Contents lists available at SciVerse ScienceDirect

### Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

# Structure of seven organic acid–base adducts formed between acids, 2-aminophenol, and 2-amino-4-chlorophenol

### Shouwen Jin<sup>a,\*</sup>, Daqi Wang<sup>b</sup>

<sup>a</sup> Tianmu College, ZheJiang A & F University, Lin'An 311300, PR China
<sup>b</sup> Department of Chemistry, Liaocheng University, Liaocheng 252059, PR China

#### HIGHLIGHTS

- ► Seven organic acid-base adducts have been prepared and structurally characterized.
- ▶ The hydrogen bond interaction modes in all of the adducts have been ascertained.
- ▶ The classical hydrogen bonds are the major forces in all of the structures.
- ▶ The secondary interactions also play important roles in the packing of the adducts.

#### ARTICLE INFO

Article history: Received 19 March 2012 Received in revised form 4 January 2013 Accepted 4 January 2013 Available online 16 January 2013

Keywords: Crystal structure 3D framework Hydrogen bonds Acidic compounds 2-Aminophenols derivatives

#### ABSTRACT

Studies concentrating on hydrogen bonding between the base of 2-aminophenol, 2-amino-4-chlorophenol, and acidic compounds have led to an increased understanding of the role 2-aminophenol, and 2amino-4-chlorophenol have in binding with acidic compounds. Here anhydrous and hydrated multicomponent crystals of 2-aminophenol, and 2-amino-4-chlorophenol have been prepared with 2,4,6-trinitrophenol, p-nitrobenzoic acid, 3,5-dinitrobenzoic acid, 5-nitrosalicylic acid, 3,5-dinitrosalicylic acid, and fumaric acid. The crystals and complexes of the seven organic acid-base adducts were characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. The seven crystalline forms reported are organic salts except **2**. All of the adducts were formed in solution and obtained by the slow evaporation technique. All supramolecular architectures involve extensive  $N-H\cdots O$ ,  $O-H\cdots O$ , and  $CH\cdots O$  hydrogen bonds as well as other nonbonding interactions. The role of weak and strong hydrogen bonding in the crystal packing is ascertained.

© 2013 Elsevier B.V. All rights reserved.

#### 1. Introduction

The design and construction of multicomponent supermolecules or supramolecular arrays utilizing noncovalent bonding is a rapidly developing area in supramolecular synthesis. However, self-assembled supramolecular architectures are often stabilized as a result of the synergy of a variety of weak noncovalent interactions [1–3]. Thus, the supramolecular synthesis successfully exploits hydrogen-bonding and other types of non-covalent interactions, in building supramolecular systems [4].

Carboxylic acids represent one of the most prevalent functional groups in crystal engineering because they possess a hydrogen bond donor and acceptor with a geometry that facilitates self-association through supramolecular homosynthons via centrosymmetric dimer or catemer [5–7]. Furthermore, it is now recognized that carboxylic acids are ideal candidates for multicomponent crystals

since they form persistent supramolecular heterosynthons with a number of different complementary functional groups such as amine, and aromatic nitrogen, etc. For instance, much has been said about the use of carboxyl and pyridinyl groups in the design of supramolecular systems [8–13]. Besides the COOH group, the functional groups such as amine, halogen, and phenol OH groups are all good groups in forming organic solid through non-covalent interactions [14]. Aminophenols containing equal stoichiometries of –OH, and –NH<sub>2</sub> groups have been widely studied to understand the supramolecular synthons existing in their assemblies [15]. Among these supramolecular architectures, however, only a very few reports described the crystals composed of aminophenols derivatives and carboxylic acids [16].

In order to understand the interaction modes aminophenols derivatives have in binding with acidic derivatives, we began to study the aminophenols-acids system, also aiming to find the role the weak noncovalent interactions played in forming the final supramolecular frameworks. Thus, in the following, we report the preparation and crystal structures of seven supramolecular



<sup>\*</sup> Corresponding author. Tel./fax: +86 571 6374 6755. *E-mail address:* Jinsw@zafu.edu.cn (S. Jin).

<sup>0022-2860/\$ -</sup> see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.molstruc.2013.01.012



Scheme 1. The building blocks discussed in this paper.

compounds assembled via nonbonding interactions between carboxylic acids and 2-aminophenol (L1), and 2-amino-4-chlorophenol (L2) (Scheme 1). In this study, we got seven organic compounds composed of acidic units and 2-aminophenol derivatives, namely (2-aminophenol): (2,4,6-trinitrophenol) [(HL1)<sup>+</sup>  $\cdot$  (pic<sup>-</sup>), pic<sup>-</sup> = picrate, L1 = 2-aminophenol] (1), (2-amino-4-chlorophenol): (p-nitrobenzoic acid): H<sub>2</sub>O [(L2)  $\cdot$  (Hnba)  $\cdot$  H<sub>2</sub>O, Hnba = p-nitrobenzoic acid] (2), (2-aminophenol): (3,5-dinitrobenzoic acid) [(HL1)<sup>+</sup>  $\cdot$  (dnb<sup>-</sup>), dnb<sup>-</sup> = 3,5-dinitrobenzoate] (3), (2-amino-4-chlorophenol): (3,5-dinitrobenzoic acid) [(HL2)<sup>+</sup>  $\cdot$  (dnb<sup>-</sup>)] (4), (2-aminophenol): (5-nitrosalicylic acid) [(HL1)<sup>+</sup>  $\cdot$  (5-nsa<sup>-</sup>), 5-nsa<sup>-</sup> = 5-nitrosalicylate] (5), (2-amino-4-chlorophenol): (3,5-dinitrosalicylic acid) [(HL2)<sup>+</sup>  $\cdot$  (3,5-dns<sup>-</sup>), 3,5-dns<sup>-</sup> = 3,5-dinitrosalicylate] (c), and (2-amino-4-chlorophenol): (fumaric acid)<sub>0.5</sub> : H<sub>2</sub>O [(HL2)<sup>+</sup>  $\cdot$  (fum<sup>2-</sup>)<sub>0.5</sub>  $\cdot$  H<sub>2</sub>O, fum<sup>2-</sup> = fumarate] (7) (Scheme 2).

#### 2. Experimental section

#### 2.1. Materials and physical measurements

The chemicals and solvents used in this work are of analytical grade and available commercially and were used without further purification. The FT-IR spectra were recorded from KBr pellets in range 4000–400 cm<sup>-1</sup> on a Mattson Alpha-Centauri spectrometer with 4 cm<sup>-1</sup> resolution. Microanalytical (C, H, N) data were obtained with a Perkin–Elmer Model 2400II elemental analyzer. Melting points of new compounds were recorded on an XT-4 thermal apparatus without correction.

#### 2.2. Preparation of supramolecular compounds

## 2.2.1. (2-Aminophenol): (2,4,6-trinitrophenol) [(HL1)<sup>+</sup> · (pic<sup>-</sup>), pic<sup>-</sup> = picrate] (1)

2-Aminophenol (10.9 mg, 0.10 mmol) was dissolved in 3 mL methanol. To this solution was added 2,4,6-trinitrophenol (23 mg, 0.1 mmol) in 10 mL methanol. Brown block crystals were obtained after several days by slow evaporation of the solvent (yield: 26 mg, 76.87%). mp 147–148 °C. Elemental analysis: Calc. for C<sub>12</sub>H<sub>10</sub>N<sub>4</sub>O<sub>8</sub> (338.24): C, 42.57; H, 2.96; N, 16.56. Found: C, 42.51; H, 2.89; N, 16.52. Infrared spectrum (KBr disc, cm<sup>-1</sup>): 3589s(v(OH)), 3440s(v<sub>as</sub>(NH)), 3306s(v<sub>s</sub>(NH)), 3190s, 3100s, 2940m, 2880m, 2848m, 2820m, 2676w, 2568w, 2370m, 2330m, 1740m, 1645m, 1614s, 1600s, 1560s, 1525s(v<sub>as</sub>(NO<sub>2</sub>)), 1480m, 1440m, 1360s, 1324s(v<sub>s</sub>(NO<sub>2</sub>)), 1260s, 1240m, 1210m, 1160m, 1020m, 980m, 920m, 878m, 840m, 790m, 720m, 680m, 660m, 620m.

#### 2.2.2. (2-Amino-4-chlorophenol): (p-nitrobenzoic acid): $H_2O$ [(L2) · (Hnba) · $H_2O$ , Hnba = p-nitrobenzoic acid] (2)

2-Amino-4-chlorophenol (14.3 mg, 0.1 mmol) was dissolved in 2 mL methanol. To this solution was added p-nitrobenzoic acid (17 mg, 0.1 mmol) in 2 mL methanol. Colorless block crystals were afforded after several days by slow evaporation of the solvent (yield: 18 mg, 54.76%, based on L2). mp 213–214 °C. Elemental analysis: Calc. for  $C_{13}H_{13}ClN_2O_6$  (328.70): C, 47.46; H, 3.95; N, 8.52. Found: C, 47.37; H, 3.89; N, 8.49. Infrared spectrum (KBr disc, cm<sup>-1</sup>): 3596s(v(OH)), 3230s(v<sub>as</sub>(NH)), 3176s(v<sub>s</sub>(NH)), 3079 m, 2989s, 2926s, 2682w, 2567w, 1763w, 1648s(v(C=O)), 1620m,



Scheme 2. The seven organic acid-base adducts described in this paper, 1-7.

1572m, 1538s( $v_{as}(NO_2)$ ), 1505m, 1486m, 1448m, 1418m, 1326s( $v_s(NO_2)$ ), 1288s(v(C-O)), 1226m, 1162m, 1094m, 1006m, 952w, 839m, 797w, 724m, 654w, 618w.

2.2.3. (2-Aminophenol): (3,5-dinitrobenzoic acid)  $[(HL1)^{+} \cdot (dnb^{-}), dnb^{-} = 3,5$ -dinitrobenzoate] (3)

2-Aminophenol (10.9 mg, 0.10 mmol) was dissolved in 3 mL methanol. To this solution was added 3,5-dinitrobenzoic acid (21.2 mg, 0.1 mmol) in 4 mL methanol. Brown block crystals were obtained after several days by slow evaporation of the solvent (yield: 25 mg, 77.82%). mp 183–185 °C. Elemental analysis: Calc. for C<sub>13</sub>H<sub>11</sub>N<sub>3</sub>O<sub>7</sub> (321.25): C, 48.56; H, 3.42; N, 13.07. Found: C, 48.52; H, 3.37; N, 12.99. Infrared spectrum (KBr disc, cm<sup>-1</sup>): 3579s(v(OH)), 3454s(multiple, v<sub>as</sub>(NH)), 3346s(v<sub>s</sub>(NH)), 3158m,

3072m, 2989m, 2658w, 2582w, 1979w, 1835w, 1782w, 1664w, 1602s( $v_{as}(COO^{-})$ ), 1590m, 1522s( $v_{as}(NO_{2})$ ), 1462w, 1384s( $v_{s}(-COO^{-})$ ), 1323s( $v_{s}(NO_{2})$ ), 1252m, 1194m, 1128m, 1064m, 1011m, 952m, 903m, 856m, 802m, 753m, 726m, 674m, 626m.

