Synthesis of AryInaphthoquinones and Their Reactions with *o*-Substituted Primary Aromatic Amines

Ragab F. Fandy^a*, Hessan H. Abbas^a, Ayman S. Al-Hussaini^a and Ahmed S. Hammam^b ^aChemistry De part ment, Fac ulty of Science, South Valley University, Qena, Egypt ^bChemistry De part ment, Fac ulty of Science, Assiut University, Assiut, Egypt

Cycloaddition re ac tion of 2-aryl-1,4-benzoquinones **1a-d** with a num ber of dif fer ent dienes, namely 2,3dimethylbutadiene; 1,4-diphenylbutadiene and anthracene yield 2-aryl-6,7-dimethyl-1,4- naphthoquinones **3a,b**; 2,5,8-triphenyl-1,4-naphthoquinone **4** and 2-aryl-1,4,9,10-tetrahydro-9,10-*o*-benzoanthracene-1,4dione **5**, re spec tively were in ves ti gated. In ad di tion, the cycloaddition re ac tion of 2-aryl-1,4-benzoquinones **1d,e** with 2,3-dimethylbutadiene was also investigated to yield 2-aryl-5,8-dihydro-6,7-dimethyl-1,4naphthohydroquinones **2a,b**. Cyclocondensation re ac tions of Diels-Alder ad ducts **2b**, **3b**, **5a** with ethylenediamine, *o*-sub sti tuted pri mary aro matic amines gave quin oxa line, phenazine, phenoxazine and phe no thiazine ocyclic deriv a tives **6-14**.

INTRODUCTION

In continuation of our study for the synthesis of heterocyclic ni tro gen dervatives, ¹⁻⁶ we were in ter ested in the re action of arylnaphthoquinones with thioglycolic acid and primary ar o matic amines giving two types of the con den sation products.⁶ The quin oxa line,^{4,7-14} phenazine,¹⁵⁻¹⁸ phenoxazine^{15,19} and phenothiazine,^{20,21} ring sys tems have been ex ten sively stud ied and many such com pounds have now be come commercially avail able and are widely used in med i cal practice^{22,23} and in the dye in dus try.²⁴ This led us to syn the size some new re lated com pounds. In this work, 5-arylbenzo-[f]quinoxalin-6-one 6, 5-arylbenzo[f]quinoxalin-6-ol 7, 6aryl-5-hydroxybenzo[a]phenazine 8, 6-arylbenzo[a] phenothiazin-5-one 9 and 6-arylbenzo[a]phenoxazin-5-one 10 were pre pared by the reactions of the synthesized Diels-Alder ad ducts, arylnaphthoquinones with ethyl ene diamine and/or o-substituted primary aromatic amines.

RESULTS AND DIS CUS SION

Treat ment of 2-(*p*-carboxyphenyl)-1,4-benzoquinone **1d** and/or 2-(*p*-nitrophenyl)-1,4-benzoquinone **1e** with 2,3dimethylbutadiene in glacial acetic acid yields colorless com pounds of 2-aryl-5,8-dihydro-6,7-dimethyl-1,4- naphtho hydroquinones **2a,b**. The ox i da tion of com pounds **2a,b** with aque ous so lu tion of chro mium tri ox ide in hot gla cial ace tic acid gives yel low com pounds of 2-aryl-6,7-dimethy-1,4-naphthoquinones**3a,b**. Diels-Alder adduct from the re action of 2-phenyl-1,4-benzoquinone **1a** with 1,4-diphenylbutadiene in dry ben zene was ob tained in an ox i dized state as 2,5,8-triphenyl-1,4-naphthoquinone **4**. The cycloaddition reac tion of **1a-d** with anthracene pro ceeded also in hot gla cial ace tic acid, af forded the ad ducts **5a-d**, namely 2-aryl- 1,4,9,10tetrahydro-9,10-*o*-benzoanthracene-1,4-diones (Scheme I).

The struc tures of these prod ucts **2-5** were sup ported by their an a lyt i cal and spec tral data (IR, NMR and MS) which were in full agree ment with the pro posed struc tures (cf. Tables 1 and 2).

