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ABSTRACT: A method for amide-directed Ni-catalyzed diaster-
eoselective arylboration of cyclopentenes is disclosed. The reaction
allows for the synthesis of sterically congested cyclopentane scaffolds
that contain an easily derivatized boronic ester and amide functional
handles. The nature of the amide directing group and its influence on
the reaction outcome are investigated and ultimately reflect a
predictably selective reaction based on the solvent and base
counterion.

Conjunctive cross-coupling is a powerful method for
chemical synthesis because multiple bonds are formed in

a single operation, resulting in the rapid generation of molecular
complexity.1 In particular, carboboration is an important variant
of conjunctive cross-coupling due to the simultaneous
generation of a C−C bond and a highly versatile C−B bond
in a single transformation.2 Through Pd/Cu,3 Ni/Cu,4 Cu,5 Ni,6

and Pd catalysis,7 our group and others have developed
arylboration reactions of alkenes activated through either
conjugation or strain. However, until recently, reports on the
arylboration of unactivated alkenes have remained absent in the
literature.8

To address the challenge of functionalizing unactivated
alkenes, our lab developed a Ni-catalyzed arylboration reaction
capable of engaging a wide range of these substrates (Scheme
1A).9,10 Key to the development of this method was the
inclusion of N,N-dimethylacetamide (DMA) as a cosolvent to
suppress the formation of byproducts resulting from the β-
hydride elimination of alkyl−[Ni] complexes.10 These reactions
likely proceed through a syn boryl nickelation of the alkene,
forming an alkyl−[Ni] complex that can undergo reaction with
an aryl bromide.
Over the course of the previous study, the results of a

mechanistic investigation suggested that DMA was coordinated
to Ni during migratory insertion.10 We then reasoned that an
amide group with appropriate proximity to the alkene (3) could
direct arylboration to deliver all-syn products that would be
inaccessible by other methods (Scheme 1B). This advance
would be significant, as it would allow for the stereocontrolled
synthesis of versatile all-syn products.
Directing groups have previously been employed in a variety

of systems for alkene difunctionalization reactions in order to
control the regioselectivity of a migratory insertion event and to

prevent β-hydride elimination pathways from alkyl−metal
intermediates.11−19 For Ni-catalyzed difunctionalization reac-
tions, directing groups including acetate,11 imines,12 amino-
quinone,8,13 aminopyrimidine,14 N-heterocycles,15 amides,16

and carboxylic acids have been disclosed.17 Notably, a recent
report by Engle describes the use of 8-aminoquinoline to achieve
regioselective, and in one case diastereoselective, Pd-catalyzed
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Scheme 1. Arylborations of Unactivated Alkenes
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arylboration.18 In this reaction, the Pd catalyst coordinates with
the directing group, controlling the regioselectivity of the
migratory insertion via formation of a five-membered pallada-
cycle.
Our strategy is based on a similar premise in that an amide

placed proximal to the alkene can be used to direct themigratory
insertion event. Preliminary investigation using previously
reported conditions10 revealed that the use of dimethylamide
4b allowed for formation of the syn diastereomer, thus
confirming the viability of our approach (Scheme 2). Evaluation

of amides revealed that use of N-methyl-N-phenyl derivative 4e
led to an increase in diastereoselectivity favoring diastereomer 5,
as confirmed by X-ray crystallography. It is important to note
that the reaction of 4a resulted in the formation of the anti
diastereomer, presumably through a nondirected sterically
guided pathway.
After the feasibility of the directed arylboration was

established, the reaction conditions were optimized to favor
binding of the pendent amide to Ni. Since DMA can compete
with the pendent amide for coordination with Ni, it was omitted
from the reaction, resulting in an increase in diastereoselectivity
but a concomitant decrease in yield (Scheme 3, entry 3).
Improving the yield without loss of diastereoselectivity proved
to be a delicate balance of variables in the reaction conditions.
The yield of the reaction could be restored through the use of
toluene as the solvent instead of THF; however, the
diastereoselectivity was lowered. The yield was significantly
improved by the use of increased equivalents of reagents at a
higher temperature (Scheme 3, entry 6). Furthermore, in an
attempt to improve the diastereoselectivity of the reaction,
electronically (Scheme 3, entries 7 and 8) and sterically (Scheme
3, entries 9 and 10)modified directing groups were explored, but
no added benefit was found. Lastly, switching the counterion of

the base from Na+ to K+ increased the diastereoselectivity
significantly without a substantial loss of yield, culminating in an
optimal set of conditions (Scheme 3, entry 11).
Next, the scope of the directed arylboration was investigated.

