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This work investigates selective oxidation of glycerol with molecular oxygen, one of the viable routes to
obtain value-added products from bio-glycerol, using nanosized Pd-based catalysts. For this, three types
of 1 wt.% Pd catalysts supported on activated carbon (Ac), hydrotalcite (HTc), and activated carbon–hy-
drotalcite composite (Ac–HTc) were prepared. The physicochemical properties of the catalysts are char-
acterized using various techniques, such as XRD, BET, XRF, H2-TPR, CO2-TPD, and TEM. The TEM images
reveal the formation of Pd nanoparticles with an average diameter of 9.01, 9.10, and 11.16 nm on the sur-
face of HTc, Ac, and Ac–HTc supports, respectively. The CO2-TPD results show that the Pd@HTc catalyst
exhibits higher concentration of basic sites compared with that of Pd@HTc-Ac and Pd@Ac catalysts.
The H2-TPR profiles show that the reducibility of Pd species is highly dependent on the nature of the sup-
ports. Catalytic activity results reveal that the conversion of glycerol over Pd catalysts increased in the
following order: Pd/Ac < Pd@HTc-Ac < Pd@HTc, while selectivity of the glyceric acid increased in the fol-
lowing order: Pd@HTc-Ac < Pd@Ac < Pd@HTc. The presence of more number of basic sites and high dis-
persion of Pd nanoparticles are found to be key factors for excellent catalytic performance of Pd@HTc
catalyst in the oxidation of glycerol with molecular oxygen.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The negative impacts of fossil fuels on climate change, along
with concerns on local economic dependencies and social sustain-
ability have motived the scientific community to search for alter-
native renewable energy sources [1,2]. In this context, biomass,
one of the important renewable resources, can be used to produce
valuable chemicals and fuels that are currently being produced
from fossil fuels. However, only 3.5% of the existing biomass is pre-
sently being used for human needs, which includes food (around
62%), energy use, paper and construction needs (33%), and clothing,
detergents and chemicals (5%). The remaining 96.5% of the biomass
is used in the planetary ecosystem [3]. Therefore, the transforma-
tion of biomass to useful products still represents an emerging field
that has potential to overcome the concerns of fossil fuels, however
there is an urgent need to develop substantial economical routes
for efficient biomass valorisation.

Bio-glycerol, one of the top 10 bio-platform chemicals
estimated by the US Department of Energy, has attracted much
attention because of its high abundance and excellent functionality
due to the presence of three hydroxyl molecules [2]. Glycerol can
be largely obtained (�10 wt.%) during biodiesel synthesis process
[1,2]. A number of catalytic processes, such as oxidation, hydro-
genation, hydrogenolysis, dehydration, esterification, and transes-
terification have been reported to efficiently convert glycerol into
valuable chemicals [4–6]. The liquid phase oxidation of glycerol
is one of the most promising routes to produce high-value chemi-
cals. As shown in Fig. 1, a number of products, such as dihydroxy-
acetone (DHA), glyceric acid (GLYAC), glyceraldehyde (GLYALD),
hydroxypyruvic acid (HYPAC), and glycolic acid (GLYCAC) are pos-
sible in glycerol oxidation [7–10]. Among all these products, glyc-
eric acid is an important chemical with potential applications
[8,11]. For example, glyceric acid can be used for treatment of skin
disorders, its ester for biodegradable fabric softener, and deriva-
tives as building block compounds for bio-based polyesters [12].

The glycerol conversion and distribution of the products in the
oxidation of glycerol are dependent on the nature of the catalyst,
reaction conditions, and oxidant source [14] The liquid phase oxi-
dation of glycerol has been investigated using few monometallic
and bimetallic catalysts based on Au, Pt, and Pd in basic medium
[4,6,15–20]. Hutchings and his research group [21,22] found that
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Fig. 1. General reaction pathways in liquid phase oxidation of glycerol [13].
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the activity of the gold catalysts is strongly dependent on the
basicity of the reaction medium. Base plays a key role in the oxida-
tion of glycerol by abstracting hydrogen from the primary OH
groups of glycerol, which is the rate limiting step in this reaction
[23]. Peroxide could also be formed and contributed to the C–C
bond cleavage of the glycerol during glycerol oxidation over the
gold catalyst [19]. The activity of the Au catalysts on different sup-
ports, such as TiO2, Al2O3, and carbon has been investigated for
glycerol oxidation [8,23–26]. Among the above used supports, car-
bon was proven to be a better support for gold catalysts in glycerol
oxidation [17,25], which is due to its high surface area and larger
porosity. However, sodium glycerate is formed in alkaline solution,
thus to get free glyceric acid, neutralization and acidification
should be further needed [24]. As well, the high price and limited
availability of gold is liming the applications of Au-based catalysts
in chemical industry. Therefore, the development of novel, efficient
heterogeneous catalysts having appropriate metal active phases
and supports is needed for sustainable biomass valorisation [27].