Treat ment of Diels-Alder ad ducts, 6,7-dimethyl-2-(pnitrophenyl)-1,4-naphthoquinone 3b with ethylenediamine at room tem per a ture and at 80 °C in ab so lute eth a nol gave 8,9-dimethyl-5-(p-nitrophenyl)-2,3,4,6-tetrahydrobenzo[f]quinoxalin-6-one 6 and 2,3-dihydro-8,9-dimethyl-5-(p-nitrophenyl)benzo[*f*]quinoxalin-6-ol 7, re spec tively (Scheme II). IR spec tra of com pound 6 re vealed the pres ence of VCO at 1710 cm^{-1} and the presence of VNH band at 3350 cm⁻¹. But IR spectra of compound 7 revealed the absence of VCO of quinone and pres ence of VOH band at 3400-3450 cm⁻¹; an alyt i cal and spec tro scopic data of these com pounds are listed in Ta bles 1 and 2. On the other hand the re ac tions of 3b with o-sub stituted aro matic amines, namely o-phenylenediamine; 4,5-dimethyl-o-phenylenediamine; o-aminothiophenol and o-aminophenol gave 2,3-dimethyl-6-(p-nitrophenyl)-5- hydroxybenzo[a]phenazine 8; 2,3-dimethyl-5H-6-(p-nitrophenyl)benzo[a]phenothiazin-5-one 9 and 2,3-dimethyl-5H-6-(p-nitrophenyl)benzo[a]phenoxazin-5-one 10, re spectively (Scheme II).

The chemical structures of these compounds were based on spec tral and elemental analyses (cf. Tables 1 and 2). The reaction between **2b**, **5a** and *o*-substituted primary aro

Fandy et al.

Scheme I

Scheme II

matic amines pro duced **11-14** in a sim i lar man ner to that described above (Scheme III). The chem i cal struc tures of these com pounds were based on spec tral and el e men tal anal y ses (cf. Ta bles 1 and 2).

EXPERIMENTAL

Melting points were de ter mined on an elec tric melt ing point ap pa ra tus (Gallenkamp) and were un cor rected. The IR spec tra (KBr) were re corded on a Shimadzu 408 spec trom eter. The ¹H-NMR spectra were recorded by a 300 MHz Varian NMR spec trom e ter; chem i cal shifts are re ported in ppm with TMS as an in ter nal stan dard and are given in δ units. Elec tron im pact mass spec tra were ob tained at 70 eV us ing a GCMS sp. 1000 Shimadzu. El e men tal anal y ses were car ried out at the Microanalysis Unit at Cairo Uni ver sity.

Synthesis of 2-aryl-5,8-dihydro-6,7-dimethyl-1,4naphthohydroquinones 2a,b

A so lu tion of 2-(*p*-carboxyphenyl)-1,4-benzoquinone **1d** (0.005 mol) or 2-(*p*-ni trophenyl)-1,4-benzoquinone**1e**

Comp. No.	Ar	Cryst. Solvent	Yield %	Appearance	M.P. ℃	Molecular Formula
2a	<i>p</i> -C ₆ H ₄ CO ₂ H	acetic acid	67	67 colorless needles		$C_{19}H_{18}O_4$
2b	$p-C_6H_4NO_2$	acetic acid	74	colorless needles	265-8	(310.34) $C_{18}H_{17}NO_4$ (311.33)
3a	$p-C_6H_4CO_2H$	acetic acid	63	yellow flakes	270-2	$C_{19}H_{14}O_4$ (306.32)
3b	$p-C_6H_4NO_2$	acetic acid	71	yellow flakes	256-8	$C_{18}H_{13}NO_4$ (307.30)
4	C ₆ H ₅	petroleum ether (60-80)	70	yellowish orange needles	103-5	$C_{28}H_{18}O_2$ (386.45)
5a	C ₆ H ₅	aqueous ethanol	88	yellowish brown crystals	157-8	$C_{26}H_{16}O_2$ (360.41)
5b	$p-C_6H_4CH_3$	aqueous ethanol	92	yellowish orange crystals	115-6	$C_{27}H_{18}O_2$ (374.44)
5c	p-C ₆ H ₄ Cl	aqueous ethanol	63	pale brown fine crystals	139-140	$C_{26}H_{15}O_2Cl$ (394.86)
5d	$p-C_6H_4CO_2H$	aqueous ethanol	70	gray fine crystals	148	$C_{27}H_{16}O_4$ (404 42)
6	-	ethanol/petr. ether	80	brown crystals	184	$C_{20}H_{17}N_3O_3$ (347.34)
7	-	aqueous ethanol	64	yellowish gray micro crystals	128-130	$C_{20}H_{17}N_3O_3$ (347.34)
8a	-	acetone	60	orange red crystals	320-2	$C_{24}H_{17}N_3O_3$ (395.42)
8b	-	acetone	66	red flakes	346-8	$C_{26}H_{21}N_3O_3$ (423.47)
9	-	acetone	43	cherry red needles	326-8	$C_{24}H_{16}N_2SO_3$ (412.47)
10	-	methanol	30	brownish yellow flakes	324-5	$C_{24}H_{16}N_2O_4$ (396.40)
11	-	chloroform/pet. ether	40	red micro crystals	310	$C_{24}H_{18}N_2SO_3$ (414.48)
12a	-	ethanol/pet. ether	52	red micro crystals	270-2	$C_{24}H_{19}N_3O_3$ (397.43)
12b	-	ethanol/pet. ether	56	red micro crystals	> 360	$C_{26}H_{23}N_3O_3$ (425.49)
13	-	benzene/pet. ether	39	dark brown crystals	170	$C_{32}H_{19}NSO$ (465 56)
14a	-	aqueous ethanol	62	brownish orange crystals	182	$C_{32}H_{20}N_2O$ (448 51)
14b	-	aqueous ethanol	66	deep brown crystals	168	$\begin{array}{c} (440.51) \\ C_{34}H_{24}N_2O \\ (476.58) \end{array}$