### 2.2.4. (2-Amino-4-chlorophenol): (3,5-dinitrobenzoic acid) $[(HL2)^+ \cdot (dnb^-), dnb^- = 3,5-dinitrobenzoate]$ (4)

2-Amino-4-chlorophenol (14.3 mg, 0.1 mmol) was dissolved in 2 mL methanol. To this solution was added 3,5-dinitrobenzoic acid (21.2 mg, 0.1 mmol) in 4 mL methanol. Colorless block crystals were afforded after several days by slow evaporation of the solvent (yield: 28 mg, 78.72%, based on L2). mp 178–180 °C. Elemental analysis: Calc. for  $C_{13}H_{10}ClN_3O_7$  (355.69): C, 43.86; H, 2.81; N, 11.81. Found: C, 43.82; H, 2.73; N, 11.75. Infrared spectrum (KBr

#### Table 1

Summary of X-ray crystallographic data for complexes 1-7.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                      | 2                              | 3                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{12}H_{10}N_4O_8$                                                                                                                                                                                                                                                                                                                   | C13H13CIN2O6                   | C <sub>13</sub> H <sub>11</sub> N <sub>3</sub> O <sub>7</sub>                                                                                                                                                                                                                                                    | C13H10CIN3O7                                                                                                                                                                                                                                                                                                                      |
| Fw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 338.24                                                                                                                                                                                                                                                                                                                                 | 328.70                         | 321.25                                                                                                                                                                                                                                                                                                           | 355.69                                                                                                                                                                                                                                                                                                                            |
| Т, К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 298(2)                                                                                                                                                                                                                                                                                                                                 | 298(2)                         | 298(2)                                                                                                                                                                                                                                                                                                           | 298(2)                                                                                                                                                                                                                                                                                                                            |
| Wavelength, Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.71073                                                                                                                                                                                                                                                                                                                                | 0.71073                        | 0.71073                                                                                                                                                                                                                                                                                                          | 0.71073                                                                                                                                                                                                                                                                                                                           |
| Crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Triclinic                                                                                                                                                                                                                                                                                                                              | Triclinic                      | Monoclinic                                                                                                                                                                                                                                                                                                       | Triclinic                                                                                                                                                                                                                                                                                                                         |
| Space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P-1                                                                                                                                                                                                                                                                                                                                    | P-1                            | P2(1)                                                                                                                                                                                                                                                                                                            | P-1                                                                                                                                                                                                                                                                                                                               |
| a, Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.1626(6)                                                                                                                                                                                                                                                                                                                              | 6.6040(5)                      | 9.4853(8)                                                                                                                                                                                                                                                                                                        | 7.3617(5)                                                                                                                                                                                                                                                                                                                         |
| b, Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.4942(8)                                                                                                                                                                                                                                                                                                                              | 7.4679(6)                      | 6.0759(7)                                                                                                                                                                                                                                                                                                        | 7.4375(7)                                                                                                                                                                                                                                                                                                                         |
| <i>c</i> , A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.3537(11)                                                                                                                                                                                                                                                                                                                            | 15.1801(14)                    | 12.0898(13)                                                                                                                                                                                                                                                                                                      | 13.6853(13)                                                                                                                                                                                                                                                                                                                       |
| α, °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 79.7650(10)                                                                                                                                                                                                                                                                                                                            | 77.3260(10)                    | 90                                                                                                                                                                                                                                                                                                               | 103.183(2)                                                                                                                                                                                                                                                                                                                        |
| β, °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82.0190(10)                                                                                                                                                                                                                                                                                                                            | 82.0680(10)                    | 95.1980(10)                                                                                                                                                                                                                                                                                                      | 94.1080(10)                                                                                                                                                                                                                                                                                                                       |
| γ, °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88.947(2)                                                                                                                                                                                                                                                                                                                              | 88.123(2)                      | 90                                                                                                                                                                                                                                                                                                               | 94.8200(10)                                                                                                                                                                                                                                                                                                                       |
| V, A <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 699.59(11)                                                                                                                                                                                                                                                                                                                             | 723.42(10)                     | 693.89(12)                                                                                                                                                                                                                                                                                                       | 723.79(11)                                                                                                                                                                                                                                                                                                                        |
| $D_{\rm relat}$ Mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 606                                                                                                                                                                                                                                                                                                                                  | 1 509                          | 2<br>1 538                                                                                                                                                                                                                                                                                                       | 1 632                                                                                                                                                                                                                                                                                                                             |
| Absorption coefficient, $mm^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.138                                                                                                                                                                                                                                                                                                                                  | 0.296                          | 0.128                                                                                                                                                                                                                                                                                                            | 0.309                                                                                                                                                                                                                                                                                                                             |
| F(000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 348                                                                                                                                                                                                                                                                                                                                    | 340                            | 332                                                                                                                                                                                                                                                                                                              | 364                                                                                                                                                                                                                                                                                                                               |
| Crystal size, mm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.42 \times 0.18 \times 0.14$                                                                                                                                                                                                                                                                                                         | $0.44 \times 0.40 \times 0.18$ | $0.42 \times 0.23 \times 0.11$                                                                                                                                                                                                                                                                                   | $0.38 \times 0.33 \times 0.12$                                                                                                                                                                                                                                                                                                    |
| $\theta$ range. °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.44–25.01                                                                                                                                                                                                                                                                                                                             | 2.78-25.02                     | 2.62–25.01                                                                                                                                                                                                                                                                                                       | 2.79-25.02                                                                                                                                                                                                                                                                                                                        |
| Limiting indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-9 \leqslant h \leqslant 9$                                                                                                                                                                                                                                                                                                           | $-7 \leq h \leq 7$             | $-7 \leq h \leq 11$                                                                                                                                                                                                                                                                                              | $-8 \le h \le 3$                                                                                                                                                                                                                                                                                                                  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-6 \leqslant k \leqslant 10$                                                                                                                                                                                                                                                                                                          | $-8 \leqslant k \leqslant 6$   | $-7 \leqslant k \leqslant 7$                                                                                                                                                                                                                                                                                     | $-8 \leqslant k \leqslant 8$                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $-12 \leqslant l \leqslant 12$                                                                                                                                                                                                                                                                                                         | $-18\leqslant l\leqslant 15$   | $-13 \leqslant l \leqslant 14$                                                                                                                                                                                                                                                                                   | $-16 \leqslant l \leqslant 16$                                                                                                                                                                                                                                                                                                    |
| Reflections collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3531                                                                                                                                                                                                                                                                                                                                   | 3641                           | 3506                                                                                                                                                                                                                                                                                                             | 3610                                                                                                                                                                                                                                                                                                                              |
| Reflections independent $(R_{int})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2434 (0.0191)                                                                                                                                                                                                                                                                                                                          | 2503 (0.0172)                  | 2399 (0.0275)                                                                                                                                                                                                                                                                                                    | 2494 (0.0149)                                                                                                                                                                                                                                                                                                                     |
| Goodness-of-fit on F <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.040                                                                                                                                                                                                                                                                                                                                  | 1.009                          | 1.006                                                                                                                                                                                                                                                                                                            | 1.011                                                                                                                                                                                                                                                                                                                             |
| R indices $[I > 2\sigma I]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0517, 0.1277                                                                                                                                                                                                                                                                                                                         | 0.0407, 0.0976                 | 0.0429, 0.0889                                                                                                                                                                                                                                                                                                   | 0.0407, 0.0940                                                                                                                                                                                                                                                                                                                    |
| R indices (all data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0759, 0.1501                                                                                                                                                                                                                                                                                                                         | 0.0617, 0.1138                 | 0.0639, 0.1013                                                                                                                                                                                                                                                                                                   | 0.0631, 0.1094                                                                                                                                                                                                                                                                                                                    |
| Largest diff. peak and hole, e Å $^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.690, -0.441                                                                                                                                                                                                                                                                                                                          | 0.300, -0.252                  | 0.253, -0.253                                                                                                                                                                                                                                                                                                    | 0.218, -0.238                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                      |                                | 6                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                 |
| Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{13}H_{12}N_2O_6$                                                                                                                                                                                                                                                                                                                   |                                | C <sub>13</sub> H <sub>12</sub> ClN <sub>3</sub> O <sub>9</sub>                                                                                                                                                                                                                                                  | C <sub>8</sub> H <sub>10</sub> ClNO <sub>4</sub>                                                                                                                                                                                                                                                                                  |