Relatively, Pd is cheap and abundant compared to Au, and it is
widely used as heterogeneous and homogeneous catalytic compo-
nent in many industrial applications, such as vinyl synthesis, acet-
ylene hydrogenation, and automobile exhaust purification [28].
Blackburn et al. reported the first successful example of Pd cat-
alyzed aerobic oxidation of secondary alcohols to produce ketones
[29]. The successful oxidation reactions were also carried out with
Pd nanoparticles catalyst [26–28]. Selective oxidation of glycerol to
glyceric acid was performed using nanoscale Pd catalysts under
base-free conditions [13]. Recently, hydrotalcites are used as effi-
cient supports for dispersing the noble metals and their catalytic
efficiency was investigated for liquid-phase oxidation of primary
alcohols [30,31]. Hydrotalicites exhibit numerous catalytically
favourable properties, such as high basicity, structural stability,
homogeneous dispersion of active metals, and better resistance
to sintering [31].

Therefore, in this work we synthesized various Pd-based cata-
lysts supported on hydrotalcite, activated carbon, and composite
of activated carbon–hydrotalicte using an immobilization method.
The physicochemical properties of the catalysts were investigated
using powder X-ray diffraction (XRD), N2 adsorption–desorption,
Please cite this article in press as: S.B.A. Hamid et al., Polyhedron (2016), http
X-ray fluorescence (XRF), H2-temperature-programmed reduction
(H2-TPR), CO2-temperature programmed desorption (CO2-TPD),
and transmission electron microscopy (TEM) techniques. The effi-
ciency of the catalysts was tested for liquid-phase oxidation of
glycerol with molecular oxygen. Much attention has been paid to
understand the structure–activity properties of Pd catalysts in liq-
uid phase oxidation of glycerol.
2. Experimental

2.1. Materials

Na2PdCl4 (99.99%) and polyvinyl alcohol (PVA, Mw = 146,000–
186,000, 87–89% hydrolysed) were purchased from Sigma–Aldrich.
Stock activated carbon was purchased from United Chem (surface
area = 1100–1250 m2 g�1 and pH � 9–10). The other reagents used
in this work are Mg(NO3)2�6H2O (Merck, 99%), Al(NO)3�9H2O (Mer-
ck, 98.5%), NaOH (Merck, 99%), Na2CO3 (Sigma–Aldrich, 98%), and
HNO3 (Sigma–Aldrich, 70%). The oxygen was purchased from
MOX-Linde (99.99%).

2.2. Catalyst preparation

2.2.1. Preparation of activated carbon (Ac) support
The crude activated carbon is treated with 5 M HNO3 under vig-

orous magnetic stirring at room temperature for 24 h. The treat-
ment was performed at 500 mL/10 g ratio of HNO3 to carbon
sample. After the treatment, the sample was filtered off and thor-
oughly washed with distilled water until the pH of the solution
reach to �7 [32]. Afterwards, the carbon material was over-dried
at 333 K.

2.2.2. Preparation of hydrotalcite (HTc)
The hydrotalcite (Mg/Al ratio = 4) was prepared using a co-pre-

cipitation method [33]. In brief, the requisite amounts of
2.40 mol Mg(NO3)2�6H2O and 0.6 mol Al(NO3)3�9H2O were dis-
solved in 227.5 mL distilled water (solution A). The solution A
was then added drop wise to another solution B, which contained
://dx.doi.org/10.1016/j.poly.2016.07.017
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Fig. 2. N2 adsorption/desorption isotherms of (a) Ac, (b) HTc, (c) HTc-Ac (d) Pd@Ac, (e) Pd@HTc and (f) Pd@HTc-Ac: desorption adsorption.

