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ABSTRACT: Rhodium(III)-catalyzed enantioselective oxida-
tive C–H/C–H cross-coupling reaction between two arenes is 
disclosed. With the combination of a chiral CpRh(III) complex 
and a chiral carboxylic acid additive, the direct coupling reac-
tions between 1-aryl isoquinoline derivatives and electron-rich 
heteroarenes such as thiophenes, furans, benzothiophenes, 
benzofurans are realized via a double C-H functionalization 
process. A series of axially chiral compounds are obtained in 
excellent yields and enantioselectivities (up to 99% yield and 
99% ee). Mechanistic studies suggest that both C−H bond 
cleavages may not be the turnover-limiting step. 

Transition metal-catalyzed asymmetric C−H bond function-
alization represents an efficient, straightforward and versatile 
synthetic tool to access chiral molecules.1 Over the past decade, 
transition metal-catalyzed oxidative C–H/C–H cross-coupling 
reaction between two arenes has emerged as a powerful 
method for the synthesis of biaryls.2 Compared with conven-
tional cross-coupling reactions, this approach is more direct, 
efficient and attractive in terms of step- and atom-economy. 
Various transition metal complexes involving Fe, Co, Ni, Cu, Rh, 
Ru, Au, and the most frequently used Pd catalysts have been in-
vestigated in the oxidative C–H/C–H cross-coupling reaction.3 
In this regard, catalytic asymmetric homo-coupling of 2-naph-
thol derivatives was achieved in excellent enantioselectivity by 
using chiral copper4a, dinuclear vanadium,4b and iron com-
plexes,4c-e respectively. However, the asymmetric double C–H 
functionalization reactions beyond 2-naphthol derivatives 
have been rarely reported.5 Therefore, the enantioselective 
twofold oxidative C–H cross-coupling reactions between two 
arenes are highly desirable. 

Axially chiral biaryls are important structural motifs in nat-
ural products, functional materials, medicinal chemistry, privi-
leged catalysts and ligands.6-9 Many elegant methods have been 
developed to access these axially chiral biaryls.10,11 Recently, 
asymmetric C–H functionalization reactions have been estab-
lished as an increasingly important strategy for the synthesis of 
axially chiral biaryls.12-15 To be noted, among these previous re-

ports, functionalized arenes such as aryl halides, aryl organo-
metallic reagents, and diazo compounds were generally used 
(Scheme 1A). Thus, we envisaged that enantioselective twofold 
oxidative C–H cross-coupling reactions between two arenes 
would provide direct access to atropisomeric biaryls16 (Scheme 
1B). Herein, we report the details of this study. 

 

Scheme 1. Transition-metal-catalyzed atroposelective C–H 
functionalization. 

An initial C–H arylation reaction of 1-(naphthalen-1-
yl)benzo[h]isoquinoline 1a with 2-methylthiophene 2a was 
carried out at 120 ºC in the presence of 5 mol % of [SCpRh]14b, 
20 mol % of 6,6′-Br2-1,1′-binaphthyl-2,2′ disulfonic acid (6,6′-
Br2-BINSA) (S)-A1,17 10 mol % of AgNTf2, and 3 equivalents of 
AgF in DMF. To our delight, the reaction did occur and afford 
the desired coupling product 3aa in 63% yield and 73% ee (Ta-
ble 1, entry 1). After screening the oxidants, AgF was found to 
be the optimal one for this reaction (See SI for details). Inter-
estingly, in the absence of AgNTf2, the reaction proceeded with 
increased yield and slightly improved enantioselectivity (entry 
2, 90% yield and 74% ee). Further investigation of the solvent 
effect revealed that DMF was the optimal solvent (See SI for de-
tails). Next, the reaction temperature for this reaction was  
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Table 1. Selected condition optimization.a 

