cl2 solution and in solid film on quartz plates as well as their 

phosphorescent spectra in 2-Methyl-THF solution at 77K are shown in Figure 2, and the data were 

summarized in Table 1. The maximum absorption peaks at 337 nm for BITpQz, 365 nm for CzTpQz, 327 

nm for BBIQz, and 341 nm for BCzQz, respectively can be assigned to the n–π* transitions, and the 

absorption bands under 275 nm attributed to the π-π* transition of backbone. Compared to BBIQz and 

BITpQz, replacement of benzoimidazole to carbazole group, red-shift absorbance were observed for both 

CzTpQz and BCzQz due to a donor–acceptor (D–A) greatly increasing the ICT strength and red shifts of  

their bands35. As expected, the absorbance bands of four compounds in thin film red-shifted substantially, 

15, 8, 11, and 3 nm for BBIQz, BITpQz, CzTpQz and BCzQz respectively, probably due to the relatively 

intermolecular interaction in thin film. Such a phenomenon had been commonly found in other known 

organic materials.19  
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   Density functional theory (DFT) calculations were performed to better understand photophysical 

properties and energy levels. The electron densities of the HOMO and the LUMO in vacuum state are 

depicted in Figure 3 by using the most popular density functional basis sets of B3LYP /6-31G**. The 

HOMO energy level is mainly localized on carbazole units and the LUMO energy level is dispersed on 

quinazoline moieties for BCzQz and CzTpQz. There are two N-phenyl-9H-carbazol-3-yl groups in 

BCzQz, while the HOMO energy level is prefer to localize on the 9-phenyl-9H-carbazol-3-yl unit at 

2-position of quinazoline. The LUMO orbitals of BBIQz and BITpQz are distributed on 

4-(N-phenylbenzoimidazol-2-yl-phenyl)quinazoline parts. However, the HOMO orbital is dispersed on 

(N-phenylbenzoimidazol-2-yl-phenyl)quinazoline part at 2-position for BBIQz, and on 

3-(triphenylen-2-yl)phenyl unit only for BITpQz, respectively, which could be contributed to the broken 

conjugation between triphenylene and quinazoline by meta-substitution of phenyl. Such particular feature 

resulted in their tunable and predictable photophysical properties.  

The LUMO and the HOMO energy levels were calculated by the following equation: 

HOMO (eV) = – (4.80 + Eox) or LUMO (eV) = – (4.8 + Ered) 

HOMO (eV) = (LUMO – Eg) 

Eg (eV) = 1239.81/λabs-onset  

where λabs-onset (in nm) is the onset wavelength at UV-vis absorption spectra in thin solid film.39-40According 

to reduction potentials, the LUMO values are -2.88 eV for BITpQz, -2.69 eV for CzTpQz, -2.90 eV for 

BBIQz, and -2.64 eV for BCzQz, respectively. The HOMO values are -6.13 eV for BITpQz and -6.03 eV 

for BBIQz calculated from Eg since they didn't show any clear oxidation potentials in DPV curves. The 

HOMO values of CzTpQz (-5.75 eV from Eox, -5.78 eV from Eg ) and BCzQz (-5.71 eV from Eox, -5.69 

eV from Eg) are estimated by using both two methods, and gave comparable data.  
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   Interestingly, all of these compounds exhibited very similar PL spectra both in CH2Cl2 solution and in 

thin solid film, the maximum wavelength of emission (λPL) are around 450±5 nm at room temperature. 

Unexpectedly, emission bands of these materials in thin solid films practically remain same as those in 

solutions, which means that the intermolecular interactions were weak or negligible due to twisted bulky 

aryl groups resulting in little intermolecular electronic communication between quinazoline and aryl groups. 

Slight blue-shifts of λPL in thin solid film than those in solution could attribute to the Stokes shifts in 

solution. The triplet energies (ET) of BITpQz, CzTpQz, BBIQz, and BCzQz determined by peaks of the 

highest-energy vibronic sub-band of phosphorescent spectra in 2-methyl-THF at 77K are 2.40, 2.40, 2.46 

and 2.36 eV, respectively. ET values of them are sufficiently high to host a red phosphorescent emitters 

(lower than 2.1 eV) as a result of the effective prevention of reverse triplet energy transfer. Due to different 

feature of substituents carrying out difference of the HOMO and LUMO energy levels, they might exhibit 

interesting carrier-transporting properties as well as in PhOLEDs.  

