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Abstract 
4-Thiazolidinones and phenylaminopyrimidines are known as anticancer agents. Imatinib is the pioneer phenylaminopyrimi-
dine derivative kinase inhibitor, which is used for the treatment of chronic myeloid leukemia. With a hybrid approach, a novel 
series of 5-benzylidene-2-arylimino-4-thiazolidinone derivatives containing phenylaminopyrimidine core were designed, 
synthesized, and tested for their anticancer activity on K562 (chronic myeloid leukemia), PC3 (prostat cancer), and SHSY-5Y 
(neuroblastoma) cells. Since superior anticancer activity was observed on K562 cells, further biological studies of selected 
compounds (8, 15, and 34) were performed on K562 cells. For the synthesis of designed compounds, thiourea compounds 
were converted to 2-imino-1,3-thiazolidin-4-ones with α-chloroacetic acid in the presence of sodium acetate. 5-Benzylidene-
2-imino-1,3-thiazolidin-4-one derivatives were obtained by Knoevenagel condensation of 2-imino-1,3-thiazolidin-4-ones with 
related aldehydes. Compounds 8, 15, and 34 were evaluated for cell viability, apoptosis studies, cell cycle experiments, and 
DNA damage assays. IC50 values of compounds 8, 15, and 34 were found as 5.26 ± 1.03, 3.52 ± 0.91, and 8.16 ± 1.27 μM, 
respectively, in K562 cells. Preferably, these compounds showed less toxicity towards L929 cells compared to imatinib. 
Furthermore, compounds 8 and 15 significantly induced early and late apoptosis in a time-dependent manner. Compounds 
15 and 34 induced cell cycle arrest at G0/G1 phase and compound 8 caused cell cycle arrest at G2/M phase. Based on 
DNA damage assay, compounds 8 and 15 were found to be more genotoxic than imatinib towards K562 cells. To put more 
molecular insight, possible Abl inhibition mechanisms of most active compounds were predicted by molecular docking stud-
ies. In conclusion, a novel series of 5-benzylidene-2-arylimino-4-thiazolidinone derivatives and their promising anticancer 
activities were reported herein.
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Introduction

According to the report published by the World Health 
Organization, being the second leading cause of death 
worldwide after cardiovascular diseases, cancer is respon-
sible for 9.6 million deaths in the year of 2018. The hole 
between the number of people suffering from cardiovascular 
diseases and cancer is getting narrow year after year. Cancer 
represents to be a global health problem that needs continu-
ing development of novel treatment modalities [1, 2].

The disrupted equilibrium, aberrant signalization, abnor-
mal cellular activity, increased proliferation, and decreased 
apoptosis levels are well-known drivers of tumorigenesis. 
This biological equilibrium is largely controlled by protein 
kinase enzymes in cells. Kinase proteins are established as 
cellular switches that are regulators of cells. For the regula-
tion of biological reactions, 518 kinase enzymes have been 
identified in the human genome thus far [3]. Activation of 
any receptor kinase or cytosolic kinase commences differ-
ent cellular signalization pathways [4]. However, unusual 
activity or overexpression of a kinase protein may role in 
cancer [5–7].

Kinase proteins are featured as outstanding molecular 
targets for cancer treatment. Imatinib, which has phe-
nylaminopyrimidine (PAP) core in its molecular structure, 

is the pioneer kinase inhibitor, approved for chronic 
myeloid leukemia (CML) and gastrointestinal stromal 
tumors [8]. In the related literature, PAP derivatives are 
recorded as straight nominees for anticancer drug devel-
opment [9–12]. Heterocycles are one of the important 
classes of organic molecules. In particular, nitrogenous 
heterocyles have proven to be prominent drug candidates. 
In this context, the synthesis of nitrogenous heterocycles 
has attracted the attention of many researchers in the 
community of synthetic chemistry and medicinal chem-
istry [13–18]. As of mentioned heterocyclic compounds, 
2-imino-4-thiazolidinones has attracted great attention due 
to the diversity of their biological effects [19]. 2-Imino-
4-thiazolidinones were reported as potential anticancer 
agents [20–22] as well as kinase inhibitors [23, 24]. Based 
on a hybrid approach of these mentioned ideas, novel PAP 
derivatives containing 5-substituted benzylidene-2-imino-
4-thiazolidinone were designed as anticancer agents in this 
study. The design approach of the molecules is presented 
in Fig. 1.

