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A B S T R A C T   

N-formyl pyrazoline derivatives (3a–3l) were designed and synthesized via Michael addition reaction through 
cyclization of chalcones with hydrazine hydrate in presence of formic acid. The structural elucidation of N-formyl 
pyrazoline derivatives was carried out by various spectroscopic techniques such as 1H, 13C NMR, FT-IR, 
UV–visible spectroscopy, mass spectrometry and elemental analysis. Anticancer activity of the pyrazoline de-
rivatives (3a–3l) was evaluated against human lung cancer (A549), fibrosarcoma cell lines (HT1080) and human 
primary normal lung cells (HFL-1) by MTT assay. The results of anticancer activity showed that potent analogs 
3b and 3d exhibited promising activity against A549 (IC50 = 12.47 ± 1.08 and 14.46 ± 2.76 µM) and HT1080 
(IC50 = 11.40 ± 0.66 and 23.74 ± 13.30 µM) but low toxic against the HFL-1 (IC50 = 116.47 ± 43.38 and 152.36 
± 22.18 µM). The anticancer activity of potent derivatives (3b and 3d) against A549 cancer cell line was further 
confirmed by flow cytometry based approach. DNA binding interactions of the pyrazoline derivatives 3b and 3d 
have been carried out with calf thymus DNA (Ct-DNA) using absorption, fluorescence and viscosity measure-
ments, circular dichroism and cyclic voltammetry. Antioxidant potential of N-formyl pyrazoline derivatives 
(3a–3l) has been also estimated through DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical and H2O2. Results 
revealed that all the compounds exhibited significant antioxidant activity. In silico molecular modelling and 
ADMET properties of pyrazoline derivatives were also studied using PyRx software against topoisomerase II 
receptor with PDB ID: 1ZXM to explore their best hits. MD simulation of 3b and 3d was also carried out with 
topoisomerase II for structure–function correlation in a protein. HuTopoII inhibitory activity of the analogs 
(3a–3l) was examined by relaxation assay at varying concentrations 100–1000 µM.   

1. Introduction 

Cancer is defined by a rapid, uncontrolled and pathological prolif-
eration of the cells which is a second leading cause of deaths globally. 
Cancer is a group of diseases, spread almost all the body parts (organ or 
tissue) and develops after the body’s control mechanism stops working 
and uncontrolled growth and division of cell takes place too quickly 
[1–4]. The heterocyclic analogs are universal in medicinal chemistry 
due to their unparallel intrinsic versatility [5–8]. Owing to their 

significant pharmaceutical properties, pyrazoline derivatives have 
received appreciable attention in various fields [9,10]. Pyrazolines have 
been proven as the most useful framework for diversified biological 
activities such as antibacterial [11,12] anticancer [13,14] antifungal 
[15], anti-inflammatory [16,17], anti-oxidant [18,19] and antimalarial 
[20,21]. Pyrazolines, are a class of electron-rich nitrogen heterocyclic 
compounds having versatility in the medicinal chemistry and are being 
reported to exhibit remarkable anticancer effects by inhibiting the en-
zymes which promote cell division [22]. DNA is the primary 
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intracellular target for the anticancer drugs. In recent years, researchers 
have studied the interaction of drugs and DNA which may be responsible 
for the damage of DNA by preventing the quick division of cancer cells 
[23–26]. Drug or small molecules can interact with DNA through non- 
covalent, intercalation, groove binding or electrostatic binding mode 
[27,28]. Among these interactions, intercalation is one of the most sig-
nificant DNA-binding mode, which is related to the antitumor activity of 
the compounds [29,30]. The rigidity induced by the incorporation of 
pyrazoline ring within the chalcone framework has earlier been proven 
to be extremely useful as far as cytotoxic potential is concerned [31–33]. 
Molecular docking and absorbed, distributed, metabolized and elimi-
nated (ADMET) properties are widely employed to find out the novel 
hits for topoisomeraseII target [34,35]. 

Here, we aimed to design and synthesize a series of 3,5-diaryl-4,5- 
dihydropyrazoline derivatives with their anticancer activity against 
human lung cancer (A549), fibrosarcoma cell lines (HT1080) and 
human primary normal lung cells (HFL-1). The present research work 
involves the apoptosis evaluation, HuTopoII inhibitory activity, molec-
ular docking, MD simulation, DNA-binding, antioxidant assay and 
ADMET properties of pyrazoline derivatives. 

2. Experimental section 

2.1. Materials and methods 

All the reagents were commercially available and used as received 
without further purification. Acetophenones (Spectrochem), formic acid 
(Fisher scientific), hydrazine hydrate and substituted aldehydes (S.D. 
Fine Chemicals) were purchased. The elemental analysis of the N-formyl 
pyrazoline derivatives was ascertained by the Elementar CHNS analyzer. 
The melting points of the compounds were determined in open 

capillaries and are uncorrected. Reaction progress was routinely moni-
tored by TLC (thin layer chromatography) using silica gel (precoated 60 
F254Al sheets, Merck). IR spectra of the synthesized compounds were 
recorded on Agilent Technologies and expressed in wavenumber (cm− 1). 
1H and 13C NMR spectra were recorded using CDCl3 as solvent on a 
Bruker 300 MHz spectrometer. Chemical shifts (δ) were given in ppm 
and tetramethylsilane (TMS) used as reference. To investigate the DNA- 
drug interaction, IVIUM potentiostat was used with a three-electrode 
system that was obtained from Metrohm, Dropsens (DS 220BT). Circu-
lar dichroism experiments were carried out by the Jasco J-815 spec-
trometer using a rectangular quartz cell of 1 cm path length. 
Fluorescence spectra were recorded at room temperature using an Agi-
lent spectrophotometer. Electronic spectra of the compounds were ob-
tained on a Labman UV–Visible spectrophotometer. Viscosity 
measurements were carried out using Ostwald viscometer at room 
temperature. The mass spectral analysis of the N-formyl pyrazoline de-
rivatives was determined by LC MS/MS Waters. 

2.2. General procedure for the synthesis of N-formyl pyrazoline 
derivatives (3a–3l) 

The chalcone derivatives (2a–2l) were synthesized by condensation 
of aldehydes and substituted acetophenones in ethanol using sodium 
hydroxide as a base, according to the reported procedure [36]. To the 
chalcones (2a–2l), 5.0 ml formic acid and hydrazine hydrate (0.5 ml, 10 
mmol) were added dropwise and then the reaction mixture was refluxed 
for 4–6 h. The progress of the reaction was monitored by TLC (thin layer 
chromatography) in ethyl acetate and hexane (1:3) as effluent. After the 
completion of reaction, the warm reaction mixture was poured into ice- 
cold water and neutralized by a 1 M NaOH solution. The precipitate was 
filtered off, washed with cold water and dried in vacuum desiccator over 

Scheme 1. General procedure for the synthesis of N-formyl pyrazoline derivatives (3a–3l). (i) NaOH (50%), absolute alcohol, room temperature, stir; (ii) 
NH2NH2⋅H2O/HCOOH, reflux for 4–6 h. 
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fused CaCl2 and recrystallized in chloroform affording pyrazoline de-
rivatives (3a–3l). The synthesis of pyrazoline derivatives is shown in 
Scheme 1. 