Table 1
Textural properties of the supports and Pd catalysts.

Catalyst BET surface area
(m2 g�1)

Pore volume
(cm3 g�1)

Pore
diameter
(nm)

Pd particle
size (nm)

XRD TEM

Ac 917.9 0.4664 3.590 – –
HTc 126.7 0.0291 17.379 – –
HTc-Ac 648.1 0.1444 8.644 – –
Pd@Ac 917.1 0.0294 4.450 11.00 9.10
Pd@HTc 125.6 0.2754 7.853 8.90 9.01
Pd@HTc-

Ac
632.2 0.0516 8.113 22.01 11.16

aDetermined by XRF.
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250.9 mL aq. solution of Na2CO3 (2 mol) and NaOH (6 mol) under
vigorous stirring at room temperature. The suspension was left
for 12 h at 300 K and the pH of the sol–gel solution was around
13. The sample was then filtered off and washed with distilled
water until the pH of the solution reach to �7. The resultant gel
was dried at 333 K overnight and calcined at 723 K in N2 for 5 h
to obtain its oxide form.
2.2.3. Preparation of activated carbon–hydrotalcite composite
The activated carbon and hydrotalcite were mixed by taking a

1:1 weight ratio to obtain the composite of activated carbon–hy-
drotalcite (Ac–HTc).
://dx.doi.org/10.1016/j.poly.2016.07.017
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2.2.4. Synthesis of supported Pd catalysts
The supported Pd catalysts with 1% Pd loading were prepared

using an immobilization method with polyvinyl alcohol. The Pd
precursor was pre-reduced with NaBH4 with a 2:1 M ratio of
NaBH4:Pd (formation of dark brown sol). Within a few minutes
of sol generation, the colloid was immobilized by adding support
(activated carbon, hydrotalcite, and composite of hydrotalcite
and activate carbon) under vigorous stirring. The slurry was stirred
until all the palladium was deposited on the support. Afterwards,
the sample was filtered off and dried at 333 K overnight. The cata-
lyst was then calcined at 673 K under N2 flow (50 mL min�1) and
reduced in a stream of N2 and H2 (90:10) at 150 mL min�1 flow rate
for 4 h at 723 K.
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Table 2
Liquid phase oxidation of glycerol using supports and Pd catalysts.

Catalyst CO2 uptake amount (mmol/g) Conversion (%)

Ac – <1
HTc 2.357 <1
Pd@Ac 0.321 51.45
Pd@HTc 1.936 70.35
Pd@HTc-Ac 1.421 63.78

Reaction conditions: 0.3 M glycerol solution, glycerol/Pd = 3500 mol/mol, 363 K, 10
time = 180 min, n.d: not determined.

Please cite this article in press as: S.B.A. Hamid et al., Polyhedron (2016), http
2.3. Catalyst characterization

The specific surface area, pore volume, and average pore size of
the catalysts were measured by N2 adsorption–desorption tech-
nique using Micromeritics Tristar ASAP 3020 at 77 K. The Pd load-
ings on the surface of the catalysts were determined by XRF
(S4EXPLORER, Bruker AXS). The H2-TPR studies were carried out
using Thermofinnigan TPDRO 1100 in a fixed-bed reactor equipped
with a thermal conductivity detector using 5% H2 balance in N2

(30 mL/min). The amount of catalyst was 50 mg and the tempera-
ture was increased from room temperature to 800 K at a heating
rate 1 K min�1. The CO2-TPD studies were conducted using Ther-
mofinnigan TPDRO 1100. The catalyst (50 mg) was placed in a
0 700 800
ture (K)

710 K

720 K

and corresponding Pd catalysts.

600 700 800

ture (K)

Ac

HTc

1 wt% Pd@Ac

1 wt% Pd@HTc

1 wt% Pd@HTc-Ac

s and corresponding Pd catalysts.