| Fw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 292.25                                                                                                                                                                                                                                                                                                                                 |                                | 389.71                                                                                                                                                                                                                                                                                                           | 219.62                                                                                                                                                                                                                                                                                                                            |
| Т, К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 298(2)                                                                                                                                                                                                                                                                                                                                 |                                | 298(2)                                                                                                                                                                                                                                                                                                           | 298(2)                                                                                                                                                                                                                                                                                                                            |
| Wavelength, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.71073                                                                                                                                                                                                                                                                                                                                |                                | 0.71073                                                                                                                                                                                                                                                                                                          | 0.71073                                                                                                                                                                                                                                                                                                                           |
| Crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Triclinic                                                                                                                                                                                                                                                                                                                              |                                | Monoclinic                                                                                                                                                                                                                                                                                                       | Monoclinic                                                                                                                                                                                                                                                                                                                        |
| Space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P-1                                                                                                                                                                                                                                                                                                                                    |                                | P2(1)/n                                                                                                                                                                                                                                                                                                          | P2(1)/c                                                                                                                                                                                                                                                                                                                           |
| a, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.7020(10)                                                                                                                                                                                                                                                                                                                            |                                | 7.1541(6)                                                                                                                                                                                                                                                                                                        | 5.645(3)                                                                                                                                                                                                                                                                                                                          |
| D, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.7709(11)                                                                                                                                                                                                                                                                                                                            |                                | / 2988(7)                                                                                                                                                                                                                                                                                                        | 04 555(40)                                                                                                                                                                                                                                                                                                                        |
| с, А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                        |                                | 20 200(2)                                                                                                                                                                                                                                                                                                        | 21.777(12)                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.4031(13)                                                                                                                                                                                                                                                                                                                            |                                | 29.388(2)                                                                                                                                                                                                                                                                                                        | 21.777(12)<br>7.992(4)                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.702(2)                                                                                                                                                                                                                                                                                                                             |                                | 29.388(2)<br>90<br>90 06 2860(10)                                                                                                                                                                                                                                                                                | 21.777(12)<br>7.992(4)<br>90                                                                                                                                                                                                                                                                                                      |
| $\beta, \circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.403(13)<br>108.702(2)<br>97.5900(10)                                                                                                                                                                                                                                                                                                |                                | 29.388(2)<br>90<br>96.3860(10)                                                                                                                                                                                                                                                                                   | 21.777(12)<br>7.992(4)<br>90<br>90.579(6)                                                                                                                                                                                                                                                                                         |
| $\beta, \circ$<br>$\gamma, \circ$<br>V Å <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.702(2)<br>97.5900(10)<br>92.7600(10)<br>1336.1(2)                                                                                                                                                                                                                                                                                  |                                | 29.388(2)<br>90<br>96.3860(10)<br>90                                                                                                                                                                                                                                                                             | 21.777(12)<br>7.992(4)<br>90<br>90.579(6)<br>90<br>982.4(9)                                                                                                                                                                                                                                                                       |
| α, °<br>β, °<br>γ, °<br>V, Å <sup>3</sup><br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.405 (15)<br>108.702(2)<br>97.5900(10)<br>92.7600(10)<br>1336.1(2)<br>4                                                                                                                                                                                                                                                              |                                | 29.388(2)<br>90<br>96.3860(10)<br>90<br>1525.0(2)<br>4                                                                                                                                                                                                                                                           | 21.777(12)<br>7.992(4)<br>90<br>90.579(6)<br>90<br>982.4(9)<br>4                                                                                                                                                                                                                                                                  |
| $\beta, \circ$<br>$\beta, \circ$<br>$\gamma, \circ$<br>$V, Å^3$<br>Z<br>$D \rightarrow Mg/m^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.702(2)<br>97.5900(10)<br>92.7600(10)<br>1336.1(2)<br>4<br>1.453                                                                                                                                                                                                                                                                    |                                | 29.388(2)<br>90<br>96.3860(10)<br>90<br>1525.0(2)<br>4<br>1 697                                                                                                                                                                                                                                                  | 21.777(12)<br>7.992(4)<br>90<br>90.579(6)<br>90<br>982.4(9)<br>4<br>1.485                                                                                                                                                                                                                                                         |
| $\beta$ , °<br>$\gamma$ , °<br>V, Å <sup>3</sup><br>Z<br>$D_{calcd}$ , Mg/m <sup>3</sup><br>Absorption coefficient mm <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.702(2)<br>97.5900(10)<br>92.7600(10)<br>1336.1(2)<br>4<br>1.453<br>0.117                                                                                                                                                                                                                                                           |                                | 29.388(2)<br>90<br>96.3860(10)<br>90<br>1525.0(2)<br>4<br>1.697<br>0.311                                                                                                                                                                                                                                         | 21.777(12)<br>7.992(4)<br>90<br>90.579(6)<br>90<br>982.4(9)<br>4<br>1.485<br>0.377                                                                                                                                                                                                                                                |
| $\beta_{r} \circ \beta_{r} \circ \gamma_{r} \circ \gamma_{r$ | 108.702(2)<br>97.5900(10)<br>92.7600(10)<br>1336.1(2)<br>4<br>1.453<br>0.117<br>608                                                                                                                                                                                                                                                    |                                | 29.388(2)<br>90<br>96.3860(10)<br>90<br>1525.0(2)<br>4<br>1.697<br>0.311<br>800                                                                                                                                                                                                                                  | 21.777(12)<br>7.992(4)<br>90<br>90.579(6)<br>90<br>982.4(9)<br>4<br>1.485<br>0.377<br>456                                                                                                                                                                                                                                         |
| β, °<br>β, °<br>V, Å <sup>3</sup><br>Z<br>$D_{calcd}$ , Mg/m <sup>3</sup><br>Absorption coefficient, mm <sup>-1</sup><br>F(000)<br>Crystal size, mm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $12.4031(13)$ $108.702(2)$ $97.5900(10)$ $92.7600(10)$ $1336.1(2)$ $4$ $1.453$ $0.117$ $608$ $0.27 \times 0.25 \times 0.10$                                                                                                                                                                                                            |                                | 29.388(2)<br>90<br>96.3860(10)<br>90<br>1525.0(2)<br>4<br>1.697<br>0.311<br>800<br>0.48 × 0.37 × 0.08                                                                                                                                                                                                            | $\begin{array}{c} 21.777(12)\\ 7.992(4)\\ 90\\ 90.579(6)\\ 90\\ 982.4(9)\\ 4\\ 1.485\\ 0.377\\ 456\\ 0.22\times 0.19\times 0.15 \end{array}$                                                                                                                                                                                      |
| β, °<br>β, °<br>Y, Å<br>Z<br>$D_{calcd}$ , Mg/m <sup>3</sup><br>Absorption coefficient, mm <sup>-1</sup><br>F(000)<br>Crystal size, mm <sup>3</sup><br>θ range, °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $12.4031(13)$ $108.702(2)$ $97.5900(10)$ $92.7600(10)$ $1336.1(2)$ $4$ $1.453$ $0.117$ $608$ $0.27 \times 0.25 \times 0.10$ $2.40-25.02$                                                                                                                                                                                               |                                | 29.388(2)<br>90<br>96.3860(10)<br>90<br>1525.0(2)<br>4<br>1.697<br>0.311<br>800<br>0.48 × 0.37 × 0.08<br>2.79–25.02                                                                                                                                                                                              | $\begin{array}{c} 21.777(12)\\ 7.992(4)\\ 90\\ 90.579(6)\\ 90\\ 982.4(9)\\ 4\\ 1.485\\ 0.377\\ 456\\ 0.22\times0.19\times0.15\\ 2.71-25.01\\ \end{array}$                                                                                                                                                                         |
| β, °<br>β, °<br>Y, Å <sup>3</sup><br>Z<br>$D_{calcd}$ , Mg/m <sup>3</sup><br>Absorption coefficient, mm <sup>-1</sup><br>F(000)<br>Crystal size, mm <sup>3</sup><br>θ range, °<br>Limiting indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $12.4031(13)$ $108.702(2)$ $97.5900(10)$ $92.7600(10)$ $1336.1(2)$ $4$ $1.453$ $0.117$ $608$ $0.27 \times 0.25 \times 0.10$ $2.40-25.02$ $-9 \leqslant h \leqslant 12$                                                                                                                                                                 |                                | $\begin{array}{l} 29.388(2) \\ 90 \\ 96.3860(10) \\ 90 \\ 1525.0(2) \\ 4 \\ 1.697 \\ 0.311 \\ 800 \\ 0.48 \times 0.37 \times 0.08 \\ 2.79-25.02 \\ -8 \leqslant h \leqslant 8 \end{array}$                                                                                                                       | $\begin{array}{l} 21.777(12)\\ 7.992(4)\\ 90\\ 90.579(6)\\ 90\\ 982.4(9)\\ 4\\ 1.485\\ 0.377\\ 456\\ 0.22\times0.19\times0.15\\ 2.71-25.01\\ -6\leqslant h\leqslant 6\end{array}$                                                                                                                                                 |
| β, °<br>β, °<br>γ, °<br>V, Å <sup>3</sup><br>Z<br>$D_{calcd}$ , Mg/m <sup>3</sup><br>Absorption coefficient, mm <sup>-1</sup><br>F(000)<br>Crystal size, mm <sup>3</sup><br>θ range, °<br>Limiting indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $12.4031(13)$ $108.702(2)$ $97.5900(10)$ $92.7600(10)$ $1336.1(2)$ $4$ $1.453$ $0.117$ $608$ $0.27 \times 0.25 \times 0.10$ $2.40-25.02$ $-9 \leqslant h \leqslant 12$ $-12 \leqslant k \leqslant 12$                                                                                                                                  |                                | $\begin{array}{l} 29.388(2)\\ 90\\ 96.3860(10)\\ 90\\ 1525.0(2)\\ 4\\ 1.697\\ 0.311\\ 800\\ 0.48\times 0.37\times 0.08\\ 2.79-25.02\\ -8\leqslant h\leqslant 8\\ -8\leqslant k\leqslant 8\end{array}$                                                                                                            | $\begin{array}{l} 21.777(12)\\ 7.992(4)\\ 90\\ 90.579(6)\\ 90\\ 982.4(9)\\ 4\\ 1.485\\ 0.377\\ 456\\ 0.22\times0.19\times0.15\\ 2.71-25.01\\ -6\leqslant h\leqslant 6\\ -25\leqslant k\leqslant 12 \end{array}$                                                                                                                   |
| β, °<br>γ, °<br>Y, Å <sup>3</sup><br>Z<br>$D_{calcd}$ , Mg/m <sup>3</sup><br>Absorption coefficient, mm <sup>-1</sup><br>F(000)<br>Crystal size, mm <sup>3</sup><br>θ range, °<br>Limiting indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $12.403(13)$ $108.702(2)$ $97.5900(10)$ $92.7600(10)$ $1336.1(2)$ $4$ $1.453$ $0.117$ $608$ $0.27 \times 0.25 \times 0.10$ $2.40-25.02$ $-9 \leqslant h \leqslant 12$ $-12 \leqslant h \leqslant 12$                                      |                                | $\begin{array}{l} 29.388(2)\\ 90\\ 96.3860(10)\\ 90\\ 1525.0(2)\\ 4\\ 1.697\\ 0.311\\ 800\\ 0.48\times0.37\times0.08\\ 2.79-25.02\\ -8\leqslant h\leqslant 8\\ -8\leqslant k\leqslant 8\\ -21\leqslant l\leqslant 34\\ \end{array}$                                                                              | $\begin{array}{c} 21.777(12)\\ 7.992(4)\\ 90\\ 90.579(6)\\ 90\\ 982.4(9)\\ 4\\ 1.485\\ 0.377\\ 456\\ 0.22\times0.19\times0.15\\ 2.71-25.01\\ -6\leqslant h\leqslant 6\\ -25\leqslant k\leqslant 12\\ -9\leqslant l\leqslant 9\\ \end{array}$                                                                                      |
| β, °<br>β, °<br>γ, °<br>Y, Å <sup>3</sup><br>Z<br>$D_{calcd}$ , Mg/m <sup>3</sup><br>Absorption coefficient, mm <sup>-1</sup><br>F(000)<br>Crystal size, mm <sup>3</sup><br>θ range, °<br>Limiting indices<br>Reflections collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $12.4031(13)$ $108.702(2)$ $97.5900(10)$ $92.7600(10)$ $1336.1(2)$ $4$ $1.453$ $0.117$ $608$ $0.27 \times 0.25 \times 0.10$ $2.40-25.02$ $-9 \leqslant h \leqslant 12$ $-12 \leqslant k \leqslant 12$ $-12 \leqslant k \leqslant 12$ $-12 \leqslant l \leqslant 14$ $6633$                                                             |                                | $\begin{array}{l} 29.388(2)\\ 90\\ 96.3860(10)\\ 90\\ 1525.0(2)\\ 4\\ 1.697\\ 0.311\\ 800\\ 0.48\times0.37\times0.08\\ 2.79-25.02\\ -8\leqslant h\leqslant 8\\ -8\leqslant k\leqslant 8\\ -8\leqslant k\leqslant 8\\ -21\leqslant l\leqslant 34\\ 7123\end{array}$                                               | $\begin{array}{c} 21.777(12)\\ 7.992(4)\\ 90\\ 90.579(6)\\ 90\\ 982.4(9)\\ 4\\ 1.485\\ 0.377\\ 456\\ 0.22\times0.19\times0.15\\ 2.71-25.01\\ -6\leqslant h\leqslant 6\\ -25\leqslant k\leqslant 12\\ -9\leqslant 1\leqslant 9\\ 5103\\ \end{array}$                                                                               |
| $\beta, \circ$<br>$\beta, \circ$<br>$\gamma, \circ$<br>$V, Å^3$<br>Z<br>$D_{calcd}, Mg/m^3$<br>Absorption coefficient, mm <sup>-1</sup><br>F(000)<br>Crystal size, mm <sup>3</sup><br>$\theta$ range, $\circ$<br>Limiting indices<br>Reflections collected<br>Reflections independent ( $R_{int}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $12.4031(13)$ $108.702(2)$ $97.5900(10)$ $92.7600(10)$ $1336.1(2)$ $4$ $1.453$ $0.117$ $608$ $0.27 \times 0.25 \times 0.10$ $2.40-25.02$ $-9 \leqslant h \leqslant 12$ $-12 \leqslant k \leqslant 12$ $-12 \leqslant k \leqslant 12$ $-12 \leqslant l \leqslant 14$ $6633$ $4601 (0.0826)$                                             |                                | $\begin{array}{l} 29.388(2)\\ 90\\ 96.3860(10)\\ 90\\ 1525.0(2)\\ 4\\ 1.697\\ 0.311\\ 800\\ 0.48\times 0.37\times 0.08\\ 2.79\text{-}25.02\\ -8\leqslant h\leqslant 8\\ 2.79\text{-}25.02\\ -8\leqslant k\leqslant 8\\ -21\leqslant l\leqslant 34\\ 7123\\ 2685\ (0.0615)\end{array}$                            | $\begin{array}{c} 21.777(12)\\ 7.992(4)\\ 90\\ 90.579(6)\\ 90\\ 982.4(9)\\ 4\\ 1.485\\ 0.377\\ 456\\ 0.22\times0.19\times0.15\\ 2.71-25.01\\ -6\leqslant h\leqslant 6\\ -25\leqslant k\leqslant 12\\ -9\leqslant l\leqslant 9\\ 5103\\ 1744\ (0.0622) \end{array}$                                                                |
| $\beta$ , °<br>$\beta$ , °<br>$\gamma$ , °<br>$\gamma$ , °<br>$\gamma$ , °<br>Z<br>$D_{calcd}$ , Mg/m <sup>3</sup><br>Absorption coefficient, mm <sup>-1</sup><br>F(000)<br>Crystal size, mm <sup>3</sup><br>$\theta$ range, °<br>Limiting indices<br>Reflections collected<br>Reflections independent ( $R_{int}$ )<br>Goodness-of-fit on $F^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $12.4031(13)$ $108.702(2)$ $97.5900(10)$ $92.7600(10)$ $1336.1(2)$ $4$ $1.453$ $0.117$ $608$ $0.27 \times 0.25 \times 0.10$ $2.40-25.02$ $-9 \leqslant h \leqslant 12$ $-12 \leqslant k \leqslant 12$ $-12 \leqslant k \leqslant 12$ $-12 \leqslant l \leqslant 14$ $6633$ $4601 (0.0826)$ $1.021$                                     |                                | $\begin{array}{l} 29.388(2)\\ 90\\ 90\\ 96.3860(10)\\ 90\\ 1525.0(2)\\ 4\\ 1.697\\ 0.311\\ 800\\ 0.48\times0.37\times0.08\\ 2.79-25.02\\ -8\leqslant h\leqslant 8\\ 2.79-25.02\\ -8\leqslant h\leqslant 8\\ -8\leqslant k\leqslant 8\\ -21\leqslant l\leqslant 34\\ 7123\\ 2685\ (0.0615)\\ 0.949\\ \end{array}$ | $\begin{array}{c} 21.777(12)\\ 7.992(4)\\ 90\\ 90.579(6)\\ 90\\ 982.4(9)\\ 4\\ 1.485\\ 0.377\\ 456\\ 0.22\times0.19\times0.15\\ 2.71-25.01\\ -6\leqslant h\leqslant 6\\ -25\leqslant k\leqslant 12\\ -9\leqslant l\leqslant 9\\ 5103\\ 1744\ (0.0622)\\ 1.042\\ \end{array}$                                                      |
| β, °<br>β, °<br>V, Å <sup>3</sup><br>Z<br>$D_{calcd}$ , Mg/m <sup>3</sup><br>Absorption coefficient, mm <sup>-1</sup><br>F(000)<br>Crystal size, mm <sup>3</sup><br>θ range, °<br>Limiting indices<br>Reflections collected<br>Reflections independent ( $R_{int}$ )<br>Goodness-of-fit on $F^2$<br>R indices [ $I > 2σI$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $10.4031(13)$ $108.702(2)$ $97.5900(10)$ $92.7600(10)$ $1336.1(2)$ $4$ $1.453$ $0.117$ $608$ $0.27 \times 0.25 \times 0.10$ $2.40-25.02$ $-9 \leqslant h \leqslant 12$ $-12 \leqslant k \leqslant 12$ $-12 \leqslant k \leqslant 12$ $-12 \leqslant l \leqslant 14$ $6633$ $4601 (0.0826)$ $1.021$ $0.1444, 0.3276$                    |                                | $\begin{array}{l} 29.388(2)\\ 90\\ 96.3860(10)\\ 90\\ 1525.0(2)\\ 4\\ 1.697\\ 0.311\\ 800\\ 0.48\times 0.37\times 0.08\\ 2.79-25.02\\ -8\leqslant h\leqslant 8\\ 2.79-25.02\\ -8\leqslant h\leqslant 8\\ -21\leqslant 1\leqslant 34\\ 7123\\ 2685\ (0.0615)\\ 0.949\\ 0.0443\ ,0.1011\end{array}$                | $\begin{array}{c} 21.777(12)\\ 7.992(4)\\ 90\\ 90.579(6)\\ 90\\ 982.4(9)\\ 4\\ 1.485\\ 0.377\\ 456\\ 0.22\times0.19\times0.15\\ 2.71-25.01\\ -6\leqslant h\leqslant 6\\ -25\leqslant k\leqslant 12\\ -9\leqslant l\leqslant 9\\ 5103\\ 1744\ (0.0622)\\ 1.042\\ 0.0459,\ 0.1289\\ \end{array}$                                    |
| $\beta$ , °<br>$\gamma$ ,                                                                                                                                                                                                                                                                | $108.702(2)$ $97.5900(10)$ $92.7600(10)$ $1336.1(2)$ $4$ $1.453$ $0.117$ $608$ $0.27 \times 0.25 \times 0.10$ $2.40-25.02$ $-9 \leqslant h \leqslant 12$ $-12 \leqslant k \leqslant 12$ $-12 \leqslant k \leqslant 12$ $-12 \leqslant l \leqslant 14$ $6633$ $4601 (0.0826)$ $1.021$ $0.1444, 0.3276$ $0.2878, 0.4527$                 |                                | $\begin{array}{l} 9.358(2)\\ 90\\ 96.3860(10)\\ 90\\ 1525.0(2)\\ 4\\ 1.697\\ 0.311\\ 800\\ 0.48\times 0.37\times 0.08\\ 2.79-25.02\\ -8\leqslant h\leqslant 8\\ -8\leqslant k\leqslant 8\\ -21\leqslant 1\leqslant 34\\ 7123\\ 2685\ (0.0615)\\ 0.949\\ 0.0443\ , 0.1011\\ 0.0751\ , 0.1133\\ \end{array}$       | $\begin{array}{c} 21.777(12)\\ 7.992(4)\\ 90\\ 90.579(6)\\ 90\\ 982.4(9)\\ 4\\ 1.485\\ 0.377\\ 456\\ 0.22\times0.19\times0.15\\ 2.71-25.01\\ -6\leqslant h\leqslant 6\\ -25\leqslant k\leqslant 12\\ -9\leqslant l\leqslant 9\\ 5103\\ 1744\ (0.0622)\\ 1.042\\ 0.0459,\ 0.1289\\ 0.0574,\ 0.1366\\ \end{array}$                  |
| β, °<br>β, °<br>Y, °<br>Y, Å <sup>3</sup><br>Z<br>$D_{calcd}$ , Mg/m <sup>3</sup><br>Absorption coefficient, mm <sup>-1</sup><br>F(000)<br>Crystal size, mm <sup>3</sup><br>θ range, °<br>Limiting indices<br>Reflections collected<br>Reflections collected<br>Reflections independent ( $R_{int}$ )<br>Goodness-of-fit on $F^2$<br>$R$ indices [ $I > 2\sigma I$ ]<br>R indices (all data)<br>Largest diff, peak and hole, e Å <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $108.702(2)$ $97.5900(10)$ $92.7600(10)$ $1336.1(2)$ $4$ $1.453$ $0.117$ $608$ $0.27 \times 0.25 \times 0.10$ $2.40-25.02$ $-9 \leqslant h \leqslant 12$ $-12 \leqslant k \leqslant 12$ $-12 \leqslant k \leqslant 12$ $-12 \leqslant l \leqslant 14$ $6633$ $4601 (0.0826)$ $1.021$ $0.1444, 0.3276$ $0.2878, 0.4527$ $0.481, -0.434$ |                                | $\begin{array}{l} 9.353(2)\\ 90\\ 96.3860(10)\\ 90\\ 1525.0(2)\\ 4\\ 1.697\\ 0.311\\ 800\\ 0.48\times 0.37\times 0.08\\ 2.79-25.02\\ -8\leqslant h\leqslant 8\\ -21\leqslant l\leqslant 34\\ 7123\\ 2685\ (0.0615)\\ 0.949\\ 0.0443,\ 0.1011\\ 0.0751,\ 0.1133\\ 0.222,\ -0.233\\ \end{array}$                   | $\begin{array}{c} 21.777(12)\\ 7.992(4)\\ 90\\ 90.579(6)\\ 90\\ 982.4(9)\\ 4\\ 1.485\\ 0.377\\ 456\\ 0.22\times0.19\times0.15\\ 2.71-25.01\\ -6\leqslant h\leqslant 6\\ -25\leqslant k\leqslant 12\\ -9\leqslant l\leqslant 9\\ 5103\\ 1744\ (0.0622)\\ 1.042\\ 0.0459,\ 0.1289\\ 0.0574,\ 0.1366\\ 0.405,\ -0.370\\ \end{array}$ |