Table 1. Physical Data of Compounds 2-14

and (0.41 g; 0.005 mol) of 2,3-dimethylbutadiene in 20 mL gla cial ace tic acid was left for 12 hours in a closed ves sel at room temper a ture. The reaction mix ture was heated un der reflux for 3-5 hours and cooled. The solid prod uct so formed was col lected by fil tra tion and recrystallized from the ap propri ate sol vent to yield the de sired col or less prod ucts **2a,b**; yields, melt ing points, an a lyt i cal and spec tro scopic data are

listed in Ta bles 1 and 2.

Synthesis of 2-aryl-6,7-dimethyl-1,4-naphthoquinones 3a,b

To a hot so lu tion of **2a** or **2b** (0.005 mol) in 25 mL glacial ace tic acid was grad u ally added a so lu tion of chro mic acid (1.35 g of chro mium tri ox ide in 3 mL dis tilled wa ter).

No. C H N base peak (cm ¹) 2a $p^{-}C_{s}H_{c}O_{2}H$ 73.42 5.44 1680, 3325 (c) 1.75(s, 6H, 2CH_{2}; 3.12(s, 4H, 2CH_{2}; 6.60(s, 1H, 357; 70; 79.00(s, 2H, 2CH); 6.60(s, 1H, 357; 60; 79.00(s, 2H, 2CH); 6.60(s, 1H, 44, 37; 70; 76, 81.4(2s, 2H, 2CH); 6.60(s, 1H, 457; 70; 76, 81.4(2s, 2H, 2CH); 7.66(s, 1H, 457; 70; 76, 81.4(2s, 2H, 2CH); 7.66(s, 1H, 44, A7) (0, 74, 50 4.43 3525 (c) 1.75(s, 6H, 2CH_{2}; 3.12(s, 4H, 2CH); 6.60(s, 1H, 44, A7) (0, 2525 (c) 1.75(s, 6H, 2CH_{2}; 3.12(s, 2H, 2CH); 6.60(s, 1H, 44, A7) (0, 2525 (c) 1.75(s, 6H, 2CH_{2}; 3.12(s, 2H, 2CH); 6.60(s, 1H, 44, A7) (0, 2525 (c) 1.75(s, 6H, 2CH_{2}; 3.12(s, 2H, 2CH); 7.65(s, 1H, 4-3); 7.75; 7.8(2s, 2H, 4, A7) (0, 253 (c) 1.74.22 4.56 3060M', 30.8) 1665 (0) 2.52(s, 6H, 2CH_{2}; 7.37(s, 2L, 2H, 1H, 8.3); 7.67; 7.78(2s, 2H, 1H-5, 80) (a) 2.43(s, 6H, 2CH_{2}; 7.35(s, 2H, 1H, 4.3); 7.67; 7.78(2s, 2H, 1H-5, 80) (a) 2.43(s, 6H, 2CH_{2}; 7.35(s, 1H, 4.4); 7.60; 7.58(s, 1H, 4.3); 7.67; 7.78(2s, 2H, 1H-5, 80) (a) 3.63 (c) 3.64 (c) 3.63 (c) 3.64 (c) 3.63 (c) 3.64 (c) 3.64 (c) 3.64 (c) 3.66 (c) 3.63 (c) 3.64 (c) 3.63 (c) 3.64 (c) 3.63 (c) 3.64 (c) 3.64 (c) <td< th=""><th>Comp.</th><th>Ar</th><th colspan="2">Elemental Analysis Found/Calcd.</th><th>MS m/e</th><th>IR</th><th colspan="2">¹H-NMR</th></td<>	Comp.	Ar	Elemental Analysis Found/Calcd.		MS m/e	IR	¹ H-NMR	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	No.		С	Н	Ν	base peak	(cm ⁻¹)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2a	$p-C_{\epsilon}H_{4}CO_{2}H$	73.42	5.94			1680.	1.75(s.6H.2CH2): 3.12(s.4H.2CH2): 6.60(s.1H
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		<i>p</i> 0 ₀ 1400 ₂ 11	73.54	5.85			2925 (b)	H-3); 7.69; 7.90(2s, 2H, 2 OH) and 7.60; 7.96(2d,
							3525 (c)	4H, Ar) (f).