Selectivity (%) TOF (h�1)

DHA GLYALD GLYAC TARAC

n.d n.d n.d n.d n.d
n.d n.d n.d n.d n.d
11.21 13.20 57.66 17.93 125.30
n.d. 0.84 80.37 18.79 165.58
n.d 1.46 35.18 17.56 147.47

00 rpm and mole ratio of NaOH/glycerol = 2, O₂ pressure = 8 bar, and reaction

://dx.doi.org/10.1016/j.poly.2016.07.017

http://dx.doi.org/10.1016/j.poly.2016.07.017


S.B.A. Hamid et al. / Polyhedron xxx (2016) xxx–xxx 5
tubular quartz sample tube and the sample was pre-treated at
ambient condition under N2 flow of 10 mL min�1 for 30 min. The
sample was exposed to CO2 at room temperature to the 393 K
(10 K min�1). Desorption was carried out from room temperature
to 873 K at a heating rate of 10 K min�1. The X-ray diffraction
(XRD) patterns were recorded using X-ray diffractometer (Bruker)
with Cu Ka (k = 0.154 nm) radiation. The particle size of the cata-
lysts were measured by transmission electron microscope (TEM)
(JEM 2100F:JEOL).
2.4. Glycerol oxidation

A batch stainless steel autoclave reactor (200 mL of Top Indus-
tries) was used for the liquid phase oxidation of glycerol. In a typical
experiment, 0.3 M of glycerol with glycerol/Pd = 3500 and 2 mol
ratio of NaOH/glycerol were charged into the reactor. The autoclave
was purged with O2 and then pressurized to 8 bar at room temper-
ature. The reaction mixture was heated to 363 K for 180 min under
Fig. 5. Powder XRD patterns of the s

Fig. 6a. TEM overview image of Pd@HTc

Please cite this article in press as: S.B.A. Hamid et al., Polyhedron (2016), http
a stirring speed of 1000 rpm. The concentration of the reactant and
products were analysed by high-performance liquid chromatogra-
phy (Shimadzu HPLC) equipped with refractive index (RI) detector.
An Agilent Hi-Plex H, 7.7 � 300 mm, 8 lm column was employed
for product separation at 338 K with 0.0085 M H2SO4 solution as
themobilephaseflowingat 0.55 mL min�1. Productswere identified
by comparison of HPLC standard compounds.
3. Results and discussion

3.1. Catalyst characterization

3.1.1. N2 adsorption–desorption and elemental analyses
The N2 adsorption–desorption isotherms of the catalysts are

shown in Fig. 2. The BET surface area, pore size, and pore volume
of the catalysts are presented in Table 1. The isotherm of activated
carbon can be classified as type I with H4 type hysteresis,
indicating the presence of both micropores and mesopores. The
upports and Pd-based catalysts.
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estimated average pore diameter of Ac support is 3.59 nm (Table 1).
In contrast, the HTc support exhibits type IV isotherm with H1 type
hysteresis loop and the obtained average pore diameter is 17.3 nm,
confirming that HTc has mesoporous structure [34–36]. The iso-
therm of HTc-Ac is almost similar to Ac isotherm, i.e. type I with
H4 hysteresis type. The estimated average pore diameter of HTc-
Ac is �8.644 nm. There was no effect of Pd addition on the iso-
therm of the Ac and Ac–HTc supports: the estimated average pore
diameters are 4.450 and 8.113 nm, respectively. In contrast, the
addition of Pd to HTc resulted in a significant variation in shape
of isotherm and the obtained pore diameter of Pd@HTc catalyst
is 7.853 nm. The Pd@HTc-Ac catalyst shows type I with H4 type
hysteresis, which indicates the presence of both micropores and
mesopores.

It can be noted from Table 1 that the Ac support shows high BET
surface area of 917.9 m2 g�1 [32]. The HTc support has low BET sur-
face area (126.7 m2 g�1), which is improved to 648.1 m2 g�1 after
Fig. 6b. TEM overview image of Pd@Ac an

Fig. 6c. TEM overview image of Pd@HTc-Ac

Please cite this article in press as: S.B.A. Hamid et al., Polyhedron (2016), http
the addition of Ac. Due to the relatively low Pd loadings used in
this study, there was no significant variation in the specific surface
area of Pd@Ac and Pd@HTc catalysts with respect to supports.
However, the BET surface area of the Ac–HTc is considerably
decreased from 648.1 to 632.2 m2 g�1 after the addition of Pd.
The XRF measurements showed that the employed method pro-
vides better Pd retention efficiencies and the determined Pd con-
tents in Pd@Ac Pd@HTc and Pd@HTc-Ac were 1.02, 1.12, and
1.20%, respectively (Table 1).