 

entry acid T time  yield (%)b ee (%)c 

1d (S)-A1 120 °C 10 h 63 73 

2 (S)-A1 120 °C 10 h 90 74 

3 (S)-A1 80 °C 12 h 98 82 

4 (S)-A1 60 °C 14 h 98 84 

5 (S)-A1 40 °C 96 h 89 85 

6e (S)-A1 60 °C 14 h 99 86 

7e (R)-A1 60 °C 14 h 99 85 

8e (R)-A2 60 °C 14 h 58 80 

9e (S)-A3 60 °C 14 h 70 77 

10e (S)-A4 60 °C 14 h 59 73 

11e (S)-A5 60 °C 14 h 95 80 

12e (S)-A6 60 °C 14 h 86 84 

13e (S)-A7 60 °C 14 h 72 82 

14e (S)-A8 60 °C 14 h 94 91 

15e (S)-A9 60 °C 14 h 94 93 

16e 
(S)-
A10 

60 °C 
14 h 

93 91 

17e 
(S)-
A11 

60 °C 
14 h 

94 (85)f 93 

18e 
(R)-
A11 

60 °C 
14 h 

94 58 

19e - 60 °C 14 h 36 76 

a Reaction conditions: 1a (0.05 mmol), 2a (0.15 mmol), [SCpRh] 
(5 mol %), acid (20 mol %), AgF (0.15 mmol), DMF (0.5 mL), 
under argon atmosphere. b Determined by 1H NMR of the reac-
tion mixture using CH2Br2 as an internal standard. c Determined 
by HPLC analysis with a chiral stationary phase. d With AgNTf2 

(10 mol %). e 0.05 M of 1a. f Isolated yield of 0.1 mmol scale re-
action in parentheses. DMF: N,N-dimethylformamide. 

 

studied (entries 2-5). The reaction at 60 °C led to 98% yield and 
84% ee within 14 h (entry 4), and much longer reaction time 
was needed when the reaction was carried out at 40 °C (entry  

Table 2. Scope of the Rh-catalyzed atroposelective C–H 
arylation with heteroarenes.a,b 

 
a Reaction conditions: 1a (0.1 mmol), 2 (0.3 mmol), [SCpRh] (5 
mol %), A11 (20 mol %), AgF (0.3 mmol), DMF (2 mL), 60 ºC, 
under argon atmosphere, unless otherwise noted. b Yield of iso-
lated product. Enantiomeric excess (ee) values were deter-
mined by HPLC analysis with a chiral stationary phase.  

5, 96 h). Moreover, when the reaction was performed in diluted 
conditions, the enantioselectivity could be slightly improved 
(entry 6, 99% yield and 86% ee). Then the chiral acid addi-
tives18 were investigated (entries 6-18). 6,6′-Br2-BINSA (S)-A1 
was found as the optimal disulfonic acid additive for this reac-
tion (entries 6-10). The opposite enantiomer (R)-A1 had no ob-
vious influence on the reactivity and enantioselectivity (entry 
7, 99% yield and 85% ee). Further screening on chiral carbox-
ylic acids indicated that (S)-A9 and (S)-A11 performed well 
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(entries 11-18, (S)-A9 and (S)-A11: 94% yield and 93% ee), 
and the naphthaloyl protecting group displayed a very pro-
nounced influence on the reactivity and enantioselectivity. The 
opposite enantiomer (R)-A11 had no obvious influence on the 
reactivity but resulted in a significantly eroded enantioselectiv-
ity (58% ee vs 93% ee). The control experiment indicated that 
the chiral acid additive plays an important role in improving 
both reactivity and enantioselectivity (entry 17 vs entry 19). 
Overall, the optimized reaction conditions were obtained as the 
following: 1a (1 equiv), 2a (3 equiv), [SCpRh] (5 mol %), (S)-
A11 (20 mol %), and AgF (3 equiv) under argon in DMF at 60 
ºC for 14 h (entry 17). 

 

Table 3. Scope of the Rh-catalyzed atroposelective C–H 
arylation of 1-aryl isoquinoline derivatives.a,b 

 
a Reaction conditions: 1 (0.1 mmol), 2 (0.3 mmol), [SCpRh] (5 
mol %), A11 (20 mol %), AgF (0.3 mmol), DMF (2 mL), 60 ºC, 
under argon atmosphere, unless otherwise noted. b Yield of iso-
lated product. Enantiomeric excess (ee) values were deter-
mined by HPLC analysis with a chiral stationary phase. c [SCpRh] 
(2.5 mol %), DMF (5.0 mL). 