2.2.1. 5-(4-(dimethylamino)phenyl)-3-(4-methoxyphenyl)-4,5-dihydro- 
1H-pyrazole-1-carbaldehyde (3a) 

Light green, Yield 80%. Mp: 130 ◦C. IR (neat, νmax cm− 1): ν(C––O) 
1611, ν(C––N) 1562. 1H NMR (CDCl3, 300 MHz ppm): 7.67–7.69 (d, 
2H), 7.11–7.26 (d, 2H), 6.93–6.95 (d, 2H), 6.66–6.69 (d, 2H), 8.91 (s, 
1H), 5.43 (dd, J = 4.6 and 17.8 Hz, 1H), 3.72 (dd, J = 11.8 and 17.7 Hz, 
1H), 3.19 (dd, J = 4.6 and 11.8 Hz, 1H), 2.95 (s, 6H), 3.85 (s, 3H).13C 
NMR (CDCl3, 75.47 MHz): 161.48, 159.89, 155.64, 150.26, 129.02, 
128.51, 128.29, 126.75, 123.79, 144.21, 112.75, 58.56, 55.43, 42.58, 
40.55.MS (m/z): 324.20 (M + 1), Calculated %: C19H21N3O2: C 70.57; H 
6.55; N 12.99. Found, %: C 70.56; H 6.57; N 12.95. 

2.2.2. 3-(4-chlorophenyl)-5-(4-(dimethylamino)phenyl)-4,5-dihydro-1H- 
pyrazole-1-carbaldehyde (3b) 

Green, Yield 75%. Mp: 180 ◦C. IR (neat, νmax cm− 1): ν(C––O) 1615, 
ν(C––N) 1523. (CDCl3, 300 MHz ppm): 7.66–7.69 (d, 2H), 7.39–7.42 (d, 
2H), 7.11– 7.26(d, 2H), 6.66–6.69(d, 2H), 8.92 (s, 1H),5.46 (dd, J = 4.5 
and 11.6 Hz, 1H), 3.71 (dd, J = 11.8 and 17.7 Hz, 1H), 3.18 (dd, J = 5.1 
and 17.7 Hz, 1H), 2.90 (s, 6H).13C NMR (CDCl3, 75.47 MHz): 160.07, 
154.69, 150.32, 136.49, 129.70, 129.08, 128.53, 128.11, 126.73, 
112.72, 58.89, 42.38, 40.51.MS (m/z): 328.17 (M + 1), Calculated %: 
C18H18ClN3O: C 65.95; H 5.53; N 12.82. Found, %: C 65.95; H 5.48; N 
12.85. 

2.2.3. 5-(4-(dimethylamino)phenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H- 
pyrazole-1-carbaldehyde (3c) 

Light green, Yield 82%. Mp: 148 ◦C. IR (neat, νmax cm− 1): ν(C––O) 
1579, ν(C––N) 1497. 1H NMR (300 MHz, CDCl3) δ 7.65–7.68 (d, 4H), 
7.37–7.40 (d, 2H), 7.09–7.12 (d, 2H), 6.65–6.68, (d, 2H), 8.92 (s, 1H), 
5.45 (dd, J = 17.8, 4.1 Hz, 1H), 3.71 (dd, J = 17.7, 11.7 Hz, 1H), 3.16 
(dd, J = 11.7, 4.2 Hz, 1H), 2.93 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 
160.07, 154.69 150.31, 136.47, 129.70, 129.08, 128.54, 128.12, 
127.91, 127.25, 126.73 112.71, 58.89, 42.38, 40.52.MS (m/z): 312.28 
(M + 1), Calculated, %: C18H18FN3O: C 69.44; H 5.83; N 13.50. Found, 
%: C 69.47; H 5.84; N 13.51. 

2.2.4. 3-(4-bromophenyl)-5-(4-(dimethylamino)phenyl)-4,5-dihydro-1H- 
pyrazole-1-carbaldehyde (3d) 

White, Yield 75%. Mp: 170 ◦C. IR (neat, νmax cm− 1): ν(C––O) 1658, 
ν(C––N) 1591. 1H NMR (CDCl3, 300 MHz): 7.65–7.68 (d, 2H), 7.38–7.41 
(d, 2H), 7.10– 7.13 (d, 2H), 5.45 (dd, J = 4.5 and 17.7 Hz, 1H), 3.71 (dd, 
J = 11.8 and 17.7 Hz, 1H), 3.18 (dd, J = 4.5 and 11.8 Hz, 1H), 2.49 (s, 
6H). 13C NMR (CDCl3, 75.47 MHz): 159.83, 151.46, 150.32, 134.65, 
132.97, 132.00, 129.06, 128.96, 128.07, 127.70, 127.28, 126.75, 
112.72, 58.81, 43.16, 40.53. MS (m/z): 372.13 (M + 1), Calculated %: 
C18H18BrN3O: C 58.08; H 4.87; N 11.29 Found %: C 65.95; H 5.48; N 
12.85. 

2.2.5. 3-(3-bromophenyl)-5-(4-(dimethylamino)phenyl)-4,5-dihydro-1H- 
pyrazole-1-carbaldehyde (3e) 

Light green, Yield 78%. Mp: 200 ◦C. IR (neat, νmax cm− 1): ν(C––O) 
1600, ν(C––N) 1460. 1H NMR (300 MHz, CDCl3) 7.57–7.69 (m, 4H), 
7.10–7.12 (d, 2H), 6.65–6.68 (d, 2H), δ 8.92 (s, 1H), 5.46 (dd, J = 17.6, 
4.6 Hz, 1H), 3.72 (dd, J = 17.8, 11.7 Hz, 1H), 3.18 (dd, J = 11.8, 4.8 Hz, 
1H), 2.91 (s, 6H).13C NMR (CDCl3, 75.47 MHz): 160.06, 154.72, 150.33, 
132.03, 132.01, 130.00, 128.09, 128.07, 126.72, 124.84, 123.01, 
112.71,58.90, 42.32, 40.51.MS (m/z): 372.20 (M + 1), Calculated %: 
C18H18BrN3O: C 58.08; H 4.87; N 11.29. Found %: C 58.11; H 4.85; N 
11.31. 

2.2.6. 3-(2-chlorophenyl)-5-(4-(dimethylamino)phenyl)-4,5-dihydro-1H- 
pyrazole-1-carbaldehyde (3f) 

Yellow, Yield 70%. Mp: 195 ◦C. IR (neat, νmax cm− 1): ν(C––O) 1579, 
ν(C––N) 1477. (CDCl3, 300 MHz ppm): 7.78–7.90 (d, 2H), 7.66–7.69 (d, 
2H), 7.11–7.26(m, 3H), 6.65–6.69 (d, 2H), 8.93 (s, 1H), 5.48 (dd, J = 4.5 
and 17.7 Hz, 1H), 3.73 (dd, J = 11.5 and 17.7 Hz, 1H), 3.19 (dd, J = 4.5 
and 11.7 Hz, 1H), 2.94 (s, 6H).13C NMR (CDCl3, 75.47 MHz): 160.07, 
154.70, 150.30, 136.49, 129.66, 129.08, 128.09, 127.90, 126.72, 
112.70, 58.88, 42.39, 40.53.MS (m/z): 328.23(M + 1), Calculated %: 
C18H18ClN3O: C 65.95; H 5.53; N 12.82. Found, %: C 65.94; H 5.55; N 
12.80. 