With respect to the alkene component, the standard substrate
(product 5) reacted smoothly (Scheme 4). Substituents at the α-
position of the amide were tolerated (product 6), albeit with
lower diastereoselectivity due to allylic strain with the amide.
When the α-substituent was constrained to a ring within the
amide, this strain was eliminated, and the high diastereose-
lectivity was restored (product 7). Additionally, trisubstituted
alkenes were tolerated and allowed for the formation of
quaternary carbons (products 8 and 9). Notably, these examples
represent the formation of densely substituted cyclopentanes. At
this point, the alkene scope is limited to cyclopentene
derivatives; cyclohexene-derived substrate 16 was not reactive,
but this is consistent with previous reports demonstrating that
cyclohexene is significantly less reactive than cyclopentene.9,10

The reaction was also tolerant of a variety of aryl bromides,
including electron-deficient (product 5), electron-rich (product
11), and sterically demanding (products 12 and 14) examples.
Additionally, the functional group tolerance was evaluated and
included tertiary amine and aniline derivatives (products 15 and
18, respectively). Heteroaryl bromides such as pyridine
(product 19), indole (product 17), and furan (product 20)
also functioned well in the reaction. Alkenylboration was also
achieved through the use of a vinyl bromide (product 21),
installing two easily derivatized functional groups in a single
transformation.
Furthermore, the reaction was performed on a gram scale and

worked with similar yield and selectivity as for the smaller-scale
reactions (Scheme 5A). To demonstrate the synthetic utility of
the products, the boronic ester and amide units of 5 were
functionalized through oxidation (22), homologation (24),
olefination (26), hydrolysis (23), and reduction (25) (Scheme
5B). Confirmation of the stereochemistry of 23 by X-ray
crystallography verified that epimerization of the α-stereogenic

Scheme 2. Evaluation of Directing Groupsa

aYield refers to the yield of both diastereomers as determined by 1H
NMR analysis of the unpurified mixture with an internal standard.

Scheme 3. Optimization of the Reaction Conditionsa

aYield refers to the yield of both diastereomers as determined by 1H
NMR analysis of the unpurified mixture with an internal standard.
bDiastereomeric ratio at the indicated carbon. cThe reaction was run
with 10% NiCl2(DME), (Bpin)2 (4.0 equiv), base (3.0 equiv), and 4-
CIC6H4Br (2.0 equiv) at 50 °C.
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center did not take place during hydrolysis. Through these
transformations, a diverse range of cyclopentane derivatives can
be prepared with control of stereochemistry.
The impact of the directing group on the resultant

stereochemistry is intriguing and warranted further mechanistic
investigation. Significant changes in diastereoselectivity were
observed when the counterion of the base was modified
(Scheme 6A). More oxophilic counterions, such as Li+, can
compete with Ni to chelate with the amide directing group,
resulting in significantly diminished diastereoselectivity. When
the corresponding crown ether was added to the reaction
mixture to sequester the counterion, an increase in diaster-
eoselectivity was observed in all cases. To simplify the reaction
conditions, crown ethers were not used in the optimum
conditions but could be added as a supplement to improve the
diastereoselectivity. A trend ultimately favoring the anti
diastereomer was observed as the amount of DMA was
increased.10 This is likely due to disrupted binding of the
substrate-bound amide to Ni by DMA to induce a sterically
guided reaction, resulting in the formation of anti diastereomer
27 (Scheme 6B). Finally, using DMA as the solvent in the
presence of oxophilic counterions such as Na+ or Li+ increases
the selectivity for the anti diastereomer by competitive binding
with the directing group. Altogether, the mechanistic data
provide further support for the Ni-catalyzed arylboration of
alkenes and, in particular, the role of amide-based additives in
controlling the stereochemical course of the reaction.
In summary, a Ni-catalyzed directed arylboration reaction has

been developed. The method presents a strategy to deliver
versatile and highly substituted cyclopentane products. The
mechanistic investigation highlights the role of the amide
component, either as a bound substrate or external competitive
ligand, in controlling the stereodivergent outcomes of the
reaction.

Scheme 4. Reaction with Various Alkenes and Aryl Bromidesa

aYield refers to the isolated yield of the syn diastereomer product after silica gel column chromatography and is reported as the average of two or
more experiments (0.5 mmol scale). bIsolated as a single diastereomer after oxidation to the alcohol; see the Supporting Information for details.
cReaction time = 40 h.

Scheme 5. Gram-Scale Reaction and Further
Functionalizationsa

aYield refers to the isolated yield of the product after silica gel column
chromatography. Reagents and conditions in (B): (a) H2O2 (3.0
equiv), NaOH (10 equiv), THF, 0 °C to rt, 10 h. (b) (i) 6 N HCI in
H2O, 100 °C, 15 h; (ii) pinacol (2.0 equiv), toluence, rt, 3 h. (c)
nBuLi (2.2 equiv), CH2Br2 (2.5 equiv), THF, −78 °C to rt, 18 h. (d)
DIBAL-H (4.0 equiv), THF, 0 °C to rt, 2 h. (e) (i) tBuLi (8.0 equiv),
2-bromopropene (4.0 equiv), THF, −78 °C, 3h; (ii) I2 (4.0 equiv),
MeOH, 1.5 h.
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