 

Thermal Analysis.   These materials showed good thermal stabilities likely because of their high 

molecular weights and the rigidities of molecules. Thermogravimetric analysis (TGA) and differential 

scanning calorimetry (DSC) were used to explore the decomposition temperature (Td, corresponding to 5% 

weight loss) and glass transition temperature (Tg) under a nitrogen atmosphere at a heating rate of 10 oC 

min-1 Figure 4. All compounds exhibited excellent morphological and thermal stabilities in terms of their 

high Tg (146-154 oC) and Td (400-447 oC) respectively. The Tg and Td exhibit a slight increase when a 

benzoimidazole or carbazole was replaced by triphenylene moieties, like as BBIQz and BITpQz. In 

addition, no distinct crystallization and melting point were detected during heating.  
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Carrier-transporting properties.   To investigate the carrier-transporting properties of these materials, 

hole-only and electron-only devices of BITpQz, CzTpQz, BBIQz, and BCzQz were fabricated. The hole 

only device consists of the layers ITO/host (100 nm)/MoO3 (5 nm) /Al (80 nm), while the electron-only 

devices have the configuration of ITO/ LiF (1 nm) /host (100 nm) / LiF (1 nm) /Al (80 nm), where the LiF 

and Al served as a electron-injection layer and cathode. As shown in Figure 5, plots of the current density 

vs. applied voltage of these materials revealed different electron and hole transporting abilities.  The 

electron mobilities of BITpQz, CzTpQz, BBIQz, and BCzQz are around 1.55×10-8, 1.35×10-9, 0.81×10-8, 

and 1.58×10-9 cm2 V-1 s-1, while the hole mobilities are around 1.52×10-11, 1.00×10-9, 1.91×10-11, and 

2.82×10-8 cm2 V-1 s-1, respectively (Table 1), which were calculated by fitting the current-voltage 

characteristics to the space-charge limited current (SCLC) model.41 The electron mobilities of BITpQz 

and BBIQz were about three orders of magnitude higher than their hole motilities due to the electron 

affinities of benzoimidazole and quinazoline units. On the other hand, when benzoimidazole moieties were 

replaced to N-phenylcarbazole units, CzTpQz exhibited its bipolar feature with almost same hole and 

electron motility. Moreover, BCzQz affords the greatest hole mobility among these materials, it was ten 

times higher than its electron mobility. Highly planar triphenylene moiety could usually improve 

carrier-transporting properties. Comparing with BBIQz, the electron mobility of BITpQz was almost twice 

than that of BBIQz. Similar result was observed between BCzQz and CzTpQz. However, addition of 

triphenylene moiety decreased the hole mobility.  

 

Electroluminescent properties.   To investigate the performances of BITpQz, CzTpQz, BBIQz, and 

BCzQz based PhOLEDs, several red PhOLEDs were fabricated and as well as a reference device using 

4,4'-Bis(9H-carbazol-9-yl)biphenyl (CBP) as host. Ir(mphmq)2acac was chosen as the red phosphorescent 
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dopant since it already showed its promising saturated red emission in red PhOLEDs.42 The devices were 

fabricated with a typical structure consisting of ITO (indium tin oxide)/H04 (60 nm)/TCTA (10 nm)/host: 

dopant 8 wt% (25 nm)/TPBi (10 nm)/Bphen (30 nm)/LiF (1 nm)/Al (80 nm). To improve the hole injection 

and transporting from the anode, H04 was spun onto the precleaned ITO substrate to form HIL and HTL. 

Then the electron-blocking layer consisting of a 10 nm-thick layer of TCTA43-44 was implemented, due to 

its good transporting capability with limited intermolecular interactions in the solid states. After that, a 25 

nm-thick emissive layer was evaporated, which consisted of 8 wt% phosphors doped into certain host 

material. To further confine the holes or generated excitons within the emissive layer, a 10 nm-thick TPBi, 

which possesses the low HOMO/LUMO energy levels, was used to benefit hole blocking and facilitate 

electron injection and transport, and a 30 nm-thick 4,7-diphenyl-1,10-phenantroline (BPhen) was selected 

as the electron-transport layer. LiF and Al were served as the electron-injection layer and cathode, 

respectively. 