2.2.7. 5-(4-(dimethylamino)phenyl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazole- 
1-carbaldehyde (3g) 

Light green, Yield 72%. Mp: 140 ◦C. IR (neat, νmax cm− 1): ν(C––O) 
1588, ν(C––N) 1460. 1H NMR (300 MHz, CDCl3) δ 7.62–7.65 (d, 2H), 
7.22–7.26 (d, 2H), 7.12–7.14 (d, 2H), 6.66–6.68 (d, 2H), 8.92 (s, 1H), 
5.45 (dd, J = 17.6, 4.6 Hz, 1H), 3.74 (dd, J = 17.8, 11.7 Hz, 1H), 3.21 
(dd, J = 11.8, 4.8 Hz, 1H), 2.93 (s, 6H), 2.40 (s, 3H). 13C NMR (CDCl3, 
75.47 MHz): 160.01, 155.98, 150.26, 140.91, 129.51, 128.46, 128.37, 
130.00, 126.76, 126.64, 112.74, 58.61, 42.53, 40.55, 21.53.MS (m/z): 
308.21 (M + 1) Calculated %: C19H21N3O: C 74.24; H 6.89; N 13.67. 
Found, %: C 74.29; H 6.92; N 13.68. 

2.2.8. 5-(4-(dimethylamino)phenyl)-3-phenyl-4,5-dihydro-1H-pyrazole-1- 
carbaldehyde (3h) 

Light green, Yield 68%. Mp: 135 ◦C. IR (neat, νmax cm− 1): ν(C––O) 
1615, ν(C––N) 1560. 1H NMR (300 MHz, CDCl3) δ 7.73–7.76 (d, 2H), 
7.43 – 7.45 (d, 2H), 7.12–7.15 (d, 2H), 6.66–6.69 (d, 2H), 8.94 (s, 1H), 
5.47 (dd, J = 17.6, 4.6 Hz, 1H), 3.76 (dd, J = 17.8, 11.7 Hz, 1H), 3.23 
(dd, J = 11.8, 4.8 Hz, 1H), 2.92 (s, 6H).13C NMR (CDCl3, 75.47 MHz): 
160.10, 155.88, 150.29, 131.16, 130.52, 128.80, 128.55, 128.35, 
126.76, 126.67, 112.74,58.72, 42.48, 42.54. MS (m/z): 294.18 (M + 1), 
Calculated %: C18H19N3O: C 73.69; H 6.53; N 14.32. Found, %: C 73.70; 
H 6.48; N 14.34. 

2.2.9. 5-(4-(dimethylamino)phenyl)-3-(4-nitrophenyl)-4,5-dihydro-1H- 
pyrazole-1-carbaldehyde (3i) 

Yellow, Yield 86%. Mp: 175 ◦C. IR (neat, νmax cm− 1): ν(C––O) 1590, 
ν(C––N) 1460. 1H NMR (300 MHz, CDCl3) δ 8.27–8.30 (d, 2H), 
7.88–7.91 (d, 2H), 7.10–7.13 (d, 2H), 6.66–6.69 (d, 2H), 8.96 (s, 1H), 
5.52 (dd, J = 17.8, J = 4.9 Hz, 1H), 3.79 (dd, J = 17.8, 11.6 Hz, 1H), 
3.26 (dd, J = 11.7, 4.9 Hz, 1H), 2.95 (s, 6H).13C NMR (CDCl3, 75.47 
MHz): 160.44, 159.49, 154.91, 150.38, 148.51, 137.49, 128.91, 128.26, 
127.14, 124.45, 112.86, 59.27, 56.47, 42.42. MS (m/z): 339.19(M + 1), 
Calculated %: C18H18N4O3: C 63.89; H 5.36; N 16.56. Found, %: C 63.85; 
H 5.41; N 16.58. 

2.2.10. 3-(4-bromophenyl)-5-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1- 
carbaldehyde (3j) 

White, Yield 77%. Mp: 145 ◦C. IR (neat, νmax cm− 1): ν(C––O) 1598, 
ν(C––N) 1477. 1H NMR (300 MHz, CDCl3) δ 7.75 (m, 3H), 7.24–7.28 (d, 
2H), 6.95–6.98 (d, 2H), 8.93 (s, 1H), 5.87 (dd, J = J = 17.9, 4.9 Hz, 1H), 
3.79 (dd, J = 17.8, 11.6 Hz, 1H), 3.39 (dd, J = 11.7, 4.9 Hz, 1H). 13C 
NMR (CDCl3, 75 MHz): 160.09, 154.63, 142.77, 2132.11, 129.71, 
128.14, 127.00, 125.36, 125.12, 54.57, 42.26, MS (m/z): 334.40 (M +
1), Calculated %: C14H11BrN2OS: C 50.16; H 3.31; N 8.36. Found, %: C 
50.20; H 3.48; N 8.38. 

2.2.11. 3-(3-bromophenyl)-5-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1- 
carbaldehyde (3k) 

Light green, Yield 79%. Mp: 160 ◦C. IR (neat, νmax cm− 1): ν(C––O) 
1655, ν(C––N) 1593. 1H NMR (CDCl3, 300 MHz): 7.56–7.65 (m, 4H), 
7.21–7.43 (m, 1H), 6.93–6.96 (m, 2H), 8.95 (s, 1H), 5.85 (dd, J = 17.8, 
J = 4.6 Hz, 1H), 3.77 (dd, J = 17.8, 11.6 Hz, 1H), 3.36 (dd, J = 11.7, 4.6 
Hz, 1H). 13C NMR (CDCl3, 75 MHz): 160.23, 155.81, 144.09, 132.33, 
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130.29, 129.14, 127.28, 125.89, 125.63, 124.55, 54.65, 42.28. MS (m/ 
z): 334.40 (M + 1), Calculated %: C14H11BrN2OS: C 50.16; H 3.31; N 
8.36. Found, %: C 50.18; H 4.48; N 8.38. 

2.2.12. 5-(4-(dimethylamino)phenyl)-3-(naphthalen-1-yl)-4,5-dihydro- 
1H-pyrazole-1-carbaldehyde (3l) 

Light green, Yield 76%. Mp: 160 ◦C. IR (neat, νmax cm− 1): ν(C––O) 
1656, ν(C––N) 1596. 1H NMR (CDCl3, 300 MHz): 9.23–9.26 (d, 1H), 
7.89– 7.94 (t, 2H), 7.45–7.69 (m, 4H), 7.18–7.25 (d, 2H), 6.67–6.70 (d, 
2H), 9.07 (s, 1H), 5.47 (dd, J = 17.7, 4.6 Hz, 1H), 3.98 (dd, J = 17.8, 
11.7 Hz,1H), 3.42 (dd, J = 17.7, 4.8 Hz, 1H), 2.94 (s, 6H). 13C NMR 
(CDCl3, 75.47 MHz): 160.33, 156.55, 150.31, 134.09, 131.40, 130.52, 
128.79, 128.35, 127.82, 127.69, 126.83, 126.74, 126.48, 124.80, 
112.78, 57.58, 45.12, 40.56. MS (m/z): 344.31 (M + 1), Calculated %: 
C22H21N3O: C 76.94; H 6.16; N 12.24. Found, %: C 76.98; H 6.21; N 
12.25. 