disc, cm<sup>-1</sup>): 3612s(v(OH)), 3488s(v<sub>as</sub>(NH)), 3296s(v<sub>s</sub>(NH)), 3174m, 3087m, 2984s, 2688w, 2559w, 1626m, 1598s(v<sub>as</sub>(COO<sup>-</sup>)), 1536s(v<sub>as</sub>(NO<sub>2</sub>)), 1492m, 1464m, 1414m, 1382s(v<sub>s</sub>(COO<sup>-</sup>)), 1320s(v<sub>as</sub>(NO<sub>2</sub>)), 1282m, 1246m, 1202m, 1162m, 1094m, 1006m, 952w, 861w, 811m, 757w, 714m, 665w, 613w.

## 2.2.5. (2-Aminophenol): (5-nitrosalicylic acid) [(HL1)<sup>+</sup> · (5-nsa<sup>-</sup>), 5-nsa<sup>-</sup> = 5-nitrosalicylate] (5)

2-Aminophenol (10.9 mg, 0.10 mmol) dissolved in 2 mL ethanol. To this solution was added 5-nitrosalicylic acid (18.3 mg, 0.1 mmol) in 4 mL ethanol. Yellow prisms were afforded after several days of slow evaporation of the solvent, yield: 29 mg, 78.52% (based on L1). mp 196–198 °C. Elemental analysis: Calc. for 

#### 2.2.6. (2-Amino-4-chlorophenol): (3,5-dinitrosalicylic acid)

 $[(HL2)^{+} \cdot (3,5-dns^{-}), 3,5-dns^{-} = 3,5-dinitrosalicylate]$  (6)

2-Amino-4-chlorophenol (14.3 mg, 0.1 mmol) was dissolved in 2 mL methanol. To this solution was added was added 3,5-dinitro-salicylic acid (22.8 mg, 0.1 mmol) in 6 mL ethanol. Colorless block

crystals were afforded after several days by slow evaporation of the solvent (yield: 28 mg, 71.85%, based on L2). mp 158–160 °C. Elemental analysis: Calc. for  $C_{13}H_{12}ClN_3O_9$  (389.71): C, 40.03; H, 3.08; N, 10.77. Found: C, 39.95; H, 3.04; N, 10.69. Infrared spectrum (KBr disc, cm<sup>-1</sup>): 3602s (v(OH)), 3486s(multiple, v<sub>as</sub>(NH)), 3308s(v<sub>s</sub>(NH)), 3066m, 2968m, 2684w, 2579w, 1637m, 1605m, 1596s(v<sub>as</sub>(COO<sup>-</sup>)), 1540s(v<sub>as</sub>(NO<sub>2</sub>)), 1486w, 1388s(v<sub>s</sub>(COO<sup>-</sup>)), 1354m, 1312s(v<sub>s</sub>(NO<sub>2</sub>)), 1279m, 1202m, 1159m, 1022m, 952m, 846m, 759m, 648m, 604m.

# 2.2.7. (2-Amino-4-chlorophenol): $(fumaric acid)_{0.5}$ : H<sub>2</sub>O $[(HL2^+) \cdot (fum^{2-})_{0.5} \cdot H_2O, fum^{2-} = fumarate]$ (7)

2-Amino-4-chlorophenol (14.3 mg, 0.1 mmol) was dissolved in 2 mL methanol. To this solution was added fumaric acid (12 mg, 0.1 mmol) in 8 mL ethanol. Colorless block crystals were afforded after several days by slow evaporation of the solvent (yield: 18 mg, 81.96%, based on L2). mp 239–240 °C. Elemental analysis: Calc. for C<sub>8</sub>H<sub>10</sub>ClNO<sub>4</sub> (219.62): C, 43.71; H, 4.55; N, 6.37. Found: C, 43.67; H, 4.52; N, 6.31. Infrared spectrum (KBr disc, cm<sup>-1</sup>): 3588s(v(OH)), 3427s(v<sub>as</sub>(NH)), 3328s(v<sub>s</sub>(NH)), 3131s, 2958m, 2689w, 2587w, 1642s, 1612s, 1591s(v<sub>as</sub>(COO<sup>-</sup>)), 1562m, 1505m, 1455m, 1380s(v<sub>s</sub>(COO<sup>-</sup>)), 1343s, 1306m, 1284m, 1219m, 1167m, 1009m, 938m, 842 m, 759 m, 648 m.

#### 2.3. X-ray crystallography

Suitable crystals were performed on a Bruker SMART 1000 CCD diffractometer using Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å). Data collections and reductions were performed using the SMART and SAINT software [17,18]. The structures were solved by direct methods, and the non-hydrogen atoms were subjected to anisotropic refinement by full-matrix least squares on  $F^2$  using SHELXTL package [19]. Hydrogen atom positions for the seven structures were generated geometrically. Further details of the structural analysis are summarized in Table 1. Selected bond lengths and angles for compounds **1–7** are listed in Table 2; the relevant hydrogen bond parameters are provided in Table 3. The IR bands which indicate chemical functionalities in the resulting compounds are given in Table 4.

#### 3. Results and discussion

#### 3.1. Syntheses and general characterization

2-Aminophenol, and 2-amino-4-chlorophenol both have good solubility in common organic solvents, such as  $CH_3OH$ ,  $C_2H_5OH$ ,  $CH_3CN$ ,  $CHCl_3$ , and  $CH_2Cl_2$ . For the preparation of **1–7**, the acidic components were mixed directly with the base in methanol and/ or ethanol solvents in 1:1 ratio, which was allowed to evaporate at ambient conditions to give the final crystalline products. The molecular structures and their atom labeling schemes for the seven structures are shown in Figs. 1, 3, 5, 7, 9, 11 and 13, respectively. The elemental analyses for the seven compounds are in good agreement with their compositions. The infrared spectra of **1–7** are consistent with their chemical formulas determined by elemental analysis and further confirmed by X-ray diffraction analysis.