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2b	$p-C_6H_4NO_2$	69.32	5.41	4.43		3525 (c)	1.72(s, 6H, 2CH ₃); 3.16(s, 4H, 2CH ₂); 6.68(s, 1H,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			69.44	5.50	4.50			H-3); 7.76; 8.14(2s, 2H, 2 OH) and 8.18; 8.36(2d,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.		74.40	1 50		$20(0)^{+}$ 20.8)	1((5(-)))	4H, Ar)(f).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 a	p-C ₆ H ₄ CO ₂ H	74.42	4.50		300(M, 30.8) 261(100)	1665 (a) 1700	$2.52(8, 6H, 2CH_3); 7.17(8, 1H, H-3); 7.73; 8.05(20, 4H, Ar) and 7.80; 7.86(28, 2H, H-5, 8) (f)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			74.50	4.01		201(100)	2925 (h)	411, Al) and 7.00, 7.00 (28, 211, 11-5, 6) (1).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3b	$p-C_6H_1NO_2$	70.48	4.39	4.58		1670 (a)	2.43(s, 6H, 2CH ₃): 7.05(s, 1H, H-3): 7.67: 7.78(2s,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 -0 - 2	70.35	4.26	4.56			2H, H-5, 8) and 7.92; 8.38(2d, 4H, Ar) (e).
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	C_6H_5	87.15	4.82			1630,	6.82(s, 1H, H-3); 6.85-6.92(m, 5H, Ar); and 7.46-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			87.02	4.69			1665 (a)	7.58(m, 12H, Ar) (e).
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5a	C_6H_5	86.58	4.38		$360(M^+, 87.8)$	1650,	5.88(s, 2H, H-9, 10); 6.67(s, 1H, H-3); 7.04-7.10(m,
			86.65	4.47		202(100)	1715 (a)	5H, Ar) and 7.41-7.50 (m, 8H, Ar) (e).
	5b	$p-C_6H_4CH_3$	86.75	5.14		$374(M^+, 100)$	1650,	2.35(s, 3H, CH ₃); 5.91(s, 2H, H-9,10); 6.72(s, 1H,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			86.60	4.85			1715 (a)	H-3); 7.25; 7.33(2d, 4H, Ar) and 7.48-7.52(m, 8H,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50		70.15	2 71			1650	Ar) (I). $5.80(a, 211, 11, 0, 10)$, $6.66(a, 111, 11, 2)$, 7.05 .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	$p-C_6H_4CI$	79.15	5./1 2.92			1050, 1715(a)	5.89(8, 2H, H-9, 10); 0.00(8, 1H, H-3); 7.05; 7 11(2d 4H Ar) and 7.26 7 40(m 8H Ar) (f)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5d	n-C.H.CO.H	79.09 80.07	3.03		$4.04(M^+$ 87.1)	1/13(a) 1650(a)	7.11(20, 4H, AI) and $7.30-7.49(III, 6H, AI)(I)$. 5 96(s 2H H-910): 6 78(s 1H H-3): 7 42-7 58(m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ju	<i>p</i> C ₀ H ₄ CO ₂ H	80.19	3.99		202(100)	1690.	12H, Ar) and 10.84(s, 1H, COOH) (f).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			00119	0.77		202(100)	3450 (b)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	-	69.09	4.88	12.13	347(M ⁺ ,24.9)	1710 (a)	2.38; 2.44(2s, 6H, 2CH ₃); 3.62-3.87(m, 4H, 2CH ₂);
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			69.15	4.93	12.10	220(100)	3350 (d)	6.18(m, 1H, NH); 7.15(m, 4H, Ar); 7.92and
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								8.12(2s, 2H, Ar) (e).
	7	-	69.31	4.85	12.19	347(M ⁺ ,15.4)	3450 (c)	2.41; 2.49(2s, 6H, 2CH ₃); 3.82(s, 4H, 2CH ₂);