2.3. In vitro cytotoxicity evaluation 

Human lung cancer (A549), fibrosarcoma cell lines (HT1080) and 
human primary normal lung cells (HFL-1) were obtained from American 
type culture collection (ATCC, USA) and used in this study. Briefly, all 
these cell types were grown according to the standard culture conditions 
at 37 ◦C, with a 5% CO2 in water-jacketed cell culture incubator. 
Respective cell culture media were used to culture these cells. A549 cells 
were grown in DMEM media with 2 mM Glutamine, HT1080 cells were 
grown in Eagle’s Minimum Essential Medium (EMEM) as recommended, 
whereas HFL-1 cells were also grown in F-12 K. All the media was 
supplemented with 10% FBS (Foetal bovine serum). For cell death 
analysis by the MTT method, 8000 cells were seeded in triplicates in a 
single 96 well plate. The plate was treated with increasing concentration 
made in the medium of 2, 4, 8, 16, 32, 64, and 128 µM of N-formyl 
pyrazoline derivatives and nocodazole dissolved in DMSO. The MTT 
assay was performed to check the effect of the test compounds on cell 
death after 24 h of treatment. After the treatment time was over, the 
media was discarded and gently each well was washed three times with 
PBS to remove the residual amount before performing the assay. As 
previously described, we used 10 µL of MTT reagent (Sigma, USA, Cat. 
No.11465007001) into each well having working stock concentration of 
5 mg/ml. Following the addition of the MTT, the plates were incubated 
at 37 ◦C for 4 h. Once the incubation time was over, we used DMSO to 
remove crystals. Absorbance was measured at 570 nm using a hybrid 
multi-mode plate reader (BioTek, USA) with a microplate reader. We 
measured the percentage inhibition by the formula given below in Eq. 
(1): 

% Inhibition = 100 −
Mean OD of treated cells

Mean OD of the vehicle control cells (negative control)
× 100

(1) 

We repeated the MTT assay three times with all the investigational 
compounds. IC50 values of the respective compounds were calculated 
using prism8 software (GraphPad) and expressed as a concentration 
(µM) of drugs. 

2.4. Apoptosis studies 

For quantitative apoptosis assay we used flow cytometry analysis on 
A549 cells. Cells were grown at 1.0 × 105 cells/ml and plated in a 24- 
well culture plate (Corning) for 24 h as mentioned above. Cells were 
treated with 4 μM of tested compounds 3b and 3d and incubated for 
another 24 h. For analysis, media was removed and cells were briefly 
washed with PBS followed by trypsinization protocol. Further, cells 
were suspended in PBS and stained with annex in V-FITC/PI as per the 
protocol provided by the supplier (Sigma, USA, Catalogue number: 

APOAF-20TST). Briefly, after addition of the reagents, cells were 
allowed incubated at room temperature for 30 min and analysed in PBS 
[37]. The assay has been performed with BD FACS Accuri (BD Bio-
sciences, USA) and the data was analysed with FlowJo software (BD 
Biosciences, USA). 

2.5. In silico molecular modelling and docking study 

The crystal structure of topoisomerase II was retrieved from the 
protein data bank (PDB ID: 1ZXM) (www.rcsb.com) in PDB format. 
There were several missing residues in the crystal structure of topo-
isomerase II. The missing residues were added by the homology 
modelling method using modeller 9.10. Chemdraw software was used to 
draw the target drugs and to display and characterize their chemical 
structures. The procedure of molecular docking of the receptor topo-
isomerase II with pyrazoline derivatives (3a–3l) was carried out using 
the Autodock vina program 4.0 version of PyRx virtual screening tool 
[38]. The protein and target drugs were loaded in PyRx software and 
converting structure files into PDBQT format using the python script. 
The grid box was generated with a default grid spacing centered in the 
drug position and best confirmation was chosen for the evaluation of the 
lowest binding affinity. The docked protein-drug complex structures 
(including hydrogen bond, hydrophobic interaction and the bond 
lengths) were analyzed using the Discovery studio visualizer [39,40]. 

2.6. Relaxation assay of human topoisomerase II 

Relaxation of negatively supercoiled plasmid DNA by human topo-
isomerase II (from nuclear extract of HeLa cells) was assayed in 20 μL of 
reaction buffer (10 mM Tris-HCl, pH 7.9, 150 mM NaCl, 0.1% BSA, 0.1 
mM spermidine, 5% glycerol and 1 mM ATP) containing 250 ng of 
supercoiled pHOT1 plasmid DNA and 1 unit of enzyme. After incubation 
at 37 ◦C for 30 min, the reactions were terminated and analyzed by 
agarose gel electrophoresis. The ethidium bromide-stained gel was 
photographed over UV light for densitometry analysis. The percentage 
relaxation was determined by dividing the distance between the nega-
tively supercoiled band (SC) and the weighted center of the partially 
relaxed band (PR) by the distance between the supercoiled band (SC) 
and the fully relaxed band (FR) to obtain percent relaxation = (SC-PR)/ 
(SC-FR) (Reference Percent inhibition by different compounds was then 
calculated by subtracting percent relaxation in the presence of com-
pounds from 100% relaxation obtained with enzyme only [41]. 

2.7. In silico ADMET assay 

The N-formyl pyrozoline derivatives (3a–3l) were screened out 
based on the absorption, distribution, metabolism, excretion and 
toxicity properties. 2D structures of designed chemical compounds have 
been converted to canonical SMILES format and were used to compute 
the ADMET properties in the Molinspiration software. It plays a signif-
icant role in the drug design process and gives free access yet vigorous 
predictive models for physicochemical properties, pharmacokinetics 
and drug-likeness [34,42]. 

2.8. MD simulations 

MD simulation is a useful tool to study the structure-function cor-
relation in a protein [43–47]. The MD simulations were executed on 
topoisomerase II with its ligands 3b and 3d at 298 K by GROMACS 
2018.2 [48]. The topology and force-field parameter files for 3b and 3d 
were externally obtained with the help of the PRODRG server [49]. The 
precise number of solvent and solute molecules were determined using a 
standard protocol [50–52]. To maintain neutrality, an adequate amount 
of Na+ and Cl- ions were added. The system was further minimized by 
increasing temperature from 0 to 298 K in the equilibration period. 
Equilibration was achieved by NVT and NPT ensembles at 100 ps. The 
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NVT ensemble includes a constant number of particles, volume and 
temperature, while NPT ensemble includes a constant number of parti-
cles, pressure and temperature. The particle-mesh Ewald method [53] 
was applied after the equilibration period, and finally, the production 
phases of 100 ns were performed at 298 K. The details of the MD 
methodology are explained in previous publications [52,54,55]. 

2.9. DNA binding studies 

2.9.1. Absorption titration 
Absorption titration has been performed to investigate the binding 

interaction of target analogs 3b and 3d with Ct-DNA. The absorption 
spectra were recorded in Tris-HCl/NaCl buffer in the range of 190–600 
nm by varying the compounds concentration (0–60 µM) and keeping 
DNA concentration constant (40 µM). The absorbance ratio, A260/A280 
was 1.9:1 which indicate that the DNA was free from protein contami-
nation. DNA concentration of stock solution was evaluated by taking its 
molar absorption coefficient (ε260) 6600 l mol− 1 cm− 1 [56–60]. Test 
compounds were incubated for 10 min. and then absorption spectra was 
recorded. 