The very strong and broad features at  $3612-3176 \text{ cm}^{-1}$  arise from O—H or N—H stretching frequencies. The wave numbers of protonated NH<sub>2</sub> group (in **1**, **3**, **4**, **5**, **6**, **7**) were larger than the wave numbers of the NH<sub>2</sub> group in the compound **2**. Aromatic ring stretching and bending are in the regions of  $1500-1630 \text{ cm}^{-1}$ and  $600-750 \text{ cm}^{-1}$ , respectively. The salts **3–7** show the characteristic bands for COO<sup>-</sup> groups. Compound **2** displays strong IR peaks

| Table | 2 |
|-------|---|
|-------|---|

Selected bond lengths (Å) and angles (°) for 1-7.

| 1                    |                        |                                      |                        |
|----------------------|------------------------|--------------------------------------|------------------------|
| N(1) - C(2)          | 1 465(3)               | N(2) = C(8)                          | 1 461(3)               |
| N(3) - C(10)         | 1.103(3)<br>1.447(4)   | N(2) = C(0)<br>N(4) = C(12)          | 1.460(3)               |
| O(1) - C(1)          | 1.117(1)               | O(2) - C(7)                          | 1.100(3)               |
| C(2) = N(1) = H(1A)  | 1.00 5                 | C(2) = C(7)<br>C(2) = N(1) = H(1P)   | 1.202(3)               |
| U(1A) = N(1) = H(1A) | 109.5                  | C(2) = N(1) = H(1B)                  | 109.5                  |
| H(IA) = N(I) = H(IC) | 109.5                  | C(2) = N(1) = H(1C)                  | 109.5                  |
| H(IA) - N(I) - H(IC) | 109.5                  | H(IB) - N(I) - H(IC)                 | 109.5                  |
| C(3) - C(2) - N(1)   | 120.3(2)               | C(1) - C(2) - N(1)                   | 118.2(2)               |
| 2                    |                        |                                      |                        |
| Cl(1)-C(11)          | 1.743(2)               | N(1)-O(3)                            | 1.216(3)               |
| N(1)-O(4)            | 1.217(3)               | N(1) - C(5)                          | 1.471(3)               |
| N(2) - C(9)          | 1.396(3)               | O(1) - C(1)                          | 1.281(3)               |
| O(2) - C(1)          | 1 247(3)               | O(5) - C(8)                          | 1 369(3)               |
| O(3) - N(1) - O(4)   | 122 6(2)               | O(2) - C(1) - O(1)                   | 1234(2)                |
|                      | 122.0(2)               | 0(2) 0(1) 0(1)                       | 123.1(2)               |
| 3                    |                        |                                      |                        |
| N(1)-C(2)            | 1.464(4)               | N(2)-C(10)                           | 1.469(4)               |
| N(3)-C(12)           | 1.470(4)               | O(1)-C(1)                            | 1.377(4)               |
| O(2)-C(7)            | 1.240(4)               | O(3)-C(7)                            | 1.255(3)               |
| O(2) - C(7) - O(3)   | 125.7(3)               |                                      |                        |
| 4                    |                        |                                      |                        |
| $\mathbf{H}$         | 1 740(2)               | N(1) = C(2)                          | 1 462(2)               |
| V(1) = C(4)          | 1.740(2)<br>1.472(2)   | N(1) = C(2)                          | 1.402(3)               |
| N(2) = C(10)         | 1.473(3)               | N(3) = C(12)                         | 1.476(3)               |
| O(1) - C(1)          | 1.350(3)               | O(2) = C(7)                          | 1.270(3)               |
| U(7) - U(7)          | 1.241(3)               | U(7) = U(7) = U(2)                   | 126.2(2)               |
| 5                    |                        |                                      |                        |
| N(1) - O(4)          | 1.221(13)              | N(1)-O(5)                            | 1.241(11)              |
| N(1) - C(5)          | 1.457(13)              | N(2) - O(10)                         | 1.230(10)              |
| N(2) - O(9)          | 1.247(11)              | N(2) - C(12)                         | 1.440(13)              |
| N(3) - C(16)         | 1.456(12)              | N(4) - C(22)                         | 1.439(13)              |
| O(1) - C(2)          | 1.340(12)              | O(2) - C(1)                          | 1.253(12)              |
| O(3) - C(1)          | 1270(12)               | O(6) - C(9)                          | 1343(12)               |
| O(7) - C(8)          | 1.290(12)              | O(8) - C(8)                          | 1217(14)               |
| O(11) - C(15)        | 1.250(11)<br>1.364(12) | O(12) - C(21)                        | 1.217(11)<br>1.344(13) |
| O(4) - N(1) - O(5)   | 1.304(12)<br>1223(10)  | O(12) = O(21)<br>O(10) = N(2) = O(9) | 1.044(10)<br>1206(10)  |
| O(2) - C(1) - O(2)   | 122.3(10)<br>124.1(0)  | O(10) = N(2) = O(3)                  | 120.0(10)<br>125.7(10) |
| 0(2) - C(1) - O(3)   | 124.1(9)               | 0(8) - 0(8) - 0(7)                   | 123.7(10)              |
| 6                    |                        |                                      |                        |
| Cl(1)-C(4)           | 1.722(3)               | N(1)-C(2)                            | 1.468(3)               |
| N(2)-C(10)           | 1.444(3)               | N(3)-C(12)                           | 1.462(3)               |
| O(1) - C(1)          | 1.358(3)               | O(2) - C(7)                          | 1.212(3)               |
| O(3)-C(7)            | 1.303(3)               | O(4) - C(9)                          | 1.301(3)               |
| O(2) - C(7) - O(3)   | 121.5(2)               |                                      |                        |
| -                    |                        |                                      |                        |
|                      | 1 7 4 6 ( 2 )          | N(4) ((2)                            | 1 400(2)               |
| CI(1) - C(4)         | 1./46(3)               | N(1) - C(2)                          | 1.469(3)               |
| U(1) - C(1)          | 1.363(3)               | U(2) - U(7)                          | 1.255(3)               |
| U(3) - U(7)          | 1.264(3)               | U(2) - U(7) - O(3)                   | 124.36(19)             |

for COOH groups. The bands at ca. 1530 and  $1320 \text{ cm}^{-1}$  were attributed to the  $v_{as}(NO_2)$  and  $v_s(NO_2)$ , respectively [20].

#### 3.2. Structural descriptions

#### 3.2.1. X-ray structure of (2-aminophenol): (2,4,6-trinitrophenol) $[(HL1)^+ \cdot (pic^-), pic^- = picrate, L1 = 2-aminophenol], (1)$

Salt **1** was prepared by reacting of a methanol solution of 2-aminophenol and 2,4,6-trinitrophenol in 1:1 ratio, which crystallizes as triclinic pale yellow crystals in the space group P-1. The asymmetric unit of **1** consists of a monocation of 2-aminophenol, and one anion of picrate, as shown in Fig. 1.

This is a salt where the OH groups of 2,4,6-trinitrophenol are ionized by proton transfer to the nitrogen atom (N(1)) of the 2-aminophenol moieties, which is also confirmed by the bond distance of O(2)–C(7) (1.262(3) Å) for phenolate  $(1.24 \pm 0.01 Å)$  [21]. In the compound, there is one ion pair without solvent molecules, which is well agreement with the micro-analysis results. The N(1)–C(2) bond length is 1.465(3) Å, and is approximately equal to a C–N single-bond length, indicating that atom N(1) of the amino group must be *sp3* hybridized. This is also supported by the angles around C(2) (C(3)–C(2)–N(1), 120.3(2)°; C(1)–C(2)–N(1),

Table 3

Hydrogen bond distances and angles in studied structures 1-7.

| D—H···A                              | d(D—H) (Å) | $d(H \cdots A)$ (Å) | $d(D \cdots A)$ (Å) | <(DHA) (°) |
|--------------------------------------|------------|---------------------|---------------------|------------|
| 1                                    |            |                     |                     |            |
| $O(1) - H(1) \cdots O(5) = 1$        | 0.82       | 2.03                | 2.837(3)            | 167.2      |
| N(1) - H(1C) - O(7)                  | 0.89       | 2.07                | 2.924(3)            | 161.2      |
| N(1) - H(1B) - O(2) = 0              | 0.89       | 1.95                | 2.823(3)            | 167.6      |
| N(1) - H(1A) - O(3) = 3              | 0.89       | 2.46                | 2.964(3)            | 116.5      |
| N(1) - H(1A) - O(2) = 3              | 0.89       | 1.93                | 2.799(3)            | 166.5      |
|                                      |            |                     |                     |            |
| Z<br>O(C) U(CD) N(2)#1               | 0.85       | 2.02                | 2.965(2)            | 177 E      |
| O(6) = H(6C) = O(4) # 2              | 0.85       | 2.02                | 2.005(5)            | 177.5      |
| $O(6) = H(6C) \cdots O(4) \# 2$      | 0.83       | 2.20                | 3.043(3)            | 177.0      |
| $O(5) - H(5) \cdots O(6) = 3$        | 0.82       | 1.87                | 2.671(2)            | 100.0      |
| $O(1) - H(1) \cdots O(2) = 4$        | 0.82       | 1.80                | 2.018(2)            | 1/1.0      |
| N(2) = H(2A) = O(3) # G              | 0.80       | 2.20                | 3.034(3)            | 140.0      |
| $N(2) = H(2A) \cdots O(3) \# 6$      | 0.86       | 2.32                | 3.101(3)            | 150.5      |
| 3                                    |            |                     |                     |            |
| $N(1)-H(1C)\cdots O(2)#1$            | 0.89       | 1.89                | 2.768(3)            | 170.1      |
| N(1) - H(1B) - O(1) = 2              | 0.89       | 2.04                | 2.873(3)            | 155.1      |
| N(1) - H(1A) - O(3) = 3              | 0.89       | 1.89                | 2.769(3)            | 171.9      |
| 4                                    |            |                     |                     |            |
| $O(1) - H(1) \dots O(7) = 1$         | 0.82       | 1 78                | 2 526(2)            | 149.8      |
| $N(1) - H(1C) \dots O(2) + 2$        | 0.89       | 1 93                | 2,793(3)            | 162.7      |
| $N(1) - H(1B) \dots O(1) + 3$        | 0.89       | 2 50                | 2 987(2)            | 114.7      |
| N(1) - H(1B) - O(3) = 3              | 0.89       | 2.30                | 3 (093(2))          | 148.0      |
| $N(1) - H(1B) \cdots O(1)$           | 0.89       | 2.19                | 2,670(2)            | 113.3      |
| N(1) - H(1A) - O(2) = 4              | 0.89       | 1.89                | 2.734(2)            | 158.4      |
| -                                    | 0.00       | 100                 | 2001(2)             | 10011      |
| 5                                    |            |                     |                     |            |
| O(12) - H(12) - O(7) = 1             | 0.82       | 1.88                | 2.672(10)           | 162.7      |
| O(11) - H(11A) - O(2) = 0            | 0.82       | 1.81                | 2.624(9)            | 169.3      |
| $O(6) - H(6) \cdots O(7)$            | 0.82       | 1.78                | 2.518(11)           | 148.9      |
| $O(1) - H(1) \cdots O(2)$            | 0.82       | 1.81                | 2.539(11)           | 148.1      |
| N(4) - H(4C) - O(10) = 3             | 0.89       | 2.21                | 3.005(11)           | 148.3      |
| $N(4) - H(4B) \cdots O(3)$           | 0.89       | 2.30                | 3.170(11)           | 166.5      |
| $N(4) - H(4A) \cdots O(3) \# 2$      | 0.89       | 1.90                | 2.768(11)           | 166.3      |
| $N(3) - H(3C) \cdots O(4) \# 4$      | 0.89       | 2.43                | 3.092(11)           | 131.3      |
| $N(3) - H(3C) \cdots O(5) \# 4$      | 0.89       | 2.38                | 3.146(12)           | 144.1      |
| N(3) - H(3B) - O(11)                 | 0.89       | 2.25                | 2.694(10)           | 110.5      |
| N(3) - H(3B) - O(3)                  | 0.89       | 2.19                | 3.026(11)           | 155.2      |
| $N(3) - H(3A) \cdots O(8) \# I$      | 0.89       | 1.78                | 2.632(11)           | 158./      |
| 6                                    |            |                     |                     |            |
| O(9)—H(9D)···O(4)#1                  | 0.85       | 1.94                | 2.724(2)            | 152.1      |
| $O(9) - H(9C) \cdots O(5)$           | 0.85       | 2.11                | 2.894(3)            | 152.8      |
| $O(3) - H(3) \cdot \cdot \cdot O(4)$ | 0.82       | 1.65                | 2.424(3)            | 155.2      |
| O(1) - H(1) - O(2) = 2               | 0.82       | 1.81                | 2.609(3)            | 166.3      |
| $N(1)-H(1C)\cdots O(5)$              | 0.89       | 2.56                | 3.289(3)            | 140.3      |
| $N(1)-H(1C)\cdots O(4)$              | 0.89       | 2.49                | 3.069(3)            | 123.1      |
| N(1) - H(1C) - O(3) = 1              | 0.89       | 2.32                | 2.989(3)            | 132.1      |
| N(1)—H(1B)····O(9)#3                 | 0.89       | 1.98                | 2.870(3)            | 178.5      |
| N(1)-H(1A) - O(9)#4                  | 0.89       | 1.93                | 2.818(3)            | 173.1      |
| 7                                    |            |                     |                     |            |
| O(4) - H(4D) - O(3) = 2              | 0.85       | 2.00                | 2.838(3)            | 170.2      |
| O(4) - H(4C) - C(1)#3                | 0.85       | 2.96                | 3.414(2)            | 115.5      |
| O(4) - H(4C) = O(2) # 4              | 0.85       | 2.07                | 2.908(3)            | 170.2      |
| $O(1) - H(1) \cdots O(2) # 4$        | 0.82       | 1.85                | 2.668(2)            | 177.5      |
| N(1) - H(1C) - O(3) = 5              | 0.89       | 1.00                | 2.828(3)            | 175.8      |
| N(1) - H(1B) - O(3) = 6              | 0.89       | 1.51                | 2.812(3)            | 163.9      |
| N(1) - H(1A) - O(4) #7               | 0.89       | 1.55                | 2.817(3)            | 178.6      |
|                                      | 0.00       | 1.00                | 2.01.(3)            | 170.0      |