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			69.15	4.93	12.10	299(100)		7.18(m, 4H, Ar); 8.12; 8.86(2s, 2H, Ar) and 9.15(s,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0		70 74	1 20	10.20	$205(M^{\pm} 100)$	2400 (-)	H, OH (e).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8a	-	72.74	4.38	10.58	395(M ,100)	3400 (C)	$2.58(8, 0H, 2CH_3); 7.80-7.83(M, 4H, Ar); 8.57(8, 2H, H, 1, H, 4); 8.41, 8.42(m, 4H, Ar); and 0.07(c)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			72.90	4.33	10.05			$2H, H^{-1}, H^{-4}$, $6.41^{-}6.42(III, 4H, AI)$ and $9.07(8, 1H, OH)$ (f)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8h	_	73 59	5.07	9 97		3400 (c)	$2 48 \cdot 2 51 \cdot 2 61 \cdot 2 66(4s 12H 4CH_{a}) \cdot 7 62 \cdot 7 72 (m)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00		73.74	4.99	9.92		5400 (0)	4H. Ar): 7.98(s. 2H. Ar): 8.12: 8.33(2s. 2H. Ar) and
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								9.04(s, 1H, OH) (f).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	-	69.87	3.98	6.64		1665 (a)	2.46; 2.52(s, 6H, 2CH ₃); 7.33-7.55(m, 4H, Ar);
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			69.89	3.91	6.79			7.58; 8.39(2d, 4H, Ar) and 8.07; 8.68(2s, 2H, H-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								1,4) (e).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	-	72.55	4.13	6.92	396(M ⁺ ,100)	1650 (a)	2.52; 2.60(s, 6H, 2CH ₃); 7.30-7.53(m, 4H, Ar);
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			12.12	4.07	7.07			(a)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11		60 57	4 42	672		1665 (a)	(e). $1.65(s.6H.2CH) \cdot 3.11(s.4H.2CH) \cdot 7.33.7.52(m)$
12a - 72.31 4.85 10.49 3450 (c) 1.56(s, 6H, 2CH ₃); 3.08(s, 4H, 2CH ₂); 7.57-7.68(m, 4H, Ar); 7.72-7.78(m, 4H, Ar); and 8.90(s, 1H, OH) (e). 12b - 73.34 5.51 9.85 3500 (c) 1.66(s, 6H, 2CH ₃); 2.47; 2.50(2s, 6H, 2CH ₃); 13 - 82.68 4.23 2.92 1710 (a) 5.89(s, 2H, H-9', 10'); 7.06-7.12(m, 5H, Ar) and 8.94(s, 1H, OH) (e). 14a - 85.56 4.54 6.20 448(M ⁺ ,4.1) 1700 (a) 5.68(s, 2H, H-9', 10'); 7.12-7.19(m, 5H, Ar); 7.42-85.69 4.49 6.24 345(100) 3350 (d) 7.59(m, 12H, Ar) and 8.1(s, 1H, NH) (f). 14b - 85.52 5.12 5.82 1700 (a) 2.60, 2.64(2s, 6H, 2CH ₃); 5.82(s, 2H, H-9', 10'); 7.42-7.51(m, 8H, Ar); 7.42-7.51(m, 8H, Ar) and 8.1(s, 1H, NH) (f).	11	-	69.55	4.38	6.76		1005 (a)	4H, Ar) and 7.57-7.62(m, 4H, Ar) (e).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12a	-	72.31	4.85	10.49		3450 (c)	$1.56(s, 6H, 2CH_3)$; $3.08(s, 4H, 2CH_2)$; $7.57-7.68(m, 1.56)$
$ \begin{array}{c} \textbf{(e).} \\ \textbf{(e).} \\ \textbf{(f).} $			72.53	4.82	10.57			4H, Ar); 7.72-7.78(m, 4H, Ar) and 8.90(s, 1H, OH)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								(e).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12b	-	73.34	5.51	9.85		3500 (c)	1.66(s, 6H, 2CH ₃); 2.47; 2.50(2s, 6H, 2CH ₃);
