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Abstract 

Enantioselective synthesis of (+)-equilenin (1) utilizing a novel strategy is described. The key steps are two 
cascade ring expansion reactions of small ring systems; 1) chiral (salen)Mn m complex-catalyzed cascade reaction 
of cyclopropylidene; 2) PdKmediated cascade reaction of the cyclobutanol. © 1999 Elsevier Science Ltd. All rights reserved. 
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Steroids are one of the most widely distributed groups of natural products displaying a variety of 

physiologically important features, so that numerous synthetic approaches have been developed) Here, we 

disclose a novel strategy for the enantioselective synthesis of (+)-equilenin (1) based on two cascade ring 

expansion reactions of small ring systems as outlined in Scheme 1. Our plan for constructing steroidal C,D rings 

exploits a PdKmediated cascade ring expansion and insertion process involving a cyclobutanol derivative, 

methodology of which has previously been reported by us (3--)2, Scheme 1). 2 The chiral cyclobutanone 4, a 

precursor of 3, could be prepared via chiral (salen)Mn m complex-catalyzed asymmetric epoxidation 3 of the 

cyclopropylidene 5, followed by its enantiospecific rearrangement. 4 

First of all, the triflate 7, prepared from the hydroxynaphthaldehyde 65 (61%), was subjected to Stille 

reaction 6 with tri-n-butylvinylstannane to give the vinylnaphthaldehyde 8 (98%), which upon Wittig reaction 

with cyclopropylidene-triphenylphosphorane under modified McMurry conditions 7 afforded the cyclopropylidene 

derivative 5 (70%) (Scheme 2). With the cyciopropylidene 5 in hand, the critical cascade asymmetric 

epoxidation-ring expansion reaction was examined. When a mixture of 5 and a 5 mol% of (R,R)-(salen)Mn m 

complex 9 was treated with sodium hypochlorite as a oxidant 3, the reaction successfully proceeded to provide the 

desired chiral cyclobutanone 4 (78% e.e., 55% yield) in one step via oxaspiropentane intermediate l0  s. 

0040-4039/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. 
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Scheme 1. Retrosynthesis of (+)-equilenin 
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Scheme 2. Reagents and conditions, a) Tf20, DMAP, pyridine, 0*C, 61%; b) tri-n-butylvinylstannane, 
Pd0aPh3)4, LiCI, THF, reflux, 98%; c) cyclopropylidenetriphenylphosphorane, Nail, THF, 62"C, 70%; d) 5 
tool % catalyst 9, NaCIO, 4-PPNO, CH2Ci2, O'C, 55%, 78% e.e. 

The chiral cyclobutanone 4 was then converted stereoselectively to the isopropenylcyclobutanol 3 by 

Grignard reaction with isopropenylmagnesium bromide in the presence of cerium trichloride 9 (82%) (Scheme 3). 

Next, the second crucial stage in the synthesis, pdn-mediated cascade ring expansion-insertion reaction, had to 

he investigated? On the basis of our previous results, we further examined various reaction conditions to 

construct diastereoselectively the trans-naphthohydrindan from 3. Consequentry, the trans-fused product 2 was 

selectively produced via ring expansion-insertion reaction (11---->12) utilizing Pd(OAc)2 ~° (1 eq.) in HMPA-THF 

(1:4) (entry 1) (2:13 = 73:27, 60%, and 7% of endo-olefin isomer). Interestingly, when the solvent was 

changed to 1,2-dichloroethane, the cis-fused product 13 was obtained as a sole product (63%) (entry 2). These 

remarkable effects indicate that solvent polarity is an important factor to control the diastereoselectivity of 

products. Thus, in non-polar solvent such as 1,2-dichloroethane, the ring expansion reaction has been suggested 

to proceed via intermediate "IS A to give 13, in which palladium was associated with olefin and internal alcohol. 
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In contrast, in the case of polar solvent such as HMPA, the reaction seems to proceed via TS B to give 2 in 

which palladium was associated with only ol¢fin because solvent itself associated to palladium as a ligand. 

To complete the synthesis of equilenin, the mixture (73:27) of 2 and 13 was treated with osmium tetxoxide 

and sodium periodate to furnish diketone 14" after the separation of its diastereomer (59% from 2 prepared by 

entry 1). Finally, the selective reduction of the benzylic ketone of 14 was carried out by hydrogenolysis on Pt-C 

in the presence of PdCl2 t2 to afford equilenin methyl ether 15 ~3 (82%), which could be optically pure form after 

recrystallization. Since 15 has been converted to 1 with boron tribromide, ~3 our asymmetric synthesis of (+)- 

equilenin (1) was achieved. 
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Scheme 3. Reagents and conditions, a) isopropenylmagnesium bromide, CeCI3, THF, -78"C, 82%; b) 
Pd(OAc)2, solvent, RT (see above); c) OsO 4, NaIO4, acetone-H20, 59% from 2 (entry 1); d) H2, Pt-C, PdCI2, 
EtOH, RT, 82%. 

In summary, a new type of cascade ring expansion reactions of small ring systems has been successfully 

applied to an asymmetric synthesis of (+)-equilenin (1). 
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