Reaction of Substituted Chalcones with Methyl 1-Bromocycloalkanecarboxylates and Zinc

N. F. Kirillov and A. G. Gavrilov

Perm State University, ul. Bukireva 15, Perm, 614990 Russia

Received December 27, 2007

Abstract—Methyl 1-bromocyclopentane- and 1-bromocyclobutanecarboxylates react with zinc and substituted chalcones to form spiro-3,4-dihydropyran-2-one derivatives: 8, 10-diaryl-7-oxaspiro[4.5]dec-8-en-6-ones and 7,9-diaryl-6-oxaspiro[3.5]non-7-en-5-ones, respectively.

DOI: 10.1134/S1070363208070244

When reacted with α , β -unsaturated ketones, Reformatsky reagents add across both 1,2 and 1,4 positions of the conjugated system, and the 1,4-adducts undergo cyclization affording unsaturated lactones, specifically dihydropyran-2-one derivatives [1].

We carried out reactions of methyl 1-bromocyclopentane- and 1-bromocyclobutanecarboxy-lates with zinc and substituted chalcones to obtain similar compounds with a spiro-carbon atom. Refor-matsky reagents I and II are formed by the reaction of these bromoesters with zinc.

Reformatsky reagent I adds to chalcones across the 1,4 position to give intermediates IIIa–IIIe. Under the reaction conditions, these intermediates exert cyclization as a result of the attack of oxygen on the ester carbonyl carbon to form substituted spiro-3,4-dihydropyran-2-ones, namely 8,10-diaryl-7-oxaspiro [4.5]dec-8-en-6-ones IVa–IVe.

Reformatsky reagent II reacts with substituted chalcones in the same way to form intermediates Va-

III, IV, Ar = Ph, Ar¹ = Ph (**a**), 4-ClC₆H₄ (**b**), 4-BrC₆H₄ (**c**); Ar = 4-BrC₆H₄, Ar¹ = Ph (**d**); Ar = 4-MeOC₆H₄, Ar¹ = 4-ClC₆H₄ (**e**).

Vf and then spiro-3,4-dihydropyran-2-ones, namely 7,9-diaryl-6-oxaspiro[3.5]non-7-en-5-ones VIa–VIf.

V, **VI**, Ar = Ph, $Ar^{1} = Ph$ (**a**), $4\text{-ClC}_{6}H_{4}$ (**b**), $4\text{-BrC}_{6}H_{4}$ (**c**); Ar = $4\text{-BrC}_{6}H_{4}$, Ar¹ = Ph (**d**); Ar = Ph, Ar¹ = $4\text{-MeOC}_{6}H_{4}$ (**e**); Ar = Ar¹ = $4\text{-ClC}_{6}H_{4}$ (**f**).

The yields of the final products were 43–72%. The composition and structure of compounds **IVa–IVe** and **VIa–VIf** were confirmed by elemental analysis and IR and ¹H NMR spectroscopy. The IR spectra show characteristic absorption bands of the carbonyl group at 1740–1770 cm⁻¹ and the C=C bond at 1635–1675cm⁻¹. The ¹H NMR spectra contain signals of the aryl protons at 6.70–7.72 ppm, doublets of the double-bond protons at 5.80–5.92 ppm, doublets of the methine protons at 3.37–3.45 ppm (**IV**) and 3.65–3.70 ppm (**VI**), and signals of the cyclohexene ring protons at 0.91–2.25 ppm.

EXPERIMENTAL

The IR spectra were recorded on a Specord-75IR spectrophotometer (vaseline oil). The ¹H NMR spectra were measured on a TESLA BS-576A spectrometer (100 MHz) in CDCl₃ against internal HMDS.

8,10-Diaryl-7-oxaspiro[4,5]dec-8-en-6-ones IVa-IVe. A mixture of 11 mmol of methyl 1-bromocyclopentanecarboxylate and 10 mmol of the corresponding chalcone in 20 ml of absolute benzene was added to a mixture of 1.5 g of finely zinc turnings, a catalytic quantity of mercuric chloride, 1 ml of HMPA, and 11 ml of anhydrous ethyl acetate. The reaction mixture was refluxed for 2 h, cooled, filtered, and hydrolyzed with 5% acetic acid. The organic layer was separated, and the aqueous layer was extracted with two portions of ethyl acetate. The combined extract was dried with anhydrous sodium sulfate, the solvent was evaporated, and compounds **IVa–IVe** were recrystallized from ethyl acetate.