With the optimal conditions in hand, enantioselective 
C−H/C−H oxidative cross-coupling reactions of 1a with differ-
ent heteroarenes were first carried out (Table 2). The results 
showed that thiophenes bearing electronically different sub-
stituents reacted smoothly to afford their corresponding prod-
ucts (3aa-3ag) in moderate to excellent yields (45-98%) and 
good to excellent enantioselectivities (87-94% ee). The reac-
tion with 3-phenylthiophene 2h took place with exclusive C5 
regioselectivity, affording 3ah in 73% yield and 91% ee. The 
reactions with thiophenes containing both C2 and C3 substitu-
ents were also regioselective, regardless of their electronic na-
ture (3ai-3ak). The electron-rich thiophene 2k (3ak, 88% 
yield, 95% ee) reacted more efficiently than the electron-defi-
cient ones such as 2i (3ai, 70% yield, 82% ee) and 2j (3aj, 59% 
yield, 87% ee). Moreover, the reaction with benzothiophene 2l 
gave the C2-functionalized product 3al regioselectively in 55% 
yield and 90% ee. When the reaction time was extended to 72 
h, product 3al was isolated in 88% yield and 87% ee, and its 
C3-isomer was not observed in this reaction. 5-Methylben-
zothiophene 2m was more reactive compared with 2l, afford-
ing product 3am in 97% yield and 94% ee. Sterically hindered 
3-methylbenzothiophene 2n also reacted smoothly, affording 
product 3an in 93% yield and 95% ee. Additionally, furans 
bearing electronically varied substituents were also compati-
ble in this reaction, giving the products 3ao and 3ap in 86% 
yield and 88% ee, and 61% yield and 85% ee, respectively. 
However, when benzofuran 2q was employed in this reaction, 
inseparable products 3aq2 and 3aq3 were obtained in a 1:1 ra-
tio with a 70% combined yield. By blocking the C3 position of 
benzofuran with a methyl group, product 3ar was afforded in 
57% yield and 90% ee. Notably, substrate 2s bearing multiple 
reactive sites could be regioselectively coupled at the thio-
phene ring, affording product 3as in 85% yield and 91% ee. 
Furthermore, the reactions of N-Ts protected indole and pyr-
role gave the C3-functionalized products 3at and 3au in 85% 
yield and 81% ee, and 25% yield and 89% ee, respectively. 
However, pyrrole, indole, N-Ac protected indole, oxazole, thia-
zole and benzothiazole are not suitable substrates for this re-
action. Meanwhile, the absolute configuration of the product 
3aa was assigned as Ra by X-ray diffraction analysis (see the 
Supporting Information for details), and the configurations of 
all other products 3 were assigned by analogy.  

Next, the scope of benzoisoquinolines was examined. As 
shown in Table 3, an array of benzoisoquinolines were well tol-
erated in this reaction, and the coupling products 3af-3od were 
isolated in 70-99% yields with good to excellent enantioselec-
tive control (79-97% ee). Substituents with varied electronic 
properties on the naphthalene ring did not affect the reaction 
efficiency and enantioselectivity notably (3bf-3ff, 86-97% 
yields, 90-97% ee). The substrate with a methyl or methox-
ymethylene group on the phenyl ring showed relatively low re-
action efficiency. Products 3gf and 3hf were afforded in 82% 
yield and 82% ee, and 70% yield and 79% ee, respectively. Sub-
strate 1i with a less bulky methoxy group on the phenyl ring 
behaved well in this reaction, affording product 3if in 91% 
yield and 92% ee. Notably, when the reaction of 1i with 2f was 
performed in the presence of 2.5 mol % of [SCpRh] catalyst in 
1.0 mmol scale, product 3if was obtained in 99% yield and 92% 
ee. However, when the reaction was carried out with 1-(naph-
thalen-1-yl)isoquinoline 3j, poor enantioselective control was 
observed (3jd, 17% ee, 97% yield). By introducing the substit-
uents to the 8-position of the isoquinoline ring or naphthalene 
ring, the enantioselectivity could be dramatically improved 
(3kf-3md, 76-87% yields, 47-97% ee). Moreover, the reaction 
with 1-(phenanthren-4-yl)isoquinoline 3o gave the product 
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3od in 88% yield and 99% ee. To be noted, one-step oxidation 
of 3if by m-CPBA could afford N-oxide 4, an analog of QUINOX 
ligand,16f in 75% yield without loss of the enantiopurity (eq 1). 
Bromination of 3am by NBS gave product 5 in 86% yield with-
out loss of the enantiopurity, which provide convenient handle 
for further functionalization (eq 2). 