Symmetry transformations used to generate equivalent atoms for 1: #1 x + 1, y, z - 1; #2 -x + 1, -y + 1, -z + 1; #3 x, y - 1, z. Symmetry transformations used to generate equivalent atoms for 2: #1 x, y - 1, z; #2 -x + 1, -y + 1, -z; #3 x + 1, y + 1, z; #4 -x, -y, -z + 1; #5 -x + 1, -y + 2, -z; #6 x - 1, y, z. Symmetry transformations used to generate equivalent atoms for 3: #1 -x + 1, -y + 1, -z; #3 -x + 1, y + 1/2, -z; #3 -x + 1, -y + 2, -z + 1; #5 -x + 1, -y + 2, -z; #6 x - 1, y, z. Symmetry transformations used to generate equivalent atoms for 3: #1 -x + 1, y - 1/2, -z; #3 -x + 1, y + 1/2, -z. Symmetry transformations used to generate equivalent atoms for 5: #1 -x + 1, -y + 1, -z; #2 -x, y + 1/2, -z; #3 -x + 1, y + 1/2, -z; #3 -x + 1, -y + 1, -z. Symmetry transformations used to generate equivalent atoms for 5: #1 -x + 1, -y + 1, -z; #2 -x, -y + 1, -z + 1; #3 -x + 1, -y + 2, -z + 1; #4 -x, -y, -z. Symmetry transformations used to generate equivalent atoms for 6: #1 -x + 1/2, y - 1/2, -z + 1/2; #2 x + 1, y - 1, z; #3 -x + 3/2, y + 1/2, -z + 1/2; #4 x, y + 1, z. Symmetry transformations used to generate equivalent atoms for 7: #2 -x + 1, -y + 1, -z + 1/2; #4 x + 1, y - 1, z; #3 -x + 1, -y + 1, -z + 1/2; #4 x + 1, y - 1, z; #3 -x + 1, -y + 1, -z + 1/2; #4 x + 1, -y - 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2; #4 x + 1, -y + 1, -z + 1/2;

118.2(2)°), and the bond angles concerning N(1) (C(2)–N(1)–H(1A), C(2)–N(1)–H(1C), C(2)–N(1)–H(1B), H(1A)–N(1)–H(1B), H(1A)–N(1)–H(1C), and H(1B)–N(1)–H(1C) are all 109.5°, indicating very nearly perfect *sp*3 hybridization). The N(1)–C(2) bond (1.465(3) Å) is longer by 0.05 Å than that (1.416(2) Å) in neutral 2-aminophenol [22], yet it is similar to the corresponding value at the salt of 2-aminophenol-HClO<sub>4</sub> [23]. The C–OH and C–C bonds within the aromatic

ring of the cation are comparable to that found in the crystal of a neutral 2-aminophenol [22].

The rms deviation of the phenyl ring of the picrate is 0.0211 Å, the ortho-nitro groups (N2–O3–O4, and N4–O7–O8) deviate from the phenyl ring plane and have dihedral angles of 34.7°, and 19.3° respectively with the phenyl plane, whereas the *para*-ni-tro group lies almost in the phenyl plane [with a dihedral angle of

| Table 4                                                                       |
|-------------------------------------------------------------------------------|
| Character IR bands of chemical functionalities of the four organic salts 1–7. |

| Compound | v(OH) | $v_{as}(NH)$ | $\nu_{s}(NH)$ | ν(C==0) | v <sub>as</sub> (COO) | v <sub>s</sub> (COO) | v(CO) | $v_{as}(NO_2)$ | $v_s(NO_2)$ |
|----------|-------|--------------|---------------|---------|-----------------------|----------------------|-------|----------------|-------------|
| 1        | 3589s | 3440s        | 3306s         |         |                       |                      |       | 1525s          | 1324s       |
| 2        | 3596s | 3230s        | 3176s         | 1648s   |                       |                      | 1288s | 1538s          | 1326s       |
| 3        | 3579s | 3454s        | 3346s         |         | 1602s                 | 1384s                |       | 1522s          | 1323s       |
| 4        | 3612s | 3488s        | 3296s         |         | 1598s                 | 1382s                |       | 1536s          | 1320s       |
| 5        | 3585s | 3472s        | 3362s         |         | 1586s                 | 1394s                |       | 1526s          | 1321s       |
| 6        | 3602s | 3486s        | 3308s         |         | 1596s                 | 1388s                |       | 1540s          | 1312s       |
| 7        | 3588s | 3427s        | 3328s         |         | 1591s                 | 1380s                |       |                |             |



Fig. 1. The structure of 1, showing the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.



Fig. 2. 2D sheet structure of 1 extending along the direction that made an angle of ca 45° with the *bc* plane.

4.9° between the N3–O5–O6 group and the phenyl ring]. The two ortho-nitro groups intersect at an angle of  $25.7^{\circ}$  with each other, while the *para*-nitro group made dihedral angles of  $30.0^{\circ}$  (with N2–O3–O4), and  $17.7^{\circ}$  (with N4–O7–O8) with the two ortho nitro groups respectively. These structural data are similar to those in other structurally described picrates [24].

One anion is bonded to one cation through the bifurcated N–H···O hydrogen bonds produced between the aminium cation and the phenolate and one ortho-nitro group with N–O distances of 2.799(3)–2.964(3) Å. In this case the NH unit and the two O atoms involved in the hydrogen bonds generated a  $R_1^2(6)$  motif according to [25]. Herein the phenyl ring of the cation and the phenyl ring of the anion are almost perpendicular to each other with a dihedral angle of 80.2° between the two rings. Under the N–H···O

hydrogen bonds the cation and the anion formed a bicomponent adduct. Such kind of bicomponent adducts were joined together via O—H···O hydrogen bond between the phenol unit of the cation and the *para*-nitro group of the neighboring bicomponent heteroadduct with N—O distance of 2.837(3) Å to form a 1D chain running along the *c* axis direction. The adjacent chains were combined together through N—H···O hydrogen bond between the aminium cation and the ortho nitro group with N—O distance of 2.924(3) Å, and O—O contact between the ortho nitro groups of the adjacent chains with O—O separation of 2.864 Å to form 2D sheet extending along the direction that made an angle of ca. 45° with the *bc* plane (Fig. 2). Two neighboring sheets were held together by the CH—O association between the aromatic 3-CH of the cation of one sheet and the ortho nitro group of its neighboring



Fig. 3. The structure of 2, showing the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.



Fig. 4. 2D sheet structure of 2 extending along the *ac* plane.

sheet with C—O distance of 3.365 Å to form double sheet structure. It is worthy to note that the corresponding cations and anions in the same sheet were parallelly arranged, respectively; while the corresponding cations and anions at different sheets in the double sheet were antiparallelly arranged, respectively. The double sheets were further stacked along the direction that is perpendicular with its extending direction via the intersheet N—H…O hydrogen bond between the aminium group and the phenolate with N—O distance of 2.823(3) Å to form 3D layer network structure. In this regard the neighboring double sheets were slipped some distance from each other along the *b*, and *c* axes directions, respectively.

### 3.2.2. X-ray structure of (2-amino-4-chlorophenol): (p-nitrobenzoic acid): $H_2O$ [(L2) · (Hnba) · $H_2O$ , Hnba = p-nitrobenzoic acid] (2)

The compound 2 of the composition  $[(L2) \cdot (Hnba) \cdot H_2O]$  was prepared by reaction equal mol of 2-amino-4-chlorophenol and p-nitrobenzoic acid, which crystallizes as triclinic colorless block crystals in the space group P-1. The asymmetric unit of two consists of one L2 molecule, one p-nitrobenzoic acid molecule, and one water molecule, as shown in Fig. 3. This is a cocrystal where the COOH groups of the p-nitrobenzoic acids are not ionized by proton transfer to the N atoms of the 2-amino-4-chlorophenol moieties, which is also confirmed by the bond length of C9—N2 which has similar bond length with the corresponding value in the crystals of 2-amino-4-chlorophenol [26].

Here the difference between the pairs of C—O bond distances of O(1)—C(1) (1.281(3)Å), and O(2)—C(1) (1.247(3)Å) is relatively small, which may be explained by the fact the formation of single or multiple hydrogen bonds at one oxygen atom should cause the associated C—O bond to lengthen. Here the O(2) involves in the hydrogen bond, while the O1 does not.

The carboxyl and the nitro groups deviated by  $4.3^{\circ}$ , and  $1.6^{\circ}$  respectively from the benzene ring composed of C2–C7. The r.m.s deviations of the phenyl rings of the p-nitrobenzoic acid and L2 from the mean planes of the rings are 0.0033 Å, and 0.0058 Å, respectively, both rings made dihedral angle of  $0.8^{\circ}$  with each other. Different from **1**, here the aromatic rings of the acid, and the base components are almost in the same plane.

Two L2 form homodimers via a pair of N-H···O hydrogen bonds between the amino group and the phenolic group with N-O distance of 3.034(3) Å. Two Hnba molecules are also aggregated together by a pair of CH-O associations between the 3-CH of the phenyl unit and the p-nitro group with C-O distance of 3.550 Å to form a homodimer. Such two kinds of homodimers were linked together by the CH-O contact between the 5-CH of the 2amino-4-chlorophenol and the carbonyl group of the p-nitrobenzoic acid with C–O distance of 3.463 Å to form a 1D chain running along the *c* axis direction. The chains were combined together by the interchain N-H···O hydrogen bond between the amino group of the L2 and the p-nitro group of Hnba with N-O distance of 3.101(3) Å to form 2D sheet extending on the *ac* plane (Fig. 4). In the sheet the water molecules were stitched between the adjacent chains via the O–H···O hydrogen bonds (O(5)-H(5)...O(6)#3), and O(6)-H(6C)···O(4)#2), and CH-O association between the 2-CH of the p-nitrobenzoic acid and the water molecule with C–O distance of 3.460 Å. It is worthy to point out that the adjacent chains in the sheet were slipped the distance of ca. c axis length along the c axis direction. While the first chain has the same projection as the third chain when we viewed from the *a* axis direction, so does the second chain and the fourth chain. The sheets were further stacked along the *b* axis direction by the  $O-H \cdots N$  hydrogen bond between the water molecule and the amino group of L2 with N-O distance of 2.865(3) Å to form 3D layer network structure. Herein the adjacent sheets were slipped some distance from each other along the a, and c axes directions, respectively.

## 3.2.3. X-ray structure of (2-aminophenol): (3,5-dinitrobenzoic acid) $[(HL1)^+ \cdot (dnb^-), dnb^- = 3,5-dinitrobenzoate], (3)$

Compound **3** was prepared by reacting of a methanol solution of 2-aminophenol and 3,5-dinitrobenzoic acid in 1:1 ratio, which crystallizes as monoclinic pale yellow crystals in the centrosymmetric space group P2(1). The asymmetric unit of **3** consists of a cation of L1, and one anion of 3,5-dinitrobenzoate, as shown in Fig. 5.