Fig. 1. 1H and 13C NMR spectra of analogs 3b and 3d.  
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2.9.2. Fluorescence measurements 
Fluorescence measurements were carried out to investigate the effect 

of compounds 3b and 3d on Ct-DNA. Fluorescence experiments were 
performed with the increasing concentration of Ct-DNA and fixing the 
compound concentration (40 µM). Samples were allowed to equilibrate 
for 30 min and after that fluorescence titration was done in tris–HCl/ 
NaCl buffer in the range of 300–600 nm with an excitation wavelength 
of 320 nm for 3b and 280 nm for 3d. The slit widths were maintained at 
10 nm for both emission and excitation [61–63]. 

2.9.3. Viscosity measurements 
Viscosity measurements are considered as an effective and sensitive 

method to study the length change of helix. The Viscosity of Ct-DNA has 
been determined with and without test compound in 5 mM Tris– HCl/ 
NaCl buffer (pH = 7.2). The Flow time of each sample was measured 
through the viscometer in triplicate and average value was used for the 
calculation. Viscosity measurements were carried out by gradually 
increasing the concentration of test compounds 0–60 µM and maintain 
the concentration of Ct-DNA constant (50 µM). The resulted data were 
ploted as (η/ηo)1/3 versus [compound]/[DNA], where η is the viscosity 

Fig. 1. (continued). 
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of Ct-DNA with compound and ηo is the viscosity of Ct-DNA without 
compound [19]. 

2.9.4. Circular dichroism 
Circular dichroism (CD) is convenient and an excellent method to 

monitor the morphological changes that occur during DNA and drug 
interaction. These experiments were performed in 5 mM Tris-HCl/NaCl 
buffer in absence and presence of the compounds. All the experiments 
were performed in the range of 200–320 nm at room temperature [64]. 
Each sample was kept for 20 min at equilibrium before recording there 
spectrum and the spectra were repeated thrice to obtain the final 
average spectra at a scan rate 50 nm/min. 

2.9.5. Electrochemical measurements 
Cyclic voltammetry (CV) measurements were performed to get the 

information about the drug-DNA binding. A serially diluted 60 µL 
sample was purged on screen-printed electrode (SPE) to record the 
spectrum at a scan rate of 100 mVs− 1 and voltage from − 1 to +1 V. The 
measurements were performed in a solution of ferri/ferrocyanide (1:1) 
as redox couple. The further measurements of the lead compounds 3b 
and 3d were carried out with varying concentrations of Ct-DNA in 
tris–HCl/NaCl buffer. A film of test compounds was used as a working 
electrode and gold-coated copper was used as reference and counter 
electrode. Before the measurement, the pH value of the electrolytic so-
lution was also controlled. The Entire analysis was accomplish at 25 ◦C 
with fixed potential scan rate of 50 mVs− 1 in the potential align from 
+1.0 to − 1.0 V at room temperature [65]. 

2.10. Antioxidant assay 

2.10.1. DPPH radical scavenging activity 
DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging capacity has been 

determined as per reported method [19,66]. To a solution of 3 ml of 
DPPH (0.1 mM) in ethanol, 1 ml of each test compounds (3a–3l) was 
added. The mixture solutions were incubated for 1 h and the decreasing 
in absorbance at 516 nm was recorded on a UV–visible spectropho-
tometer. Ethanol was used as blank and ascorbic acid was taken as a 
positive control. The entire experiment was performed in triplicate. The 
% inhibition antioxidant property was calculated by the following Eq. 
(2): 

% Inhibition =
AControl - ASample

AControl
× 100 (2)  

where Acontrol is absorbance of DPPH without compound and Asample is 
absorbance of DPPH with compound. 

2.10.2. Hydrogen peroxide scavenging activity 
Hydrogen peroxide was also used for the estimation of the scav-

enging activity of test compounds using the reported method [67,68]. To 
the solution of 1.8 ml hydrogen peroxide (2 mM) in phosphate buffer 
was added 1 ml of test compounds in ethanol was added and then further 
diluted up to 4 ml with the phosphate buffer. All the samples were 
incubated for 10 min at 37 ◦C and absorbance was recorded at 230 nm 
on the UV–Vis spectrophotometer. Phosphate buffer was used as a blank 
and ascorbic acid was taken as a standard. The Ability of test samples to 
scavenge the hydrogen peroxide was measured by using the following 
Eq. (3): 

% Inhibition =
AB - AT

AB
× 100 (3)  

where AB is absorbance of blank and AT is absorbance of sample 
compounds. 

3. Results and discussion 

3.1. Chemistry 

The appropriate chalcones (2a–2l) were treated with hydrazine hy-
drate in the presence of formic acid by nucleophilic cycloaddition re-
action followed the conventional heating method [10,41,69]. The 
formation of the N-formyl pyrazoline ring involves a Michael addition 
(1,4) of hydrazine on chalcone derivatives, followed by cyclization and 
dehydration. The synthesis of N-formyl pyrozoline derivatives 3a–3l 
was followed in two steps with good yields of around 70–86%. The IR 

Fig. 2. Dose response % cell survival vs concentration of N-formyl pyrazoline 
derivatives (3a–3l). Data is presented as Mean ± SEM. *indicates P < 0.05, 
**indicates P < 0.01, *indicates P < 0.001,****indicates P < 0.0001, and ns 
indicates non-significant. GraphPad prism was used to calculate statistical 
values by using non-parametric t test. 
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Table 1 
In vitro cytotoxicity and selectivity index (SI) of N-formyl pyrazoline derivatives (3a–3l) against human lung cancer cell lines (A549 and HT1080) and human primary 
normal lung cells (HFL-1) in terms of IC50 value in µM.  