Anticancer activity of the compounds was evaluated 
on K562, PC3, and SHSY-5Y cells, initially. As the com-
pounds demonstrated better anticancer activity towards 
K562 cells compared to PC3 and SHSY-5Y cells; IC50 
calculations, apoptotic, cell cycle, and DNA damage pro-
files of the most active compounds were evaluated on 
K562 cells as further studies. Moreover, because of the 
link between CML and Abl kinase [25], molecular dock-
ing studies were performed with Abl kinase domain and 
compounds 8, 15 and 34.
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Results and discussion

Chemistry

It is known that 2-imino-1,3-thiazolidin-4-one ring sys-
tem can be synthesized via different methods. One of them 
includes cyclization of chloroacetamide compounds in 
the presence of ammonium thiocyanate [26–33] or potas-
sium thiocyanate [34]. In other respects, the treatment of 
α-halo carboxylic acid derivatives with thiourea compounds 
affords 2-imino-1,3-thiazolidin-4-ones [35]. Reaction of 
chloroacetyl chloride [36], ethyl chloroacetate [20], ethyl 
bromoacetate [37–39], or ethyl chloroacetate [40] reagents 
with thiourea compounds were reported to give 2-imino-
1,3-thiazolidin-4-one derivatives. In this study, we fol-
lowed the latter method to obtain 2-imino-1,3-thiazolidin-
4-one compounds. We carried out cyclization reaction 
with α-chloroacetic acid owing to the preferable yield after 
the purification procedure. Furthermore, whether hydro-
gen substitution of third position nitrogen is necessary for 
structure–activity relationship or not, we obtained 3-substi-
tuted-2-imino-1,3-thiazolidin-4-ones as well by starting the 
reaction with di-substituted thioureas.

In previous communications reported for the synthesis of 
designed compounds, thioureas were produced by the reac-
tion of amines with isothiocyanates [41, 42]. For the in situ 

preparation of benzoyl isothiocyanate, ammonium thiocy-
anate was reacted with benzoyl chloride in dry acetone. To 
this medium that contains benzoyl isothiocyanate, 4-methyl-
N3-[4-(pyridin-3-yl)pyrimidin-2-yl]benzene-1,3-diamine 
was then added. The reaction was monitored with TLC. 
The precipitate was obtained by filtration after the TLC 
spot of the above-mentioned diamine was disappeared. The 
resultant crude was washed with hot methanol (1). For the 
synthesis of the targeted mono-substituted thiourea 2, com-
pound 1 was partially hydrolyzed using methanolic solution 
of 1 N NaOH (aq.). For the synthesis of the di-substituted 
thiourea compounds 3–4, 4-methyl-N3-[4-(pyridin-3-yl)
pyrimidin-2-yl]benzene-1,3-diamine was refluxed with 
substituted ethyl and methyl isothiocyanates in dry acetone 
[12]. Thioureas 2–4 were converted to 2-imino-1,3-thiazo-
lidin-4-ones 5–7 with α-chloroacetic acid in the presence of 
sodium acetate. Excess amounts of α-chloroacetic acid and 
sodium acetate were used for the cyclization. And lastly, 
synthesis of 5-benzylidene-2-imino-1,3-thiazolidin-4-one 
derivatives was performed by Knoevenagel condensation of 
2-imino-1,3-thiazolidin-4-ones with related benzaldehydes 
[28, 29]. Scheme 1 represents the route to synthesize com-
pounds 1–49.

The purity of all the synthesized compounds was checked 
with thin layer chromatography (TLC) and reverse phase-
high performance liquid chromatography (RP-HPLC). 

Fig. 1   Design of some novel 5-substituted benzylidene-2-arylimino-4-thiazolidinone derivatives containing pharmacophoric PAP core
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Structures of the compounds were confirmed by FTIR, 1H-
NMR, 13C-NMR, HMBC, and mass spectral data besides 
elemental analysis.

We have previously published the chemistry of thioureas 
[12]. In FTIR spectra, C=S stretching bends of thioureas 1–4 
were observed at 1232–1288 cm−1. Discriminately, C=O 
stretching bend of compound 1 was identified at 1666 cm−1. 
C=O stretching bends of 1,3-thiazolidin-4-ones 5–7 were 
detected at 1708–1712  cm−1. C=O stretching bends of 
5-benzylidene-1,3-thiazolidin-4-ones 8–49 were identified 
at 1697–1720 cm−1.