Compound **3** is a salt where the COOH groups of 3,5-dinitrobenzoic acids are ionized by proton transfer to the nitrogen atoms of the L1, which is also confirmed by the bond distances of O(2)-C(7)(1.240(4) Å) and O(3)-C(7)(1.255(3) Å) for the carboxylates. The difference ( $\varDelta$  is 0.015 Å) in bond distances between O(2)-C(7)(1.240(4) Å) and O(3)-C(7)(1.255(3) Å) in the carboxylate group in compound **3** is in the range for ionized COOH groups [27].

In the compound, there is one ion pair without solvent molecules, which is well agreement with the micro-analysis results. In compound **3**, there exist strong electrostatic interactions between the charged cation units of  $NH^+$  and the anion of 3,5-dinitrobenzoate.



Fig. 5. The structure of 3, showing the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.



Fig. 6. 2D corrugated sheet structure of 3 that is running parallel to the bc plane.

One cation and one anion generate a bicomponent adduct via the ionic  $N^+-H\cdots O^-$  hydrogen bond between the aminium cation and the carboxylate with N–O distance of 2.768(3) Å. Such kind of bicomponent adducts were linked together by the CH-O interaction between the phenyl CH (3-CH) of the cation and the nitro group with C–O distance of 3.432 Å to form a 1D wave chain running along the *c* axis direction. Here the distance (ca. 3.627(3) Å) between the O1 and O2 is too great to imply O–H···O hydrogen bond. The 1D wave chains were connected together by the CH-O interaction between the phenyl CH (3-CH) of the cation and the carboxylate with C–O distance of 3.271 Å, N–H…O association between the aminium group and the same O atom of the same carboxylate group that is involved in CH-O interaction with N-O distance of 2.769(3) Å, and  $O-\pi$  interaction between the nitro group and the phenyl ring of the anion with O-Cg distance of 3.060 Å at the neighboring chains to form a 2D corrugated sheet structure (Fig. 6). In this regard the O- $\pi$  interaction is much stronger than the archived result (3.59 Å) [28]. The corresponding anions and cations in the sheet were parallel to each other respectively. Two neighboring 2D corrugated sheets were joined together via the same side of the sheet by the  $O-\pi$  interaction between the nitro group and the phenyl ring of the anion with O-Cg distance of 3.080 Å to form 2D double sheet structure. The 2D double sheets were further stacked along the *a* axis direction through the intersheet N-H...O hydrogen bond between the aminium unit and the phenol group of the cation at adjacent double sheets with O–N distance of 2.873(3) Å, O–N association (with O–N distance of 2.885 Å), and O–O (with O–O distance of 2.965 Å) contact to form 3D network structure.



**Fig. 7.** The structure of **4**, showing the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

#### 3.2.4. X-ray structure of (2-amino-4-chlorophenol): (3,5-

dinitrobenzoic acid)  $[(HL2)^+ \cdot (dnb^-), dnb^- = 3,5-dinitrobenzoate]$  (4) Similar to compound **3**, in **4** the asymmetric unit is occupied by one anion of 3,5-dinitrobenzoic acid, and a cation of  $(HL2)^+$  (Fig. 7). The proton of the COOH group has transferred to the N atom of the L2 moiety. The assignment of **4** as a salt is based on successful



Fig. 8. 2D sheet structure of 4 extending parallel to the ac plane.

refinement of the relevant H atoms using X-ray data also. One cation is bonded to one anion through the O–H $\cdots$ O hydrogen bond between the phenol group (donor) and the carboxylate with O–O separation of 2.526(2) Å to form a heteroadduct. The parallel heteroadducts were linked together along the *a* axis direction by the CH-O interaction between the 3-CH of the cation and the nitro group of the anion with C–O distance of 3.388 Å to form a 1D chain running along the *a* axis direction. Two neighboring chains were combined together by the N–H $\cdots$ O hydrogen bond between the aminium group and the nitro group with N-O distance of 3.093(2) Å to form 1D double chain. The cations in the two chains at the double chain were antiparallely arranged, so did the anions. The double chains were further joined together by the CH-O association (there are a pair of CH–O interactions with C–O distance of 3.592 Å between the anions to form a  $R_2^2(10)$  ring, there is also a CH–O contact with C–O distance of 3.278 Å between the 6-CH of the cation and the other O atom of the nitro group that is involved in the CH–O interaction between the anions) to form 2D sheet structure extending along the ac plane (Fig. 8). The 2D sheets propagate along the *b* axis direction by the  $\pi$ - $\pi$  interaction between the aromatic rings of the cation and the anion with Cg-Cg distance of 3.312 Å, N- $\pi$  interaction between the nitro group of the anion and the phenyl ring of the cation with N-Cg distance of 3.194 Å, and  $O-\pi$  association between the nitro unit and the phenyl ring of the cation with O–Cg distance of 3.180 Å to form 3D network structure. The N-Cg distance observed in this compound is somewhat shorter than the reported N-Cg distance [29]. Here the adjacent sheets were slipped some distance from each other along the a axis direction.

### 3.2.5. X-ray structure of (2-aminophenol): (5-nitrosalicylic acid) [(HL1)<sup>+</sup> · (5-nsa<sup>-</sup>), 5-nsa<sup>-</sup> = 5-nitrosalicylate] (5)

Salt **5** was prepared by reacting of an ethanol solution of 2-aminophenol and 5-nitrosalicylic acid in 1:1 ratio, which crystallizes as triclinic pale yellow crystals in the centrosymmetric space group P-1. The asymmetric unit of **5** consists of two halves of the cations of HL1, and two halves of 5-nitrosalicylate anions, as shown in Fig. 9. Compound **5** is also a salt where the COOH groups of 5-nitrosalicylic acids are deprotonated. The difference between the pairs of bond distances of O(2)—C(1) (1.253(12) Å) and O(3)—C(1) (1.270(12) Å); O(7)—C(8) (1.290(14) Å), and O(8)—C(8) (1.217(14) Å) for the carboxylate are 0.017 Å, and 0.073 Å, respectively. The relative large  $\varDelta$  value for O(7)—C(8) (1.290(14) Å), and O(8)—C(8) (1.217(14) Å) are due to the fact that the O(7) is involved in forming more hydrogen bonds that that of O(8). Because of the presence of the intramolecular hydrogen bond between the carboxylate group and the

phenol group  $(O(1)-H(1)\cdots O(2), 2.539(11) Å$ ; and  $O(6)-H(6)\cdots O(7)$ , 2.518(11) Å), it is generally expected and found that the carboxylate group is essentially coplanar with the phenyl ring [torsion angle C2–C3–C1–O3, 166.03°, and C9–C10–C8–O8, 175.59°]. This feature is similar to that found in salicylic acid [30], and in the previously reported structure based on 5-nsa<sup>-</sup> [30]. As expected the O–O separation is essentially in the upper limit of the documented data [2.489–2.509 Å] [31], but it is slightly contracted compared with the nonproton transfer examples (2.547–2.604 Å, mean: 2.588 Å), as a result of deprotonation. The 5-nitro group also varies little conformationally [torsion angle C6–C5–N1–O4, 174.75°; and C13–C12–N2–O9, 179.64°] compared with the reported torsion angle (175.4–180°) within the 5-nsa<sup>-</sup> anions [31].

In the solid state, there is consistently ionic hydrogen bond formed between the  $NH^{+}$  group, and the 5-nitrosalicylate ion, which is to be expected [32]. There also exist strong coulombic interactions between charged cation units and the 5-nitrosalicylate anions.

Two anions and two cations produced a tetracomponent adduct via the N–H···O hydrogen bonds with N–O distances of 2.632(11)–3.146(12) Å. In the tetracomponent adduct the cations were inversionally related, so did the anions. The tetracomponent adducts were linked together via the O–H···O hydrogen bond between the phenol group of the cation and the carboxylate with



Fig. 9. The structure of 5, showing the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.



Fig. 10. 2D sheet structure of 5 which is extending parallel to the bc plane.

O–O distance of 2.624(9) Å to form 1D chain running parallel to the *c* axis direction. The chains were further joined together by the CH–O association between the phenyl CH of the anion and the phenol group of the anion belonging to the neighboring chains with C–O distance of 3.466 Å to form 2D sheet extending parallel to the *bc* plane (Fig. 10), herein the cations bonded to the sheet were protruded from the sheet plane. Two adjacent sheets were joined together via the same face of the sheet by the N-H···O (between the aminium cation and the carboxylate with N-O distance of 3.026(11) Å, and between the NH<sup>+</sup><sub>3</sub> and the phenol moiety with N–O distance of 2.954 Å), and O– $\pi$  (between the nitro group and the phenyl ring of the anion with O-Cg distance of 3.105 Å) interactions to form 2D double sheet structure. The double sheets were further propagated along the *a* axis direction via the CH–O contact between the 5-, and 6-CH of the cation and the nitro group of the anion belonging to two different sheets of the double sheet with C-O distances of 3.243-3.419 Å to form 3D layer network structure. Herein the adjacent double sheets were slipped some distance from each other along their extending direction.

3.2.6. X-ray structure of (2-amino-4-chlorophenol): (3,5dinitrosalicylic acid) [(HL2)<sup>+</sup>  $\cdot$  (3,5-dns<sup>-</sup>), 3,5-dns<sup>-</sup> = 3,5dinitrosalicylate], (6)

Crystallization of 2-amino-4-chlorophenol and 3,5-dinitrosalicylic acid in a 1:1 ratio from the mixed solvent of methanol and ethanol gave single crystals suitable for X-ray diffraction. Structure determination (Table 1) revealed that 2-amino-4-chlorophenol and 3,5-dinitrosalicylic acid are present in a 1:1 ratio in the molecular complex **6**. The crystal structure of **6** consists of one cation of HL2, and one monoanion of 3,5-dinitrosalicylic acid in the asymmetric unit (Fig. 11). Similar to the published organic salt bearing 3,5-dns<sup>-</sup> [16], in **6** only the phenol OH groups of 3,5-dinitrosalicylic acids are ionized by proton transfer to the L2, and the COOH group remains protonized.

The C–O distance (O(4)-C(9), 1.301(3) Å) concerning the phenolate is longer than the corresponding value in the proton transfer compound bearing the 3,5-dns<sup>-</sup> in which only the phenol group has been deprotonated [33]. The reason may be attributed to the fact that the O4 moiety participates in forming more hydrogen bonds (Table 3). The C–O distances (O(2)-C(7), 1.212(3), O(3)-C(7), 1.303(3) Å) in the COOH show characteristic C=O, and C–O distances which are also confirming the reliability of adding H atoms experimentally by different electron density onto O atoms as mentioned above. The torsion angles O6–N2–C10–C9, and O7–N3–C12–C13 are –179.0(2)°, and 156.5(3)°, respectively. In this regard, both nitro groups are nearly in the same plane as the phenyl ring of the anion, yet the 3-nitro group (O6-N2-O5) deviates somewhat less from the plane than the 5-nitro group (O7-N3-O8), which is different from the published results [33].

The water molecule was bonded to the cation via one N—H···O hydrogen bond (between the water molecule (acceptor) and the aminium cation with N—O distance of 2.818(3) Å (N(1)—H(1A)···O(9)#4, 2.818(3) Å, 173.1°), and one CH—O contact (between the 3-CH of the cation and the Ow atom with C—O distance of 3.333 Å) to generated a hydrogen bonded ring with graph set descriptor of  $R_2^1(6)$ . There also exists intramolecular O—H···O hydrogen bond with graph set of  $S_1^1(6)$  which is between the COOH unit and the phenolate in the anion with O—O separation of 2.424(3) Å. The cation attached with the water molecule was linked with the anion via the O—H···O hydrogen bond between the phenol group of the cation and the carbonyl unit of the anion



Fig. 11. The structure of 6, showing the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.



Fig. 12. 1D chain structure of 6 built from Cl–Cl bond, and O–H…O interactions which is running along the *b* axis direction.



Fig. 13. The structure of 7, showing the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.