The performances of these devices is summarized in Table 2, while the relative energy levels of these 

materials and chemical structure of Ir(mphmq)2acac are displayed in Figure 6. The current 

density-voltage-luminance (J-V-L) characteristics of these devices are shown in Figure 7. All PhOLEDs 

exhibited low turn-on voltages of 2.3-3.0 V, and the corresponding current densities and luminance 

displayed sustained increase upon increasing driving voltage. Particularly, BITpQz-based OLED exhibited 

the lowest turn on voltage at 2.3 V, which is 0.4 V lower than that of BBIQz-based devices. Similarly, 

CzTpQz-based OLED showed turn on voltage at 2.5 V, which is 0.5 V lower than that of BCzQz-based 

OLED at 3.0 V as same as that of CBP-based devices. This unique feature could attribute to introduction of 

triphenylene group due to its planar structure resulting in higher carrier transport properties. High 

luminance values close to 20000 cd m-2 were demonstrated at driving voltage above 9.2 V for all OLEDs. 
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The dramatically increased luminance and current densities indicated excellent carrier injection and 

transport properties of these materials, which are consistent with our design strategy of balance hole and 

electron densities in suitable combination zone. The external quantum efficiencies (EQE), current 

efficiencies (CE), and power efficiencies (PE) of these devices plotted with respect to the luminance are 

shown in Figure 7. These OLEDs achieved maximum EQE, CE, and PE of 19.2%, 18.3 cd/A, 21.7 lm/W 

for BITpQz, of 18.4%, 17.6 cd/A, 19.3lm/W for CzTpQz, of 15.6%, 14.4 cd/A, 16.7 lm/W for BBIQz, 

and of 17.4%, 16.7 cd/A, 15.7 lm/W for BCzQz, respectively, which were much higher than that of 

reference OLED based on CBP at 10.3%, 9.9 cd/A, 7.8 lm/W, improving over 90%.  

 It is well documented that the magnitude of current density under an identical voltage is not only relate 

to energy level of the HOMO and LUMO, but also controlled by carrier transport properties of host 

materials. The electroluminescence spectra of these devices are shown in Figure 7a. Nevertheless, a small 

emission band around 460 nm were observed for CBP-based OLED (Figure 7a, insert picture), which 

might contribute to exciplex emission of CBP/TPBI.45 Usually the electron mobility of CBP is much lower 

than its hole mobility resulting in recombination zone of CBP-based PhOLEDs locating the interface of 

host and TPBI/Bphen layer. Due to the electron affinity of quinazoline units, all other PhOLEDs based on 

BITpQz, CzTpQz, BBIQz, and BCzQz showed completion of energy transfer from hosts to dopant. The 

recombination zone located only in emissive layer due to their higher electron injection/transporting 

properties than their hole transport abilities, which is consistent with our results obtained from the hole- and 

electron-only devices above.  

There's an interesting results shown in J-V-L curves that when the driving voltage was higher than 6.5 V, 

the current density and intensity of luminance of CzTpQz-based device increased dramatically and was the 

highest one in all devices. As we mentioned above, the electron transporting of Bphen will increase fast as 
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increasing of driving voltage due to effect of high electric field. CzTpQz with N-phenylcarbazole unit 

could efficiently improve hole transporting and balance carrier recombination under high operating voltage 

resulting in high efficiency. Similar results were demonstrated that when the driving voltage is high than 

8.2 V, BCzQz-based device showed higher current density and intensity of luminance than those of 

BBIQz- , BITpQz- and CBP-based devices. After all, improving the electron-injection/transport abilities 

of host materials could ideally improve the performance of OLEDs under low operation voltage, while 

enhancement of hole-transporting abilities could balance the carriers to maintain high efficiency under high 

operating voltage. All devices also showed low efficiency roll-off at high current densities. The CE and 

EQE at 500 cd/m2 and at 2000 cd/m2 were still high as 16.9 cd/A (EQE = 17.8% ) and 14.6 cd/A (EQE = 

15.2% ) for BITpQz, 16.9 cd/A (EQE = 17.8% ) and 15.0 cd/A (EQE = 15.5% ) for CzTpQz, 15.3 cd/A 

(EQE = 15.9 % ) and 14.6 cd/A 15.0 cd/A (EQE = 13.7% ) and for BCzQz, and 12.9 cd/A (EQE = 14% ) 

and 11.9 cd/A (EQE = 12.6 % ) for BBIQz, respectively. Further devices' architecture are fully expected to 

achieve excellent devices for applications in organic electronics.  