 

 

 

Scheme 2. Mechanistic studies. 

To further understand the conformational stability of atro-
pisomers 3, the barriers to rotation for 3aa and 3jd were meas-
ured experimentally (3aa, ΔG‡ = 39.3 kcal/mol; 3jd, ΔG‡ = 33.6 

kcal/mol). Moreover, density functional theory (DFT) calcula-
tions were performed to obtain the rotational barriers of 3ad, 
3gf, 3hf, 3if, and 3jd (3ad, ΔG‡ = 39.9 kcal/mol; 3gf, ΔG‡ = 39.7 
kcal/mol; 3if, ΔG‡ = 32.9 kcal/mol; 3jd, ΔG‡ = 34.7 kcal/mol, See 
SI for details). These results showed that compounds 3 are at-
ropisomerically stable under the reaction conditions.  

To shed light on the mechanism of this oxidative cross-cou-
pling reaction, a competitive experiment of 2i and 2k was car-
ried out. Notably, products 3ai and 3ak were obtained in a 
1:1.8 ratio (Scheme 2a). The faster reaction of electron-rich thi-
ophene suggests an electrophilic process for the C-H bond 
cleavage of thiophene. Next, H/D exchange experiments of 1a 
and 2b were performed under the standard conditions with ad-
dition of D2O. The results showed that both 1a and 2b could be 
easily deuterated, and the desired products 1a-D1 and 2b-D1 

were obtained with 69% and >95% deuterium incorporated, 
respectively (Scheme 2b). It suggests that the C−H functionali-
zation of both coupling partners are facile. In addition, the ki-
netic isotope effect (KIE) was measured based on parallel reac-
tions of 1a-D7 and 1a with 2d-D1 and 2d (Scheme 2c). The KIE 
value was 1.0 for 1-(naphthalen-1-yl)benzo[h]isoquinoline and 
1.0 for thiophene, respectively. Moreover, an kH/kD value of 1.1 
was observed from parallel reactions of 1a with 2d, and 1a-D7 
with 2d-D1. These results indicate that both C−H bond cleav-
ages may not be the rate-determining step.19 

Based on the above results and the previous reports,3h-k,20 a 
plausible reaction mechanism was proposed using the reaction 
of 1a with 2a as an example (Scheme 3). Initially, rhodacycle 
intermediate I is generated through coordination with 1a and 
subsequent enantioselective C−H bond cleavage via carbox-
ylate-assisted concerted-metalation-deprotonation (CMD).21 
Next, rhodacycle intermediate I reacts with 2-methylthiophene 
2a to form rhodacycle intermediate II through electrophilic 
C−H substitution (SEAr).3j After oxidation by the Ag(I) salt, the 
rhodacycle intermediate II undergoes oxidation-induced re-
ductive elimination20b to afford the cross-coupling product 3aa 
and either a CpRhIII or CpRhII complex depending on the oxida-
tion state of rhodacycle intermediate III. Another pathway 
through reductive elimination from rhodacycle intermediate II 
cannot be completely excluded at present.3j 

 

Scheme 3. Possible reaction mechanism. 
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In summary, we have developed the first efficient and 
straightforward rhodium(III)-catalyzed enantioselective oxi-
dative C–H/C–H cross-coupling reaction between 1-aryl iso-
quinoline derivatives and electron-rich heteroarenes. Good to 
excellent enantioselectivity and regioselectivity were obtained 
with a proper choice of a chiral Rh(III) catalyst and a chiral car-
boxylic acid additive. The preliminary mechanistic experi-
ments indicate that both C−H bond cleavages of two het-
eroarenes may not be the turnover-limiting step. Further stud-
ies of the mechanism and application of this enantioselective 
oxidative double C–H cross-coupling reaction for the synthesis 
of other types of atropisomeric compounds are currently un-
derway. 
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