Fig. 14. 2D sheet structure of 7 that is extending on the *ab* plane.

with O–O separation of 2.609(3) Å, and CH–O association between the 6-CH of the cation and the same carbonyl group with C-O distance of 3.222 Å to form a tricomponent adduct. The tricomponent adducts were linked together via the CH-O interaction between the nitro group and the aromatic CH of the cation with C-O distances in the range of 3.282-3.437 Å to form a hexacomponent adduct. In the hexacomponent adduct there existed an inversion centre which is located at the middle point of the two 5-nitro groups in the hexacomponent adduct. The hexacomponent adducts were combined together via the Cl-Cl bond between the cations and  $O-H \cdots O$  hydrogen bond between the water molecule and the nitro group with O–O separation of 2.894(3) Å  $(O(9)-H(9C)\cdots$ O(5), 2.894(3) Å, 152.8°) to form a 1D chain running along the baxis direction (Fig. 12). Here the Cl-Cl separation is 3.380 Å, which is within the range of a Cl-Cl bond [34]. The 1D chains were further stacked along the *a* axis direction via the N-H $\cdots$ O  $(N(1)-H(1C)\cdots O(4), 3.069(3)$ Å, 123.1°) hydrogen bond between the aminium cation and the phenolate with N-O distance of 3.069 Å, and  $\pi$ – $\pi$  association between the phenyl moieties of the cation and the anion with Cg–Cg distances of ca. 3.246–3.382 Å to form 2D sheet extending parallel to the *ab* plane. The sheets were further stacked along the *c* axis direction to form 3D ABAB layer network structure through the intersheet N–H···O (N(1)–H(1C)···O(3)#1, 2.989(3) Å, 132.1°) hydrogen bond between the aminium cation and the phenol group with N–O distance of 2.989(3) Å, and O–H···O (O(9)–H(9D)···O(4)#1, 2.724(2) Å, 152.1°) hydrogen bond between the water molecule and the phenolate with O–O distance of 2.724(2) Å. It is worthy to mention that the chains at adjacent sheets made an angle of ca 60° with each other. The first sheet layer was parallel to the third sheet layer, so did the second sheet layer and the fourth sheet layer.

### 3.2.7. X-ray structure of (2-amino-4-chlorophenol): (fumaric acid)<sub>0.5</sub> $[(HL_2)^+ \cdot (fum^{2-})_{0.5}, fum^- = fumarate]$ (7)

Similar to the above compounds, compound **7** was prepared by reaction of fumaric acid and 2-amino-4-chlorophenol in 1:1 ratio,

which crystallizes as monoclinic colorless crystals in the centrosymmetric space group P2(1)/c. The asymmetric unit of **7** consists of one cation of HL2, and half a dianion of fumarate, as shown in Fig. 13. The C8–C8#1 bond distance (1.282(5)Å) is for a simple C=C double bond. The C-O distances (O(2)-C(7), 1.255(3) Å; and O(3)–C(7), 1.264(3)Å) clearly indicate that the acid moieties in the compound are dianions when it formed hydrogen bonds with the aminium moiety.

At each cation there was attached a water molecule through the N-H···O hydrogen bond between the aminium group and the Ow atom with N–O distance of 2.817(3) Å, and CH–O association produced by the 3-CH of the cation with C—O distance of 3.393 Å. Two cations attached with the water molecules were bonded to one anion via the  $O-H \cdots O$  hydrogen bond between the phenol group and the carboxylate with O–O distance of 2.668(2) Å to form a pentacomponent adduct. In the pentacomponent heteroadduct there is an inversion centre located at the middle point of the olefinic group in the fumarate. There are two kinds of pentacomponent adduct, although the component is the same, the difference is that the two kinds of pentacomponent adduct made an angle of ca 60° with each other. The same kinds of adjacent parallel pentacomponent adducts were linked together by the water molecule through the O–H···O hydrogen bond between the water molecule and the carboxylate with O–O separation of 2.838(3) Å. And the two kinds of different pentacomponent adducts were linked together via the Cl–O contact with Cl–O distance of 3.118 Å to form 2D sheet extending on the *ab* plane (Fig. 14). The Cl–O separation is longer than that in 5-chloro-1,2-dimethyl-4-nitro-1H-imidazole (2.899(1) Å), yet it is shorter than the values (3.285, and 3.498 Å) in 2-chloro-1-methyl-4-nitro-1H-imidazole [35]. The 2D sheets were further stacked along the *c* axis direction via N–H···O (between the aminium cation and the carboxylate with N-O distances of 2.812(3)–2.828(3) Å), and O–H···O (between the water molecule and the carboxylate with O–O distance of 2.908(3) Å) interactions to form 3D network structure.

#### 4. Conclusion

Seven hybrid organic acid-base crystals have been prepared and their crystal structures determined. The different hydrogen bond interaction modes of the acidic components and the 2-aminophenol derivatives lead to a wide range of different structures such as 3D network structure, 3D layer network structure, and 3D ABAB layer structure.

Of the seven organic acid–base adducts six examples (1, 3, 4, 5, **6**, and **7**) involve proton transfer from the acidic units to the amine group of the 2-aminophenol derivatives to form a monocation. Compound **2** is a cocrystal. Here this phenomenon may be explained by the rule "strongest donor to strongest acceptor", for the carboxylic acids present in 1–7, the p-nitrobenzoic acid in 2 has the relatively larger  $pK_a$  than other acidic components discussed in this manuscript.

This study has demonstrated that the N-H···O/O-H···O hydrogen bonds are the primary intermolecular force in a family of structures containing the OH ... 2-aminophenol synthons. Except the classical hydrogen bonding interactions, the secondary propagating interactions also made significant contribution to the structure extension. The seven salts/cocrystal all possess weak C-H--O associations. There are also  $\pi$ - $\pi$  associations in compounds 4, and **6**. The O– $\pi$  interactions were found in **3**, **4**, and **5**, while **4** possesses additional N– $\pi$  interaction. Salt **6** bears the Cl–Cl bond.

In conclusion, we have shown that 3D structures can be constructed by the synergic interactions such as classical hydrogen bond (N–H···O/O–H···O), CH–O,  $\pi$ – $\pi$ , O– $\pi$ , N– $\pi$ , Cl–Cl, and Cl–O interactions between discrete components.

#### Acknowledgements

We gratefully acknowledge the financial support of the Education Office Foundation of Zheijang Province (Project No. Y201017321) and the financial support of the Xinmiao project of the Education Office Foundation of Zhejiang Province (Project No. 2009FK63).

#### **Appendix A. Supplementary material**

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic data center, CCDC Nos. 851937 for 1, 835102 for 2, 851605 for 3, 851594 for 4, 835068 for 5, 851605 for 6, and, 816393 for 7. Copies of this information may be obtained free of charge from the +44 (1223)336 033 or Email: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk. Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.molstruc.2013.01.012.

#### References

- [1] M. Khurram, N. Qureshi, M.D. Smith, Chem. Commun. (2006) 5006.
- [2] R. Shukla, S.V. Lindeman, R. Rathore, Chem. Commun. (2007) 3717.
- [3] C.Q. Wan, X.D. Chen, T.C.W. Mak, CrystEngComm 10 (2008) 475.
- [4]G.M. Whitesides, E.E. Simanek, J.P. Mathias, C.T. Seto, D. Chin, M. Mammen, D.M. Gordon, Acc. Chem. Res. 28 (1995) 37 (and references therein).
- [5] S. Aitipamula, A. Nangia, Chem. Eur. J. 11 (2005) 6727.
- [6] K.K. Arora, V.R. Pedireddi, J. Org. Chem. 68 (2003) 9177.
- B.R. Bhogala, A. Nangia, Cryst. Growth Des. 3 (2003) 547. C.B. Aakeröy, D.J. Salmon, CrystEngComm 7 (2005) 439.
- [8]
- [9] C.M. Grossel, A.N. Dwyer, M.B. Hursthouse, J.B. Orton, CrystEngComm 8 (2006) 123.
- [10] S. Varughese, V.R. Pedireddi, Chem. Eur. J. 12 (2006) 1597.
- [11] M. Du, Z.H. Zhang, X.J. Zhao, H. Cai, Cryst. Growth Des. 6 (2006) 114.
- [12] A.D. Bond, Chem. Commun. (2003) 250.
- [13] B.R. Bhogala, A. Nangia, New J. Chem. 32 (2008) 800.
- [14] (a) P. Metrangolo, H. Neukirch, T. Pilati, G. Resnati, Acc. Chem. Res. 47 (2005) 386.
  - (b) T.R. Shattock, K.K. Arora, P. Vishweshwar, M.J. Zaworotko, Cryst. Growth Des. 8 (2008) 4533:
    - (c) K. Biradha, G. Mahata, Cryst. Growth Des. 5 (2005) 61;
  - (d) B.Q. Ma, P. Coppens, Chem. Commun. (2003) 504;
  - (e) A.M. Beatty, C.M. Schneider, A.E. Simpson, J.L. Zaher, CrystEngComm 4 (2002) 282
  - (f) A. Ballabh, D.R. Trivedi, P. Dastidar, E. Suresh, CrystEngComm 4 (2002) 135.
- [15] (a) A. Dey, G.R. Desiraju, R. Mondal, J.A.K. Howard, Chem. Commun. (2004) 2528
  - (b) A. Dey, N.N. Pati, G.R. Desiraju, CrystEngComm 8 (2006) 751;
  - (c) A. Dey, M.T. Kirchner, V.R. Vangala, G.R. Desiraju, R. Mondal, J.A.K. Howard, J. Am. Chem. Soc. 127 (2005) 10545;
  - (d) F.H. Allen, V.J. Hoy, J.A.K. Howard, V.R. Thalladi, G.R. Desiraju, C.C. Wilson, G.J. McIntyre, J. Am. Chem. Soc. 119 (1997) 3477.
- [16] G. Smith, U.D. Wermuth, P.C. Healy, J.M. White, J. Chem. Crystallogr. 41 (2011) 1649.
- R.H. Blessing, Acta Crystallogr. A51 (1995) 33.
- [18] G.M. Sheldrick, SADABS Siemens Area Detector Absorption Correction, University of Göttingen, Göttingen, Germany, 1996.
- [19] SHELXTL-PC, version 5.03, Siemens Analytical Instruments: Madison, WI.
- [20] M. Lazzarrotto, E.E. Castellano, F.F. Nachtigall, J. Chem. Crystallogr. 37 (2007) 699.
- [21] (a) T. Kagawa, R. Kawai, S. Kashino, M. Haisa, Acta Crystallogr. B32 (1976) 3171;
  - (b) K. Maartmann-Moe, Acta Crystallogr. B25 (1969) 1452;
  - (c) G.J. Palenik, Acta Crystallogr. B28 (1972) 1633;
  - (d) A.N. Talukdar, B. Chaudhuri, Acta Crystallogr. B32 (1976) 803;
  - (e) G. Ferguson, B. Kaitner, D. Lloyd, H. McNab, J. Chem. Res. (S) (1984) 182;
  - (f) W. Sawka-Dobrowolska, E. Grech, B. Brzezinski, Z. Malarski, L. Sobczyk, J. Mol. Struct. 356 (1995) 117;
- (g) I. Majerz, Z. Malarski, L. Sobczyk, Chem. Phys. Lett. 274 (1997) 361.
- [22] J.D. Korp, I. Bernal, L. Aven, J.L. Mills, J. Cryst. Mol. Struct. 11 (1981) 117.
- [23] J. Janczak, G.J. Perpétuo, Solid State Sci. 11 (2009) 1576.
- [24] C. Muthamizhchelvan, K. Saminathan, J. Fraanje, R. Peschar, K. Sivakumar, Xray Struct. Anal. Online 21 (2005) x61.
- [25] J. Bernstein, R.E. Davis, L. Shimoni, N.L. Chang, Angew. Chem. Int. Ed. 34 (1995) 1555.
- [26] S. Ashfaquzzaman, A.K. Pant, Acta Cryst. B35 (1979) 1394.
- [27] N. Schultheiss, K. Lorimer, S. Wolfe, J. Desper, CrystEngComm 12 (2010) 742.
- [28] D. Dutta, A.D. Jana, A. Ray, J. Marek, M. Ali, Indian J. Chem. 47A (2008) 1656.

- [29] G. Orona, V. Molinar, F.R. Fronczek, R. Isovitsch, Acta Cryst. E67 (2011) o2505.
  [30] M. Sundaralingam, L.H. Jensen, Acta Crystallogr. 18 (1965) 1053.
  [31] G. Simith, A.W. Hartono, U.D. Wermuth, P.C. Healy, J.M. White, A.D. Rae, Aust. J.
- Chem. 58 (2005) 47.
  [32] M. Felloni, A.J. Blake, P. Hubberstey, C. Wilson, M. Schröder, CrystEngComm 4 (2002) 483.
- [33] F.V. González, A. Jain, S. Rodríguez, J.A. Sáez, C. Vicent, G. Peris, J. Org. Chem. 75 (2010) 5888.
  [34] F.F. Awwadi, R.D. Willett, B. Twamley, Cryst. Growth Des. 7 (2007) 624.
  [35] M. Kubicki, P. Wagner, Acta Cryst. C63 (2007) o454.