Compounds A549 HT1080 HFL-1 Selectivity index 

A549 HT1080 

71.49 ± 8.37 26.03 ± 1.85 232.66 ± 7.35  3.2  8.9 

12.47 ± 1.08 11.40 ± 0.66 116.47 ± 43.38  9.3  10.2 

187.95 ± 33.31 31.4 ± 4.17 130.55 ± 47.23  0.6  4.1 

14.46 ± 2.76 23.74 ± 13.30 152.36 ± 22.18  10.5  6.4 

548.1 ± 124.022 46.99 ± 8.19 399.3 ± 33.89  0.7  8.4 

1032.55 ± 111.17 64.31 ± 2.83 531.36 ± 16.00  0.5  8.2 

238.82 ± 60.43 66.89 ± 4.80 564.6 ± 29.72  2.3  8.4 

435.95 ± 225.02 83.13 ± 8.28 291.36 ± 82.14  0.6  3.5 

245.47 ± 80.49 35.39 ± 4.76 274.06 ± 14.91  1.1  7.7 

65.28 ± 15.30 48.07 ± 5.84 365.33 ± 39.31  5.5  7.5 

107.19 ± 70.62 31.56 ± 2.00 1163.43 ± 555.79  10.8  36.8 

299.6 ± 98.00 90.51 ± 8.76 1066 ± 217.45  3.5  11.7 

9.27 ± 0.60 14.49 ± 3.51 37.21 ± 13.76  4.0  2.5  
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spectra of the N-formyl pyrozoline derivatives (3a–3l) exhibits charac-
teristics (C––O) and (C––N) absorption bands which appear at 
1658–1579 and 1596–1460 cm− 1 respectively (Fig. S2). The formation 
of pyrazoline ring in the target compounds was confirmed by revealed a 
typical ABX system, in which methylene proton resonated as a pair of 
doublets observed at 3.13–3.46 ppm (HA), 3.66–3.99 ppm (HB). The CH 
proton appeared as a doublet of doublets at 5.42–5.89 ppm (HX) due to 
the vicinal coupling with the magnetically non-equivalents proton of the 
methylene group and a singlet of formyl proton at 8.91–9.23 ppm. The 
peaks of aromatic proton observed at 6.65–8.30 ppm. The main meth-
ylene signal in the 13C NMR was observed at 42.22–59.41 ppm range. 
The signal observed between 159.83 and 161.48 ppm attributed to the 
(C––O) group, confirms the acetylation formation of the analogs (3a-3l) 
(Fig. 1 and Fig. S1). The mass spectra analyses were also supported by 
the structure of N-formyl pyrazoline derivatives (3a–3l) (Fig. S3). 

3.2. Anticancer activity 

In vitro cytotoxicity of all the synthesized N-formyl pyrozoline de-
rivatives (3a–3l) was measured by MTT assay against human lung 
cancer (A549), fibrosarcoma (HT1080) cell lines and human primary 
normal lung cells (HFL-1) [70]. The calculated IC50 values were 
expressed as µM of the derivatives (3a–3l) (Fig. 2). Nocodazole was 
taken as a reference drug and the results in terms of IC50 values are given 
in Table 1. It is clear from the IC50 values that most of the pyrozoline 
derivatives showed moderate to good cytotoxicity against human lung 
cancer (A549), fibrosarcoma (HT1080) cell lines and very low toxicity 
towards human primary normal lung cells (HFL-1). The analogs 3a–3e 
and 3i–3k showed significant cytotoxicity as compared to standard drug 
nocodazole. The pyrazoline analogs 3a and 3c with OCH3 and F groups 
in the para-substituted benzene ring showed an IC50 value of 26.03 ±
1.85 and 31.4 ± 4.17 µM against fibrosarcoma (HT1080) cell lines, 
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Fig. 3. Representative dot plots obtained after of 
apoptotic A549 cells after a 24 h treatment with 4 
μM concentration of the analogs 3b, 3d, control and 
standard drug. The cells were harvested and 
labeled with Annexin-V(AV) and PI and then 
analyzed by flow cytometry. The histogram anal-
ysis of the respective drug treatments to show the 
statistical significance between various drugs 
treatments and control. The data is shown as Mean 
± SEM. *indicates P < 0.05, and **indicates P <
0.01 with n = 4 in each sample. Non-parametric t 
test was used for the statistical comparisons.   
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respectively. The analogs 3j and 3k containing thiophene ring with Br 
present in para and meta position of the benzene ring exhibited IC50 
values of 48.07 ± 5.84 and 31.56 ± 2.00 µM against fibrosarcoma 
(HT1080) cell lines respectively. The compound 3i with NO2 at the para- 
substituted benzene ring showed IC50 value of 35.39 ± 4.76 µM against 
fibrosarcoma (HT1080) cell lines. Compound 3e with Br group at meta- 
substituted in parent analogue showed an IC50 value of 46.99 ± 8.19 µM 
against fibrosarcoma (HT1080) cell lines. The N-formyl pyrazoline an-
alogs 3b and 3d exhibited excellent cytotoxicity with IC50 values of 
12.47 ± 1.08 and 14.46 ± 2.76 µM against human lung cancer (A549) 
and 11.40 ± 0.66 and 23.74 ± 13.30 µM against fibrosarcoma 
(HT1080) cancer cell line as compared to standard drug nocodazole. 
Selectivity index (SI) data shown in Table 1 indicate that pyrazoline 
derivatives except 3b and 3d were non-selective for both the tested 
cancer cell lines as compared to the nocadazole. 

3.3. Apoptosis study 

To confirm the MTT findings of cell death, we used two lead 

compounds 3b and 3d for further evaluation by flow cytometry to get 
the quantitative estimate of the cell death. Based on the MTT assay re-
sults, we performed the assay on A549 cells. As shown in Fig. 3, robust 
cell death was elicited by the positive control drug (nocodazole), while 
very little cell death was observed in the control untreated cells. The cell 
death was measured as the percentage of positive cells in the three 
quadrants; Q1 reflecting the percentage of PI-positive cells, Q2 shows 
the percentage AV + PI positive cells, Q3 shows the percentage AV 
positive cells, and Q4 shows live cells. Increased signal in all the three 
quadrants (Q1-Q3) was observed, in the case of nocodazole treated cells 
with a concomitant decrease in the Q4 quadrant. On the contrary, a 
higher percentage of cells were seen in the Q4 quadrant in control cells, 
which confirm the validity of this assay for measuring cell death. 
Correspondingly, equal numbers of cells were used for analysis from the 
samples treated with the lead compounds 3b and 3d. Cells treated with 
these compounds showed increased cell death as measured by an in-
crease in signal in the PI (Q1), Annexin V + PI (Q2), and Annexin V (Q3) 
quadrants. The overall cell death observed with 3b is 26.83 (13.4 þ
7.03 þ 6.42), and 3d is 17.99 (8.03 þ 5.37 þ 4.59), as compared to 

Fig. 4. Schematic representation of docked pose of (A and B) pyrazoline derivative 3b and (C and D) pyrazoline derivative 3d with topoisomerase II.  

Fig. 5. Relaxation inhibition activity. A. Relaxation inhibition of HuTopoII by compounds 3b and 3d, C- pHOT1 plasmid only, EC- pHOT1 plasmid + enzyme, CC– 
pHOT1 plasmid + compound). FR- Fully Relaxed, PR- Partially Relaxed and SC- Supercolied plasmid. B. The quantification of percentage inhibition of relaxation of 
supercoiled plasmid by compounds 3b and 3d. 
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6.716 in the control (6.41 þ 0.28 þ 0.026). These results thus suggest 
that both the lead compounds induce significant cell death which is 
comparable to the cell death induced by the nocodazole (Fig. 3). Overall, 
these results confirm the findings from MTT assay and suggest that these 
lead compounds may be potential anti-cancer drugs. 