8,10-Diphenyl-7-oxaspiro[4.5]dec-8-en-6-one (IVa). Yield 1.55 g (51%), mp 115–116°C. IR spectrum, v, cm⁻¹: 1645 (C=C), 1755 (C=O). ¹H NMR spectrum, δ , ppm: 6.97–7.68 m (10H, 2Ph), 5.92 d (1H, =CH, *J* 6.5 Hz), 3.38 d (1H, ArCH, *J* 6.5 Hz), 1.10–2.22 m [8H, (CH₂)₄]. Found, %: C 83.08; H 6.56. C₂₁H₂₀O₂. Calculated, %: C 82.86; H 6.62.

10-(4-Chlorophenyl)-8-phenyl-7-oxaspiro[4.5]dec-8-en-6-one (IVb). Yield 1.59 g (47%), mp 110–111°C. IR spectrum, v, cm⁻¹: 1655 (C=C), 1755 (C=O). ¹H NMR spectrum, δ , ppm: 6.94–7.53 m (9H, Ph, 4-ClC₆H₄), 5.91 d (1H, =CH, *J* 6.5 Hz), 3.37 d (1H, ArCH, *J* 6.5 Hz), 1.20–2.19 m [8H, (CH₂)₄]. Found, %: C 74.21; H 5.48; Cl 10.68. C₂₁H₁₉ ClO₂. Calculated, %: C 74.44; H 5.65; Cl 10.46.

10-(4-Bromophenyl)-8-phenyl-7-oxaspiro[4.5]dec-8-en-6-one (IVc). Yield 1.63 g (48%), mp 111–112°C. IR spectrum, v, cm⁻¹: 1655 (C=C), 1740 (C=O). ¹H NMR spectrum, δ , ppm: 6.87–7.72 m (9H, Ph, 4-BrC₆H₄), 5.91 d (1H, =CH, *J* 6.5 Hz), 3.37 d (1H, ArC*H*, *J* 6.5 Hz), 0.96–2.21 m [8H, (CH₂)₄]. Found, %: C 65.66; H 5.12; Br 20.59. C₂₁H₁₉BrO₂. Calculated, %: C 65.81; H 5.00; Br 20.85.

8-(4-Bromophenyl)-10-phenyl-7-oxaspiro[4.5]dec-8-en-6-one (IVd). Yield 1.52 g (45%), mp 113–114°C. IR spectrum, v, cm⁻¹: 1635 (C=C), 1770 (C=O). ¹H NMR spectrum, δ, ppm: 6.93–7.58 m (9H, Ph, 4-BrC₆H₄), 5.91 d (1H, =CH, *J* 6.5 Hz), 3.39 d (1H, ArCH, *J* 6.5 Hz), 1.20–2.22 m [8H, (CH₂)₄]. Found, %: C 66.01; H 5.08; Br 20.72. C₂₁H₁₉ BrO₂. Calculated, %: C 65.81; H 5.00; Br 20.85.

10-(4-Chlorophenyl)-8-(4-methoxyphenyl)-7-oxaspiro[4.5]dec-8-en-6-one (IVe). Yield 1.57 g (43%), mp 118–119°C. IR spectrum, v, cm⁻¹: 1640 (C=C), 1760 (C=O). ¹H NMR spectrum, δ , ppm: 7.50 d, 7.24 d, 6.96 d, 6.74 d (8H, 4-MeOC₆H₄, 4-ClC₆H₄, J 8.5 Hz), 5.80 d (1H, =CH, J 6.5 Hz), 3.71 s (3H, MeO), 3.45 d (1H, ArCH, J 6.5 Hz), 1.00-2.20 m [8H, (CH₂)₄]. Found, %: C 71.45; H 5.61; Cl 9.49. C₂₂H₂₁ ClO₃. Calculated, %: C 71.64; H 5.74; Cl 9.61.

7,9-Diaryl-6-oxaspiro[3.5]non-7-en-5-ones VIa-VIf were obtained analogously to compounds IVa-IVe starting from methyl 1-bromocyclobutanecarboxylate.

7,9-Diphenyl-6-oxaspiro[**3.5**]**non-7-en-5-one** (**VIa**). Yield 1.97 g (68%), mp 110–111°C. IR spectrum, v, cm⁻¹: 1665 (C=C), 1750 (C=O). ¹H NMR spectrum, δ , ppm: 6.98–7.70 m (10H, 2Ph), 5.85 d (1H, =CH, *J* 6.5 Hz), 3.69 d (1H, ArC*H*, *J* 6.5 Hz), 1.78–2.56 m [6H, (CH₂)₃]. Found, %: C 83.00; H 6.38. C₂₀H₁₈O₂. Calculated, %: C 82.73; H 6.25.