13 - 82.68 4.23 2.92 1710 (a) 5.89(s, 2H, H-8, 11) and 8.94(s, 1H, OH) (e). 13 - 82.68 4.23 2.92 1710 (a) 5.89(s, 2H, H-9', 10'); 7.06-7.12(m, 5H, Ar) and 14a - 85.56 4.54 6.20 448(M ⁺ ,4.1) 1700 (a) 5.68(s, 2H, H-9', 10'); 7.12-7.19(m, 5H, Ar); 7.42- 14b - 85.52 5.12 5.82 1700 (a) 2.60, 2.64(2s, 6H, 2CH_3); 5.82(s, 2H, H-9', 10'); 14b - 85.69 5.07 5.87 3350 (d) 7.06-7.12(m, 5H, Ar); 7.45-7.51(m, 8H, Ar) and 8.11, 8.18(2s, 2H, Ar) (f). - 8.11, 8.18(2s, 2H, Ar) (f). -			73.40	5.45	9.88			3.12(s, 4H, 2CH ₂); 7.57-7.68(m, 4H, Ar); 7.75;
15 - 82.68 4.23 2.92 1/10 (a) 5.89(s, 2H, H-9', 10'); 7.06-7.12(m, 5H, Ar) and 14a - 85.56 4.11 3.01 7.48-7.56(m, 12H, Ar) (f). 14a - 85.56 4.54 6.20 448(M ⁺ ,4.1) 1700 (a) 5.68(s, 2H, H-9', 10'); 7.12-7.19(m, 5H, Ar); 7.42- 85.69 4.49 6.24 345(100) 3350 (d) 7.59(m, 12H, Ar) and 8.1(s,1H, NH) (f). 14b - 85.52 5.12 5.82 1700 (a) 2.60, 2.64(2s, 6H, 2CH ₃); 5.82(s, 2H, H-9', 10'); 85.69 5.07 5.87 3350 (d) 7.06-7.12(m, 5H, Ar); 7.45-7.51(m, 8H, Ar) and 8.11, 8.18(2s, 2H, Ar) (f). 8.11, 8.18(2s, 2H, Ar) (f). 8.11, 8.18(2s, 2H, Ar) (f).	10		00 50	4 22	0.00		1710 ()	7.79(2s, 2H, H-8,11) and 8.94(s, 1H, OH) (e).
14a - 85.56 4.11 5.01 7.48-7.56(m, 12H, Ar) (f). 14a - 85.56 4.54 6.20 448(M ⁺ ,4.1) 1700 (a) 5.68(s, 2H, H-9', 10'); 7.12-7.19(m, 5H, Ar); 7.42- 14b - 85.52 5.12 5.82 1700 (a) 2.60, 2.64(2s, 6H, 2CH_3); 5.82(s, 2H, H-9', 10'); 14b - 85.69 5.07 5.87 3350 (d) 7.06-7.12(m, 5H, Ar); 7.45-7.51(m, 8H, Ar) and 8.11, 8.18(2s, 2H, Ar) (f). - 8.11, 8.18(2s, 2H, Ar) (f). -	13	-	82.68	4.23	2.92		1710 (a)	5.89(s, 2H, H-9', 10'); 7.06-7.12(m, 5H, Ar) and
14a - 65.50 4.54 0.20 446(M1, 4.1) 1700 (a) 5.68(s, 2H, H-9, 10'); 7.12-7.19(m, 5H, Ar); 7.42- 85.69 4.49 6.24 345(100) 3350 (d) 7.59(m, 12H, Ar) and 8.1(s,1H, NH) (f). 14b - 85.52 5.12 5.82 1700 (a) 2.60, 2.64(2s, 6H, 2CH ₃); 5.82(s, 2H, H-9', 10'); 85.69 5.07 5.87 3350 (d) 7.06-7.12(m, 5H, Ar); 7.45-7.51(m, 8H, Ar) and 8.11, 8.18(2s, 2H, Ar) (f). 8.11, 8.18(2s, 2H, Ar) (f). 8.11, 8.18(2s, 2H, Ar) (f).	14-		82.55	4.11	3.01 6.20	1 19/NJ+ 1 1)	1700 (-)	/.48-/.56(m, 12H, Ar) (t).
14b - 85.52 5.12 5.82 1700 (a) 2.60, 2.64(2s, 6H, 2CH ₃); 5.82(s, 2H, H-9 [*] , 10 [*]); 85.69 5.07 5.87 3350 (d) 7.06-7.12(m, 5H, Ar); 7.45-7.51(m, 8H, Ar) and 8.11, 8.18(2s, 2H, Ar) (f). 8.11, 8.18(2s, 2H, Ar) (f).	14a	-	0J.JO 85.60	4.04	0.20 6.24	440(101, 4.1) 345(100)	1700 (a) 3350 (d)	$5.0\delta(s, 2H, H-9, 10); /.12-/.19(m, 5H, Ar); /.42-$
1.10 - 63.32 5.62 1.100 (a) 2.00, 2.04(28, 6H, 2CH ₃), 5.82(8, 2H, H-9, 10); 85.69 5.07 5.87 3350 (d) 7.06-7.12(m, 5H, Ar); 7.45-7.51(m, 8H, Ar) and 8.11, 8.18(28, 2H, Ar) (f). - - - -	14b		85 57	4.49 5 10	5.24	345(100)	1700 (a)	$7.37(111, 12\pi, AI)$ and $0.1(8,1\pi, N\pi)(1)$. $2.60, 2.64(28, 6H, 2CH_1) \cdot 5.82(8, 2H, H, 0', 10')$.
8.11. 8.18(2s. 2H. Ar) (f).	140	-	85.52	5.07	5.82 5.87		3350 (d)	2.00, 2.04(25, 011, 2013), 3.02(5, 2 Π , Π -9, 10); 7.06-7.12(m 5H Ar): 7.45-7.51(m 8H Ar) and
				2.07	2.07		2220 (u)	8.11, 8.18(2s, 2H, Ar) (f)