3.4. In silico molecular modelling and docking study 

3D model of topoisomerase II was used for further docking and 
simulation studies. The discrete optimized protein energy (DOPE) score 
of model and template were found to be − 42699.12 and − 40736.66, 
respectively. This indicates the reliability of the predicted models which 
were subjected to further optimization and refinement. The molecular 
docking of pyrozoline derivatives (3a–3l) was carried out to find the 
best XP score (− 6.2 to − 8.4 kcal/mol). The docking was performed in 
the active pocket of topoisomerase II. The best pose was selected by 
analyzing the binding energy as well as superimposition of pre-existing 
ligands in the crystal of topoisomerase II to find the proper orientation of 
our docked ligands (Fig. 4). The binding energy of the compounds 3a, 
3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l and Nocodazole were found to be 
− 8.1, − 8.2, − 7.5, − 8.4, − 6.7, − 7.3, − 7.1, − 7.5, − 6.5, − 7.0, − 6.2, − 6.6 
and − 7.4 kcal/mol, respectively. Among all drugs, 3b and 3d showed 
higher binding affinity − 8.1 and − 8.4 kcal/mol respectively which 
indicate the good-quality results for topoisomerase II. This binding 
conformation of the topoisomerase II receptor in the active site is sup-
posed to a reason for their significant inhibitory effect against pyrazoline 
derivatives. 

3.5. HuTopoII inhibitory activity 

Inhibitory activity of pyrazoline derivatives on HutopoII was exam-
ined via relaxation assay at varying concentrations 100–1000 µM. The 
target analogs 3b and 3d have shown inhibition of HutopoII relaxation 
activity at 1000 µM (Fig. 5). The pyrazoline derivatives other than 3b 
and 3d showed less HuTopoII inhibitory activity at higher concentration 
(Fig. S4). Gel densitometry analysis was performed to calculate the % 
inhibition of relaxation activity of HuTopoII for the synthesized com-
pounds. Analogs 3b and 3d exhibited inhibition of relaxation upto 32% 
and ~70%, respectively at 1000 µM (Fig. 5). This finding further 
strengthens our in silico data, which showed compounds 3b and 3d have 
the strongest binding energy for topoisomerase II than other com-
pounds. Our observation suggested that Cl and Br at para position could 
inhibit HuTopoII as observed in compounds 3b and 3d. 

3.6. ADMET prediction 

Lipinski’s rule of five, also known as Rule of five (RO5), offers a 
valuable tool to assess the drug-likeness properties of a molecule 
[71,72]. According to this rule, the higher bioactivity score indicates a 
greater the chance of the specific compound will be active. It plays a 
significant role in drug design and development to the final success of 
drug candidates. All compounds following Lipinski’s rule of five as well 
as bioactivity score for finding the more suitable result, including GPCR 
ligand, ion channel modulator, a kinase inhibitor, protease inhibitor and 
enzyme inhibitor as represented in Table 2. The lower value indicates 
better draggability. The range of various important parameters, like 
molecular weight, lied in range between 293 and 373, the value of total 
solvent accessible surface area (SASA) ranged 35–83 estimated number 
of hydrogen bonds donated (Donor H-B) by the solute to water mole-
cules in an aqueous solutions was found 0, estimated number of 
hydrogen bonds accepted (accept H-B) by the solute to water molecules 
in an aqueous solutions ranged 2.00–4.00, predicted octanol/water 
partition coefficient (QPlogPo/w) ranged 1.89–3.53, predicted aqueous 
solubility (QPlogS), ranged − 3.25 to − 4.55, predicted number of 
rotatable bond (R.B) ranged 3–5, apparent Caco2 cell permeability 
(QPPCaco) ranged 21.17– 50.55 nm/sec, apparent MDCK cell Ta
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permeability (QPPMDCK) ranged 0.22–151.57 nm/sec, predicted skin 
permeability (QPlogKp) ranged − 6.28 to − 5.49, human GI absorption 
percentage is high, total polar surface area (PSA) ranged 35–83,IlogP 
ranged 2.3 to 2.82, molar refractivity ranged 88.19 to 114.19, fraction of 
sp3 hybridization ranged 0.14–0.22 and Lipinski violations were 0. 
These outcomes of ADMET studies were found to be within the accept-
able range that following the drug-likeness properties of the pyrozoline 
derivatives, thus it suggests their potential as druggable molecules. 

3.7. Structure deviation 

To examine the impact of binding of analogs 3b and 3d in the 
structure of topoisomerase II, RMSD was calculated, which is a measure 
of protein conformation under particular conditions [51,53]. The 
average RMSD of topoisomerase II with 3b and 3d was found to be 0.44 
nm and 0.31 nm, respectively. The binding of 3d leads to a decrease in 
RMSD values of topoisomerase II. It suggested that 3d binds more tightly 
than 3b to the active pocket of topoisomerase and stabilize the structure 
(Fig. 6A). This is also in line with the experimental and docking results. 
The average radius of gyration (Rg) values for topoisomerase II with 3b 
and 3d were found to be 2.06 nm and 2.30 nm, respectively (Fig. 6B). 
The Rg plot suggested that the compactness in the structure of topo-
isomerase II also changed due to the binding of these ligands. The 
binding of these ligands has different impacts on the structure of topo-
isomerase II. The solvent-accessible surface area (SASA) is describe as 
the surface area of a molecule that forms networks with the solvent 
[44,54]. The average SASA for backbone atoms of topoisomerase II with 
3b and 3d were found to be 123.98 nm2 and 124.82 nm2, respectively 
(Fig. 6A). The SASA plot suggested that the binding of 3d leads to a slight 
increase in SASA values. This can be assumed as the core amino acid 
residues present in topoisomerase II were uncovered to solvent due to 
conformation change or denaturation. 

3.8. DNA binding studies 

3.8.1. Absorbance measurements 
The Interaction ability of Ct-DNA with target compounds 3b and 3d 

has been studied to explore the binding mode of DNA by UV–visible 
spectroscopy. Hypochromic and hyperchromic are the two features that 
arise during absorption titrations of compounds. Hypochromic is due to 
the decrease in absorbance due to strong stacking interaction between 
the DNA base pairs and aromatic chromophore of the compounds, 
considered as a peculiar feature of intercalative mode of binding. 
However, hyperchromic is associated with the damage of the secondary 
structure of DNA and responsible for electrostatic or groove mode of 
binding [73,74]. The absorption spectra of the lead compound 3b and 
3d in the presence and absence of Ct-DNA is shown in Fig. 7. From the 
results, hyperchromic was observed which confirmed that compounds 
bind to Ct-DNA through the electrostatic mode of binding. DNA binding 
constant (Kb) was determined to compare the DNA binding potency of 
the compoundsby using the Eq. (4): 

[DNA]/(εa − εf ) = [DNA]/εb − εf + 1/Kb(εb − εf ) (4) 

Where εa refere to Aobsd/[Compound], however absorption extinc-
tion coefficient of free compound and in fully bound form, denoted as εf 
and εb, respectively. A plot of [DNA]/(εa–εf) versus [DNA] gave a slope 
1/(εb–εf) and Y-intercept equal to 1/Kb(εb–εf) respectively. The Intrinsic 
binding constant (Kb) is slope to intercept ratio of the slope to intercept, 
found to be 2.0 × 104 and 3.0 × 103 M− 1 for the compounds 3b and 3d, 
respectively. 

3.8.2. Fluoremetric studies 
Binding features of compounds 3b and 3d have been also explored 

with Ct-DNA by emission titrations as it provides a useful complement in 
support of the previous studies. Emission titrations of the compounds 3b 
and 3d were carried out in the presence of an increasing amount of Ct- 
DNA. It was observed that on each addition of Ct-DNA aliquot, the 
emission intensity increases significantly shown in Fig. 8. Results sug-
gested that the quenching effect of the solvent molecule is prevented the 
hydrophobic environment of compounds inside the DNA helix. Transfer 
of photoelectron from the guanine base of DNA to excited states of the 
compounds is responsible for the quenching of emission of the com-
pounds [75]. The emission data demonstrate that compounds 3b and 3d 
bind with DNA through the electrostatic mode of binding. 