9-(4-Chlorophenyl)-7-phenyl-6-oxaspiro[3.5]non-7-en-5-one (VIb). Yield 2.18 g (67%), mp 104–105°C. IR spectrum, v, cm⁻¹: 1650 (C=C), 1760 (C=O). ¹H NMR spectrum, δ , ppm: 6.91–7.67 m (9H, Ph, 4-ClC₆H₄), 5.83 d (1H, =CH, *J* 6.5 Hz), 3.67 d (1H, ArCH, *J* 6.5 Hz), 1.80-2.57 m [6H, (CH₂)₃]. Found, %: C 74.12; H 5.17; Cl 11.09. C₂₀H₁₇ ClO₂. Calculated, %: C 73.96; H 5.28; Cl 10.91.

9-(4-Bromophenyl)-7-phenyl-6-oxaspiro[3.5]non-7-en-5-one (VIc). Yield 2.59 g (70%), mp 137–138°C. IR spectrum, v, cm⁻¹: 1675 (C=C), 1760 (C=O). ¹H NMR spectrum, δ , ppm: 6.97–7.52 m (9H, Ph, 4-BrC₆H₄), 5.86 d (1H, =CH, *J* 6.5 Hz), 3.70 d (1H, ArCH, *J* 6.5 Hz), 1.80–2.57 m [6H, (CH₂)₃]. Found, %: C 64.89; H 4.52; Br 21.45. C₂₀H₁₇BrO₂. Calculated, %: C 65.05; H 4.64; Br 21.64. **7-(4-Bromophenyl)-9-phenyl-6-oxaspiro[3.5]n on**-**7-en-5-one (VId).** Yield 2.59 g (70%), mp 133–134°C. IR spectrum, v, cm⁻¹: 1645 (C=C), 1740 (C=O). ¹H NMR spectrum, δ , ppm: 7.10–7.66 m, 6.94 d (9H, Ph, 4-BrC₆H₄, *J* 8.4 Hz), 5.81 d (1H, =CH, *J* 6.5 Hz), 3.65 d (1H, ArCH, *J* 6.5 Hz), 1.77–2.60 m [6H, (CH₂)₃]. Found, %: C 65.12; H 4.83; Br 21.91. C₂₀H₁₇ BrO₂. Calculated, %: C 65.05; H 4.64; Br 21.64.

9-(4-Methoxyphenyl)-7-phenyl-6-oxaspiro[3.5]n o n-7-en-5-one (VIe). Yield 2.31 g (72%), mp 89–90°C. IR spectrum, v, cm⁻¹: 1635 (C=C), 1745 (C=O). ¹H NMR spectrum, δ , ppm: 7.20-7.67 m, 7.02 d, 6.72 d (9H, 4-MeOC₆*H*₄, Ph, *J* 8.4 Hz), 5.86 d (1H, =CH, *J* 6.5 Hz), 3.71 s (3H, MeO), 3.65 d (1H, ArCH, *J* 6.5 Hz), 1.81-2.55 m [6H, (CH₂)₃]. Found, %: C 78.48; H 6.11. C₂₁H₂₀O₃. Calculated, %: C 78.73; H 6.29. **7,9-Bis(4-chlorophenyl)-6-oxaspiro[3.5]non-7-en-5-one (VIf).** Yield 1.34 g (65%), mp 118–119°C. IR spectrum, v, cm⁻¹: 1660 (C=C), 1765 (C=O). ¹H NMR spectrum, δ , ppm: 7.59 d, 7.27 d, 7.20 d, 6.91 d (8H, 4-ClC₆H₄, 4-ClC₆H₄, *J* 8.5 Hz), 5.82 d (1H, =CH, *J* 6.5 Hz), 3.68 d (1H, ArCH, *J* 6.5 Hz), 1.74–2.58 m [6H, (CH₂)₃]. Found, %: C 67.08; H 4.67; Cl 19.4. C₂₀H₁₆ Cl₂O₂. Calculated, %: C 66.87; H 4.49; Cl 19.74.

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research (project no. 07-03-96035).

REFERENCE

1. Ocampo, R. and Dolbier, W.R., *Terahedron*, 2004, vol. 60, p. 9325.