  

4.  CONCLUSION 

   Four quinazoline-centered materials with benzoimidazole, carbazole, and triphenylene moieties, 

BITpQz, CzTpQz, BBIQz, and BCzQz were synthesized via a simple synthetic route. These materials 

exhibited outstanding morphological and thermal stabilities due to high Tg of 146-154 °C and Td of 

400-447 °C. Quinazoline unit showed the lowest reduction potential around -2.1 V, while 

1-phenyl-1H-benzo[d]imidazole moiety showed the reduction potential around -1.9 V relative to Fc+/Fc. 

Since quinazoline system has an efficient electron affinity, further addition of electron-donating/accepting 

moieties could tune optoelectronic properties of its derivatives easily with electron transporting only or 
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bipolar nature. Highly efficient red PhOLEDs by using them as host materials were demonstrated, and 

achieved maximum EQE, CE, and PE of 19.2%, 18.3 cd/A, 21.7 lm/W for BITpQz, of 18.4%, 17.6 cd/A, 

19.3lm/W for CzTpQz, of 15.6%, 14.4 cd/A, 16.7 lm/W for BBIQz, and of 17.4%, 16.7 cd/A, 15.7 lm/W 

for BCzQz, respectively, which were much higher than that of reference OLED based on CBP at 10.3%, 

9.9 cd/A, 7.8 lm/W. Interestingly, BITpQz-based red PhOLED showed the lowest turn on voltage at 2.3 V, 

and the highest maximum efficiencies under low driving voltage, while CzTpQz-based devices exhibited 

higher luminescence and lower roll-off properties due to better electron/hole balance under high operating 

voltage. According to their tunable and promising photophysical, electrochemical and charge carrier 

properties, we strongly believe that these materials could give us more opportunities to achieve ideal 

materials for organic electronic applications. 

 

Supporting Information 

The DPV curves are shown in Figure S1. 1
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13
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  Scheme 1. Synthesis and chemical structures of BBIQz, BITpQz, CzTpQz, and BCzQz.  

   Figure 1. Cyclic voltammograms of BITpQz, CzTpQz, BBIQz, and BCzQz in DMF solution 

   Figure 2. UV-vis absorption and PL spectra of BITpQz, CzTpQz, BBIQz, and BCzQz in CH2Cl2 

solutions (Abssol and PLsol) and in neat films (Absfilm and PLfilm) at room temperature, and phosphorescent 

spectra (Ph) in 2-Methyl-THF solutions at 77K. 

   Figure 3. The HOMO and LUMO levels distribution of BITpQz, CzTpQz, BBIQz, and BCzQz from 

DFT calculation  

   Figure 4. TGA thermograms of BITpQz, CzTpQz, BBIQz, and BCzQz. Insert: DSC thermograms 

   Figure 5. The current density versus voltage curves of the electron-only and hole-only devices for 

BITpQz, CzTpQz, BBIQz, and BCzQz. 

    Figure 6. Relative energy diagram of HOMO/LUMO levels for materials used in the EL devices; 

Chemical structure of Ir(mphmq)2acac with HOMO/LUMO values of -5.0/-3.0 eV (dot line) 

    Figure 7. (a) EL spectra; (b) Current density-voltage-luminance (J-V-L) characteristics; (c) CE and PE 

versus luminance curves; (d) EQE versus current density curves for BBIQz, BITpQz, CzTpQz, BCzQz and 

CBP-based devices 

   Table 1. Photophysical, Electrochemical, and Thermal properties of the BITpQz, CzTpQz, BBIQz, 

and BCzQz 

   Table 2. Electroluminescence Properties of devices with BITpQz, CzTpQz, BBIQz, BCzQz, and CBP 
as hosts. 
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Table 1. Photophysical, Electrochemical, and Thermal properties of the BITpQz, CzTpQz, BBIQz,and BCzQz. 
 

 
λabs Sol. /film

a  
[nm] 

λPL Sol. /film
a  

[nm] 
λPh

b
 

[nm] 
Eox/Ered

 c
 

 [V] 
Eg

 d
 

 [eV] 
ET e  
(eV)  

HOMO/LUMO 
 [eV] 

Tg/Td
 h

 

 [oC] 
hole mobilityg 

(cm2 v-1 s-1) 
electron mobilityg 

(cm2 v-1 s-1) 

BITpQz 337/345 455/453 516 na/-1.92 3.246 2.40 -6.13g/-2.88 f 154/425 1.52×10-11 1.55×10-8 