3.1.2. H2-TPR studies
The H2-TPR profiles of the Pd catalysts, including the supports

are shown in Fig. 3. As can be noted from Fig. 3, no reduction peaks
were found in the case of supports. On the other hand, the Pd@Ac
catalyst shows a major peak at �525 K, which can be assigned to
the reduction of Pd2+ species to metallic Pd [37]. The position of
this peak is shifted to higher temperatures (�715 K) for the
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Pd@HTc and Pd@HTc-Ac catalysts. The presence of reduction peak
at higher temperatures may be due to the strong interaction of Pd
particles with support or existence of highly coordinated types,
causing more resistance to reduce Pd2+ to Pd [37,38].

3.1.3. CO2-TPD studies
The basic properties of the catalysts were investigated using

CO2-TPD technique (Fig. 4). No peaks were found in Ac and Pd@Ac
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samples, indicating that these samples do not show any basic prop-
erties. In contrast, the HTc, Pd@HTc, and Pd@HTc-Ac samples exhi-
bit a major peak in the range of 600–700 K. This peak indicates the
presence of medium basic sites in the synthesized catalysts. The
medium basic sites are related to the metallic oxygen bridge like
Mg2+-O2� and Al3+-O2� pairs. As shown in Table 2, the Pd@HTc cat-
alyst shows a strong ability towards CO2 uptake compared to
Pd@HTc-Ac and Pd@Ac catalysts, indicating presence of more
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number of basic sites in Pd@HTc catalyst, which is highly beneficial
for glycerol oxidation, as discussed in the activity part [38].
3.1.4. Powder XRD studies
The XRD patterns of the supports and corresponding Pd cata-

lysts are shown in Fig. 5. The Ac support shows two peaks at
26.31 and 42.03�, which can be assigned to pure carbon and carbon
oxide, respectively. This is due to the pre-treatment of HNO3 on the
carbon surface. Calcined HTc shows various reflections as shown in
Fig. 5, and clearly indicates that the structure of HTc collapsed dur-
ing the calcination at 773 K (PDF 89–0460). The noticed peaks at 2
theta of 29.56, 31.84, and 48.51� in HTc support indicate the pres-
ence of Al2O3, resulted from the impurities of the hydrotalcite (PDF
88–0107) [39] . In addition, the supported Pd catalysts show a
minor peak at 40.03�, which corresponds to metallic Pd (PDF88-
2335). No detectable diffraction peaks correspond to PdO crystal-
lites were found. This is due to low concentration of PdO and/or
its high dispersion on the support. However, it cannot be ruled
out that the PdO crystallites might be present as smaller crystal-
lites, which are unable to be detected by powder XRD [37]. The
average Pd crystallite size of the Pd catalyst was estimated using
a Scherrer equation and the data was presented in Table 1 [40].
Among the Pd catalysts, the Pd@HTc catalyst has the smallest Pd
crystallites size (8.90 nm).
3.1.5. TEM studies
The particle size and morphology of the Pd catalysts were deter-

mined by TEM analysis. The TEM images of Pd@HTc-Ac, Pd@Ac,
and Pd@HTc catalysts are shown in Fig. 6. A close observation of
all images reveals the formation of different size of palladium par-
ticles with irregular morphologies. It is a known fact that aggrega-
tion of smaller seeds of spherical particles leads to large size
nanoparticles [41]. Fitting by Log-Normal function, the particle size
of Pd species was estimated and the data was presented in Fig. 6.
The estimated average diameter of palladium particles is summa-
rized in Table 1. It can be seen from Fig. 6a that the Pd@HTc cata-
lyst has better dispersion of Pd particles with an average diameter
�9.01 nm (Table 1). In contrast, different sized particles can be
found ranging from 2 to 16 and 14 to 18 nm for Pd@Ac (average
diameter is �9.10 nm) and Pd@HTc-Ac catalysts (average diameter
is �11.16 nm), respectively (Table 1).
Fig. 9. Proposed mechanism of glycero
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3.1.6. Catalytic activity studies
The liquid phase oxidation of glycerol with molecular oxygen