Table 2. Analytical and Spectroscopic Data of Compounds 2-14

(a) \vee CO; (b) \vee COOH; (c) \vee OH; (d) \vee NH; (e) CDCl₃; (f) d₆-DMSO.

Scheme III

When all the ox i dant had been added, the re ac tion so lu tion was heated for 20 min utes with out boil ing and cooled to room tem per a ture. The de posited yel low pre cip i tate was then collected, washed with ethanol and recrystallized from the proper sol vent to af ford **3a,b**; yields, melting points, an alytical and spec tro scopic data are listed in Ta bles 1 and 2.

Synthesis of 2,5,8-triphenyl-1,4-naphthoquinone 4

To 0.46 g; (0.0025 mol) of 2-phenyl-*p*-benzoquinone **1a** in 25 mL dry ben zene was added 0.515 g; (0.0025 mol) of 1,4-diphenylbutadiene. The re ac tion mix ture was refluxed for 16 hours (TLC using pe tro leum ether/ben zene 1:1 as eluent). The sol vent was re moved un der re duced pres sure, the res i due formed was recrystallized from pe tro leum ether to af ford **4**; yield, melting point, an alytical and spec tro scopic data are listed in Ta bles 1 and 2.

Synthesis of 2-aryl-1,4,9,10-tetrahydro-9,10-o-benzoanthracene-1,4-dione 5a-d

To a so lu tion of 0.002 mol of **1a-d** in 15 mL gla cial acetic acid was added 0.37 g, (0.002 mol) of anthracene. The reac tion mix ture was refluxed for 10-12 hours then cooled and di luted with 30 mL of dis tilled wa ter. The re sult ing pre cip itate was fil tered off, dried and recrystallized from the proper sol vent to give **5a-d**; yields, melt ing points, an a lyt i cal and spec tro scopic data are listed in Ta bles 1 and 2.

Synthesis of 8,9-dimethyl-5-(*p*-nitrophenyl)-2,3,4,6-tetrahydrobenzo[*f*]quinoxalin-6-one 6

To 0.307 g, (0.001 mol) of **3b** in 20 mL ab solute eth a nol was added 0.06 mL, (0.06 g, 0.001 mol) of ethylenediamine.

The re ac tion mix ture was stirred at room tem per a ture for 16 hours. The solid prod uct so formed was recrystallized to give **6**; yield, melt ing point, spec tro scopic and an a lyt i cal data are listed in Ta bles 1 and 2.

Synthesis of 2,3-dihydro-8,9-dimethyl-5-(*p*-nitrophenyl)benzo[*f*]quinoxalin-6-ol 7

Ethylenediamine (0.13 mL, 0.12 g, 0.002 mol) was added to 0.62 g, (0.002 mol) of **3b** in 25 mL ab solute eth a nol. The re action mix ture was refluxed for 3-4 hours, then concentrated and cooled. The precipitated solid was collected by fill tration and recrystallized from the proper solvents to give 7; yields, melting points, spec tro scopic and an alytical data are listed in Tables 1 and 2.

Synthesis of 2,3-dimethyl-6-(*p*-nitrophenyl)-5-hydroxybenzo[*a*]phenazine 8; 2,3-dimethyl-5*H*-6-(*p*-nitrophenyl)benzo[*a*]phenothiazin-5-one 9 and 2,3-dimethyl-5*H*-6-(*p*nitrophenyl)benzo[*a*]phenoxazin-5-one 10

General procedure

A sus pen sion of 0.62 g, (0.002 mol) of **3b** in 25 mL abso lute eth a nol was treated with the ap pro pri ate *o*-substituted ar o matic amine (0.002 mol). The re ac tion mix ture was heated un der re flux for 70-80 hours. The sol vent was then evap o rated un der re duced pres sure. The re sid ual sol ids were pu rified on a col umn chromatog ra phy us ingeth a nol/pe tro leum ether (2:8) as an eluent. The sol ids were col lected, re crystallized from the ap pro pri ate sol vents to give **8**, **9** and **10**, respec tively; yields, melt ing points, spec tro scopic and an a lyt i cal data are listed in Ta bles 1 and 2.