CzTpQz 365/376 456/448 517 0.952/-2.11 3.092 2.40 -5.75 f/-2.69 f 153/447 1.00×10-9 1.35×10-9 

BBIQz 327/342 455/448 505 na/-1.90 3.131 2.46 -6.03g/-2.90 f 146/400 1.91×10-11 0.81×10-8 
BCzQz 341/344 462/454 526 0.905/-2.16 3.054 2.36 -5.71 f/-2.64 f 148/438 1.58×10-9 2.82×10-8 

 

a 
λabs Sol., measured in CH2Cl2; λabs film, measured in thin solid film. b Measured in 2-Methyl-THF solutions at 77K c Eox = oxidation potential; Ered

 = reduction 
potential; na = none appear d The value of Eg was calculated from the absorption onset of solid film. e The value of ET was estimated from the peak values of 
phosphorescence spectra (λPh). 

f The HOMO and LUMO values were determined using the following equations: EHOMO (eV) = -(Eox + 4.8), ELUMO (eV) = - (Ered + 
4.8); g EHOMO (eV) = ELUMO + Eg; 

h Obtained from DSC and TGA measurements. g hole and electron mobilities were obtain by SCLC method. 
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Table 2 Electroluminescence Properties of devices with BITpQz, CzTpQz, BBIQz, BCzQz, and CBP as hosts. 

 
 

Devicea Host Vd
b (V) Lmax

c (cd/m2, V) EQEmax
c (%) CEmax

c (cd/ A) PEmax
c (lm/W)    λmax

d (nm)  

R1 BITpQz 2.3 19250, 9.2 19.2 18.3 21.7 618 

R2 CzTpQz 2.5 20980, 8.2 18.4 17.6 19.3 619 

R3 BBIQz 2.7 21570, 9.2 15.6 14.4 16.7 620 

R4 BCzQz 3.0 19750, 8.7 17.4 16.7 15.7 618 

R5 CBP 3.0 16800,9.4 10.3 9.9 7.8 618 

a Device configuration: ITO (indium tin oxide)/H04 (60 nm)/TCTA (10 nm)/host: dopant 8 wt% (25 nm)/TPBi (10 
nm)/Bphen (30 nm)/LiF (1 nm)/Al (80 nm). b Vd: the operating voltage at a brightness of 1 cd m-2. c Lmax: maximum 
luminance; EQEmax: maximum external quantum efficiency; CEmax: maximum current efficiency; PEmax: maximum 
power efficiency. d λmax: the wavelength where the EL spectrum has the maximum intensity. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

 

 

Scheme 1. Synthesis and chemical structures of BBIQz, BITpQz, CzTpQz, and BCzQz.  
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Figure  1.  Cyclic voltammograms of BITpQz, CzTpQz, BBIQz, and BCzQz in DMF 

solution. 
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Figure  2. UV-vis absorption and PL spectra of BITpQz, CzTpQz, BBIQz, and BCzQz in 

CH2Cl2 solutions (Abssol and PLsol) and in neat films (Absfilm and PLfilm) at room temperature, 

and phosphorescent spectra (Ph) in 2-Methyl-THF solutions at 77K. 
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Figure  3.  The HOMO and LUMO levels distribution of BITpQz, CzTpQz, BBIQz, and 

BCzQz from DFT calculation  
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Figure  4.  TGA thermograms of BITpQz, CzTpQz, BBIQz, and BCzQz. Insert: DSC 

thermograms 
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Figure  5.  The current density versus voltage curves of the electron-only and hole-only 

devices for BITpQz, CzTpQz, BBIQz, and BCzQz. 
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Figure  6.  Relative energy diagram of HOMO/LUMO levels for materials used in the EL 

devices; chemical structure of Ir(mphmq)2acac with HOMO/LUMO values of -5.0/-3.0 eV 

(dot line) 
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Figure 7. (a) EL spectra; (b) Current density-voltage-luminance (J-V-L) characteristics; (c) CE 

and PE versus luminance curves; (d) EQE versus current density curves for BBIQz, BITpQz, 

CzTpQz, BCzQz and CBP-based devices 
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Highlights 
 
 
2,4-Substituted-Quinazoline dyes were synthesized and characterized.  
DFT calculation, electrochemical, and photophysical properties were discussed. 
Efficient red PhOLEDs with low turn-on voltage were demonstrated by using them as host 

materials. 
Bipolar or electron-only host materials showed potential utilizations in efficient 
PhOLEDs. 
 