was studied using the Pd catalysts in a 200 mL autoclave vessel
[42,43]. The reaction conditions used for the glycerol oxidation
are 8 bar O2, 363 K and 1000 rpm. The obtained results as a func-
tion of time are presented in Fig. 7. For comparison purpose, the
catalytic efficiency of the supports was also tested for glycerol oxi-
dation at 180 min and the results are resented in Table 2. It can be
noted from Table 2 that HTc and Ac show a negligible performance
in glycerol oxidation, indicating that HTc and Ac could only play a
support role for dispersing the Pd catalysts. As shown in Fig. 7, the
conversion of glycerol increases with the increase of time for all the
Pd catalysts. Among the catalysts tested, the Pd@HTc catalyst exhi-
bits the highest glycerol conversion of 70.35% followed by Pd@HTc-
Ac (63.78%) and Pd@Ac (51.45%) (Table 2). Interestingly, the selec-
tivity of the glyceric acid follows different trends, depending up on
the catalysts. As shown in Fig. 7, the selectivity of glyceric acid is
very low at initial times for Pd@Ac catalyst, which is significantly
increased to 27 and 57.66% for 60 and 180 min, respectively. How-
ever, there was no much improvement in the selectivity of the
glyceric acid with time in the case of Pd@HTc-Ac catalyst: the
observed selectivity of the glyceric acid was 35.18% for 180 min.
On the other hand, the Pd@HTc shows a prominent role in achiev-
ing higher selectivity of the glyceric acid: a 80.37% of glyceric acid
was found for 180 min. Turn over frequency (TOF) values were cal-
culated at highest conversion for each catalyst using Eq. (1). In
addition to glyceric acid, various by-products, such as glyceralde-
hyde and dihydroxyacetone are also found as shown in Fig. 8.
TOF ¼ mmol of converted glycerol
mmol of total Pd� Reaction time ðhourÞ ð1Þ

It is a well-known fact that the basicity of the catalysts plays a
key role in the glycerol oxidation [16–18,44]. As well, a high dis-
persion of active phase species is needed for any heterogeneous
catalytic reaction, including glycerol oxidation. It can be noted
from Fig. 6 and Table 2 that the Pd@HTc catalyst has highly dis-
persed palladium species and more number of basic sites com-
pared to other synthesized Pd catalysts. These improved
properties are the main reasons for high catalytic performance of
the Pd@HTc catalyst in glycerol oxidation (Fig. 7 and Table 2).
l oxidation over Pd@HTc catalyst.
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3.1.7. Proposed reaction mechanism
Based on the results obtained in this study and previously

reported literature [19,44,45], we proposed a reaction pathway
for the oxidation of glycerol to glyceric acid as shown in Fig. 9. First
step is abstraction of the hydroxyl hydrogen of the glycerol by a
base, giving a alkoxide [46]. The formed alkoxide reacts with
OH�, formed by the dissociation of molecular oxygen on Pd species,
cation of O2 with water and from base catalyst on palladium sites
and form intermediate. The partially oxygenated intermediate iso-
merizes on palladium hydride species to give glyceric acid. This
palladium hydride will spontaneously react with molecular oxy-
gen, followed by pre-adsorption step and removal of the palladium
hydroxide by proton to form water while recovering the initial
metallic state. The rate-determining step is the abstraction of the
hydrogen from alcohol group [47]. The 1 wt%Pd@HTc catalyst exhi-
bit high dispersed smaller Pd particles and high concentration of
basic sites, thus better performance in glycerol oxidation giving
higher glycerol conversion and superior selectivity of glycerol
carbonate.
4. Conclusions

In summary, the liquid phase oxidation of glycerol was investi-
gated using Pd-based catalysts synthesized by an immobilization
method. TEM studies reveal that Pd particles are well dispersed
on the surface of the supports, mainly on HTc support. The
reducibility of the PdO is highly dependent on the nature of the
supports. The CO2-TPD results show that the Pd@HTc catalyst exhi-
bits more number of basic sites compared to Pd@HTc-Ac and
Pd@Ac catalysts. Among the catalysts tested, the Pd@HTc catalyst
showed excellent performance in terms of higher glycerol conver-
sion and superior selectivity of glyceric acid. In contrast, negligible
glycerol conversions were found in the case of supports. The cat-
alytic performance of the Pd/HTc catalyst is mainly attributed to
higher amounts of basic sites and well dispersion of Pd
nanoparticles.
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