Synthesis of 2,3-dimethyl-6-(*p*-nitrophenyl)-1,4,5-trihydrobenzo[*a*]phenothiazin-5-one 11 and 2,3-dimethyl-1,4-dihydro-5-hydroxy-6-(*p*-nitrophenyl)benzo[*a*]phenazine 12a,b

General procedure

To a so lu tion of **2b** (0.31 g, 0.001 mol) in 30 mL ab solute eth a nol was added the ap propri ate *o*-substituted aromatic amine (0.001 mol) and heated un der re flux for 7-12 hours. The re ac tion mix ture was con cen trated to one third of its volume and cooled. The pre cip i tated prod ucts were col lected and recrystallized from the proper sol vent to yield **11** and **12**; yields, melt ing points, spec tro scopic and an a lyt i cal data are listed in Ta bles 1 and 2.

Synthesis of 1-phenyl-2*H*-phenothiazino[3,4-9',10']-9'*H*,10'*H*-anthracene-2-one 13 and 1-Phenyl-2*H*,10*H*phenazino[3,4-9',10']-9'*H*,10'*H*-anthracene-2-one 14

General procedure

To a solution of **5a** (0.36 g, 0.001 mol) in ab solute eth anol was added the ap pro pri ate *o*-sub stituted amine (0.001 mol). The reaction mix ture was refluxed for 3-6 hours. The reaction solution was cooled to room temperature and diluted with two vol umes of water. The precipitated products were collected, dried and recrystallized from the proper solvent to give **13** and **14a,b**; yields, melting points, spec tro scopic and an alytical data are listed in Tables 1 and 2.

Received November 22, 2000.

Key Words

2-Aryl-1,4-benzoquinones; Dienes;2-Aryl-1,4-naphthoquinones; Quinoxaline;Phenazine; Phenoxazine and phenothiazine.

REFERENCES

- 1. Fandy, R. F.; Atta, A. H.; Hammam, A. S. *Afinidad LIV* **1997**, *471*, 401.
- 2. Atta, A. H.; Fandy, R. F.; Younes, M. I.; Metwally, S. A.

Bull. of Assiut 1996, 25, 35.

- 3. Fandy, R. F. Arch. Pharm. Res. 2000, 23(5), 446.
- Hassan, M. A.; Fandy, R. F.; El-Amine, T. M. J. Heterocyclic Chem. 2001, 38, 179.
- Atta, A. H.; Abdel-Razik, H. H.; Fandy, R. F. *Hetero-cyclic Comm.* 1998, 4(6), 553.
- 6. Fandy, R. F.; Abbas, H. H.; Al-Hussaini, A. S.; Hammam, A. S. *Afinidad in press*.
- Kallmayer, H.; Seyfang, K. Arch. Pharm. (Weinheim) 1980, 313, 603.
- Kallmayer, H.; Seyfang, K. Arch. Pharm. (Weinheim) 1984, 317, 329.
- 9. Winkelmann, E. Tetrahedron 1968, 25, 2427.
- Kallmayer, H.; Seyfang, K. Arch. Pharm. (Weinheim) 1984, 317, 743.
- 11. Kallmayer, H.; Seyfang, K. Arch. Pharm. (Weinheim) **1986**, *319*, 52.
- Krapcho, A. P.; Gallagher, C. E.; Hammach, A.; Ellis, M.; Menta, E.; Oliva, A. J. Heterocyclic Chem. 1997, 34, 27.
- Krapcho, A. P.; Maresch, M. J.; Helgason, A. L.; Rosner, K. E.; Hacker, M. P.; Spinelli, S; Menta, E.; Oliva, A. J. *Heterocyclic Chem.* **1993**, *30*, 1597.
- 14. Cheng, C. C.; Liu, D. F.; Chou, T. C. *Heterocycles* **1993**, 35, 775.
- 15. Van Allan, J. A.; Reynalds, G. A. *J. Org. Chem.* **1963**, *28*, 1019.
- 16. Agarwal, N.; Mital, R. J. of Chrom. 1975, 115, 264.
- 17. Fenyes, J. J. Chem. Soc. (c) 1968, 5.
- 18. Badger, G.; Pettit, I. J. Chem. Soc. 1952, 1877.
- Nan'ya, S.; Maekawa, E.; Kang, W.; Ueno, Y. J. Heterocyclic Chem. 1986, 23, 1697.
- 20. Agarwal, N.; Mital, R. J. Chem. Eng. Data 1975, 20, 199.
- 21. Kang, W.; Nan'ya, S.; Maekawa, E.; Ueno, Y. J. *Heterocyclic Chem.* **1988**, *25*, 113.
- Burack, R. In "The New Handbook of Prescription Drugs"; Ballantine Books, Inc.: New York, 1970; pp 254-256.
- Pollitt, J. In "PsychologicalMedicineforStudies"; Churchill Living stone Ltd., (Longman Group Ltd.): Lon don, 1973; Chap ter 20, pp 241-266.
- 24. Venkataraman, K. In *"The Chem is try of Syn thetic Dyes"*; Ac a demic Press: New York, 1952.