Fig. 6. Structural dynamics of topoisomerase II. (A) The plot of RMSD values, (B) the plot of Rg values and (C) the plot of SASA values of topoisomerase II with the 
ligands 3b (black) and 3d (red) at 100 ns MD simulations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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3.8.3. Viscosity measurements 
Compounds tend to adjust themselves between the DNA base pairs 

due to the separation of base pairs at the intercalation site which leads to 
increases in the viscosity of Ct-DNA, responsible for the classical inter-
calation mode of binding. Apart from this, in partial or non-classical 
intercalation mode, DNA helix bends or kinks to accommodate the 
compounds which also reduce the effective length Ct-DNA helix tends to 
decrease in viscosity. On addition of increasing amount of compounds 
(3b and 3d) to a fixed amount of Ct-DNA, viscosity slightly increases 
(Fig. 9) [76]. The experimental results suggested that the compound can 
interact with Ct-DNA by electrostatic or groove mode of binding. These 
results are very similar with UV–Vis. and emission spectroscopic studies. 

3.8.4. Circular dichroism study 
CD spectroscopy is extensively used for monitoring the trans-

formations that occurred in the secondary structure of DNA, proteins 
and polypeptides upon their interactions with ligand molecules. CD 
spectrum of DNA have been implement in the absence and presence of 
the target compounds (3b and 3d) to investigate the conformational 
changes that occurred during drug-DNA interaction. Two characteristic 
peaks a positive band at 275 nm and a negative band at 245 nm shown 
by the native Ct-DNA, due to helicity of Ct-DNA and π-π base stacking, 
respectively [77]. Fig. 10 showed that the binding of compounds (3b 

and 3d) to DNA did not have any remarkable effect on peak positions of 
245 nm and 275 nm, only slightly decreased in intensity. Although, this 
little change in intensity at 245 nm and 275 nm may be attributed to 
certain conformational changes induced by binding of compounds (3b 
and 3d) in which the B-conformation was still predominant. In general, 
electrostatic and groove binding have slight or no impact on DNA stand 
stacking and helicity although, intercalative binding influence deter-
ministic outcome. This result explains the nature of the binding of target 
compounds (3b and 3d) to Ct-DNA is non-intercalative. Moreover, the 
change induced by compound 3b was more significant than 3d which 
reveals that 3b has a higher affinity for Ct- DNA. 

3.8.5. Electrochemical measurements 
Cyclic voltammetry (CV) experiments have also been performed for 

the support of DNA interaction studies. The binding of target compounds 
(3b and 3d) with Ct-DNA has been inferred by the shift in peak potential 
in cyclic voltammogram [78]. Intercalation refers to the positive shift in 
peak potential however the electrostatic binding is due to the negative 
shift in peak potential. CV diagram of test compounds (3b and 3d) with 
and without DNA is shown in Fig. 11. From the figure, it has been 
observed that after the addition of Ct-DNA to the compound, the peak 
potential is shifted in the positive direction and the peak current 
increased which may be due to the formation of the compound-DNA 
complex. 

Fig. 7. Absorption spectra of Ct-DNA (40 µM) in the presence of increasing 
amounts of 3b and 3d (10–60 µM). 

Fig. 8. Emission spectra of test compounds 3b and 3d (40 µM) in the presence 
of increasing [DNA] (0–60 µM). 
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3.9. Antioxidant assay 

3.9.1. DPPH radical scavenging activity 
DPPH is a free radical which can accept electron or hydrogen atom 

from the compound and become reduced. After the incubation of one 

Fig. 9. Effect of increasing amounts of test compounds (10–50 µM) on the 
relative viscosity of DNA (50 µM). 

Fig. 10. Circular dichroism spectra of Ct-DNA (50 µM) in the absence and 
presence of test compounds 3b and 3d (50 µM). 

Fig. 11. Cyclic voltammogram of 5.0 × 10-5M of test compounds 3b and 3d in 
1 mM tris-buffer, pH 7.5 at 50 mV s− 1 scan rate without DNA (black) and with 
DNA (red). 

Table 3 
% Antioxidant values with mean S.D. of pyrazoline derivatives 3a–3l and 
ascorbic acid used as standard.  

Compounds DPPH (%) H2O2 (%) 

3a  69 ± 0.23  34 ± 0.67 
3b  69 ± 0.34  24 ± 0.47 
3c  73 ± 0.69  27 ± 0.37 
3d  66 ± 0.54  20 ± 0.25 
3e  66 ± 0.57  22 ± 0.34 
3f  41 ± 0.13  33 ± 0.62 
3g  74 ± 0.77  33 ± 0.65 
3h  71 ± 0.21  33 ± 0.71 
3i  70 ± 0.46  34 ± 0.59 
3j  70 ± 0.67  34 ± 0.43 
3k  70 ± 0.36  34 ± 0.23 
3l  71 ± 0.68  33 ± 0.59 
Ascorbic acid  89 ± 0.25  56 ± 0.62  
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hour, the change in colour from violet to yellow was observed [19]. 
From the UV–visible spectrophotometer, it has been found that after the 
addition of test compounds absorbance was decreased at 516 nm. All the 
heterocyclic pyrazoline derivatives (3a–3l) exhibited significant anti-
oxidant activity and results are shown in Table 3. 

3.9.2. Hydrogen peroxide scavenging activity 
For the evaluation of the antioxidant activity of the compounds 

(3a–3l), hydrogen peroxide assay is considered a very helpful method 
because it is highly reactive among all the oxygen- containing species 
[67]. The absorbance decreases after the addition of test compounds at 
230 nm wavelength and compared with standard ascorbic acid 
(Table 3). All the results are DPPH free radical method. 

4. Conclusion 

In this article, we synthesized pyrazoline derivatives and then vali-
dated their structures by various spectroscopic techniques. Anticancer 
activity was evaluated against fibrosarcoma (HT 1080), human lung 
cancer (A549) cell lines and human primary normal lung cells (HFL-1). 
All the compounds showed moderate to good cytotoxicity and analogs 
3b and 3d containing Cl and Br groups in the para-substituted benzene 
ring exhibit excellent cytotoxicity. The anticancer activity of the com-
pounds was further validated by apoptosis and DNA binding studies. The 
binding strength of active compounds 3b and 3d with Ct-DNA was 
studied by UV–visible, fluorescence, viscocity, circular dichromism and 
cyclic voltametary techniques which showed an intercalation mode of 
binding. Molecular docking was used to evaluate the interaction of 
compounds, 3b and 3d with topoisomerase II, which showed their 
strongest binding energy with it. The computational results by molec-
ular docking and MD simulation were in good agreement with the 
HuTopoII inhibitory activity observed experimentaly. The drug likeness 
properties of the compounds were further studied by computational 
method, ADMET assay, which strongly supported the experimental re-
sults. Overall the compounds showed excellent anticancer potential 
which could be further done by screening the compounds using different 
cell lines and in vivo studies. 
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