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Stannaacetylene (RSn =CR') Showing Carbene-like Reaction Mode
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Many experimental and theoretical studies have been devoted
to the chemistry of triple-bonded compounds of heavy group 14
elementd. Among them, silaisocyanid@ silanitrile 2° silaacetylenés
germaisocyanidé& and disilaacetylerf& 93 have been evidenced
as short-lived species by various spectroscopic and trapping
experiments. Only three acetylene analogues of heavy group 14
elements, [(2,6-TipCeH3z)Pb—Pb(GHs-2,6-Tip), (Tip = 2,4,64-
Prs-CeH2-)]*2, [(2,6-Dipp-CeHz)Sn—Sn(GHz-2,6-Dipp), (Dipp =
2,64-Pr-CgH3-)],%° (2,6-Dipp-CeH3) Ge—Ge (GH3-2,6-Dipp),*cd
have been isolated as stable compounds recently by Power et al.
Metallaacetylenes (RE2CR, M = Si, Ge, and Sn) are interesting
because they are expected to have the carbene character perturbed
electronically by a neighboring divalent heavy group 14 element
through the resonance forms shown in Chart 1. Although a number
of theoretical studies have been performed about metallaacetylenes,
their carbene character has been discussed very rarely. Couret anéigure 1. Molecular structure of aryldiazomethylstannylehdetermined
co-workers have succeeded in the generation of a germaacetylendy X-ray crystallography (ORTEP, 30% thermal probability ellipsoid).

. . Hydrogen atoms are omitted for clarity. Selected bond lengths (A) and bond
by the photolysis of a diazomethylgermyleéh€he germaacetylene angles (deg): SmiC1 2.184(9); SniC37 2.063(11): SitC37 1.858-

was trapped by alcohols, but no evidence was obtained for its (10): c37-N1 1.287(11); N+-N2 1.164(10); C+Sn1-C37 99.2(3); C37
carbene character. N1-N2 177.3(11); Sn#C37-N1 119.8(7); Si+C37-N1 115.5(8).

Chart 1 lithium® as thermally stable but air- and moisture-sensitive red
crystals in 18% yield (Scheme 2}° The molecular structure ¢f
KR in the solid state is shown in Figure 1. Notably, the much shorter
/ = Sn—C(=N,) bond length (2.063(11) A) than the S@,;bond length
(2.184(9) A) as well as the rather higH¥Sn NMR resonance (1323
M= Si, Ge, Sn ppm) is suggestive of the significant electron-donating effects of
the diazomethyl substituent.

The photolysis of a benzene solution2ivithout any trapping
reagent using a 500-W high-pressure mercury arc lamp at room
temperature gave red crystals of cyclic stannyléme 70% yield
(Scheme 2}112The!195n resonance appearingiat426 is a little

We report herein the first evidence for the successful generation
of a stannaacetylené&,[Ar = 2,6-Tip,-C¢Hs-, R" = i-Prin Scheme
1] via the photolysis of the corresponding diazomethylstannylene
2. Interestingly, stannaacetyleti¢hus generated showed a singlet
carbene-like reaction mode.

Scheme 1 Scheme 2
Li N,
- R Si’C=N2 - lcl; hy PN
ArSn,  —EE——  ArSi SR —= Ar-Si SR’
3 2,18% 1
Ar= R"3Si = i-Pr3Si i-Pr 4

higher field than that of a known alkyl(aryl)stannylene dz-2,6-
Tip2)(t-Bu)Sn: & 1904]1314probably due to ther coordination of

a benzene ring to the divalent tin atomdinThe molecular structure
Diazomethylstannylen2was synthesized by the substitution of of 4 with a twist-crown stannacyclooctadiene ring is shown in

the corresponding arylchlorostannyleBewith silyldiazomethyl- Figure 2. The photoreaction is highly stereoselective to give only
- cyclic stannylene4 with cis arrangement between methyl and
Tohoku University. i ; ; f R,
* Photodynamics Research Center, RIKEN. trusopropylsnyl subshtuentg on the stannacyf:looctadlene ring; no
8 Mie University. transisomer was detected in the reaction mixture.
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Figure 2. Molecular structure ol in the unit cell (ORTEP, 30% thermal
probability ellipsoid). Hydrogen atoms are omitted for clarity. Selected bond
lengths (A) and bond angles (deg): Sl 2.201(7); Sn+C37 2.231-
(8); C20-C37 1.557(11); C¥Sn1-C37 94.4(3); Sn+C37-Sil 111.2-
(4); Sn:-C37—C20 115.0(6).

The formation of 4 by the photolysis of2 is explained
straightforwardly by the intermediacy of stannaacetylef@lowed
by the intramolecular insertion of the carbene moietyldb a
proximate methyl G-H bond in an isopropyl group as shown in
Scheme 2. The stereoselective formatiorddb consistent with
the severe steric repulsion between the triisopropylsilyl group and
a triisopropylphenyl ring caused during the formation of titeas
isomer. The present results afford the evidence not only for the
generation ofl but also for its high carbene-like reactivity.

The photolysis { > 330 nm) of2 in a 3-methylpentane glass
matrix at 77 K showed new absorption maxima at 350 nm (strong)
and 453 nm (weak) assignable 18° In accord with the result, a
similar transient absorption maximum was observed at 355 nm with
the lifetime of 50 ms during the laser flash photolysis (XeCl, 190
mJ, 308 nm) of in benzene at room temperatdfeNo triplet ESR
spectrum was observed during the photolysis2ofn a low-
temperature glass matrix. In accord with the experimental results,
our preliminary calculations at the QCISD/3-21G* level have shown
that the singlet of HSnCH is 4.9 kcal mélmore stable than the
triplet and characterized as an=8@ triple-bonded compound with
a significant stannylenrecarbene charactéf.

Supporting Information Available: X-ray structural information
on2 and4 (CIF) and experimental details of the photolysi2dPDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
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