In 1H-NMR spectra of compounds 1,3-thiazolidin-4-one 
rings 5–7, –SCH2– protons were observed 3.92–4.01 ppm. 
In 13C-NMR spectra of compounds 5–6, –SCH2– signals 
were observed at 33–35 ppm and C=O carbon signals of the 
compounds were identified at ppm 171–188 ppm [35, 42]. 
Benzylidene substitution to 1,3-thiazolidin-4-one rings was 
confirmed with the 1H- and 13C-NMR results of compounds 
8–49. Absence of -SCH2- signals at 32–36 ppm and merge of 
signals at 127–130 ppm demonstrated the structures of final 
compounds 8–49 [43, 44]. Similarly, in 1H-NMR spectra, 
while -SCH2- protons were disappeared, methylidene proton 
signals of compounds 8–49 were observed between 7.58 and 
7.99 ppm which confirms Z isomer of methylidene structure 
[29, 31, 45, 46]. Methylidene carbon signals of =CH–Ar 
structures were identified at 134–135 ppm [47].

In 1H-NMR studies, secondary NH proton signals of the 
compounds that belong to PAP core were detected in the 
range of 8.90 and 9.10 ppm. These NH signals disappeared 

in the 1H-NMR spectra of the compounds when CDCl3 was 
used as a solvent. D2O exchange method was also used to 
identify exchangeable protons. Moreover, it was observed 
that 2-amino(/imino)-4-thiazol(idin)one NH protons in 
addition to secondary NH protons exchange with deute-
rium of D2O as well as CDCl3 [48, 49]. Unless 2-amino(/
imino)-4-thiazol(idin)one compounds 8–21 NH protons are 
changed with deuterium, they were observed between 11.40 
and 12.90 ppm in DMSO-d6 as broad singlets that confirm 
imino structures of the compounds. 2-Amino-4-thiazolone 
protons would appear at much higher field around 9.00 ppm 
[31]. Amino-imino tautomeric equilibrium for compounds 
5 and 8–21 was monitored in their both 1H- and 13C-NMR 
data. Detailed spectral data are presented in supporting 
information.

In the literature, keto/enol and amino/imino tautomeric 
forms of 2-amino(/imino)-4-thiazol(idin)one rings were 
investigated elaborately [50–53]. As can be seen in Fig. 2, 
2-phenylimino-1,3-thiazolidin-4-one structure can be found 
in eight different forms depending on keto/enol tautomerism, 
amino/imino tautomerism in addition to E/Z geometrical 
isomers. In light of this information, modeling studies of 
compounds 5 and 8–21, possessing amino/imino tautomer-
ism, were held with both forms of the compounds.

Biological activity

Anticancer activity of compounds 5–49 was evaluated 
against K562, PC3 and SHSY-5Y cells. For preliminary 

Scheme 1   Synthetic route to compounds 1–49. i Acetone, methyl or ethyl isothiocyanate, reflux. ii Acetone, NH4SCN benzoyl chloride, reflux. 
iii MeOH, 1 N NaOH, reflux. iv EtOH, ClCH2COOH, NaOAc, reflux. v NaOMe, ArCHO, reflux
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screening, cytotoxic bioactivity of synthesized compounds 
was evaluated in vitro against K562, PC3 and SHSY-5Y 
cells with the XTT assay. To evaluate the anticancer potency 
of target compounds, the cancer cells were treated with the 
compounds at 10 µM constant concentration. Cell viability 
percentages were calculated after the treatment of cells for 
24 and 48 h. Imatinib was used as a positive control. Prelimi-
nary anticancer activity results of compounds 5–49 against 
K562, PC3, and SHSY-5Y are presented in Tables 1, 2 and 
3 respectively. It was observed that while compounds 5–49 
showed moderate antiproliferative activity against K562 
cells, compounds 5–49 demonstrated weak antiproliferative 
activity against PC3 and SHSY-5Y cells. Since compounds 
5–49 displayed better anticancer activity towards K562 cells 
compared to PC3 and SHSY-5Y cells, further biological 
studies were held with K562 cells. As of compounds, 8, 
15 and 34 exhibited better anticancer activity and further 
activity studies were carried on with compounds 8, 15 and 
34. It was also observed that the introduction of substituted 
benzylidene substitution at the 5th position of 2-imino-4-thi-
azolidinone ring significantly enhances anticancer activity 
on K562 cells.

As seen in Table 1, the percentage of viability values of 
compounds 8, 15 and 34 were determined as 34.1, 31.1 and 
49.8 for 24 h and 31.8, 24.6 and 41.7 for 48 h, respectively. 
On the other hand, compounds 19, 39 and 48 displayed 
moderate antiproliferative activity, while nearly all of the 

other compounds demonstrated poor activity against K562 
cells. Herewith, compounds 8, 15 and 34, which revealed out 
cell viability% values less than 50.0% on K562 cells, were 
selected for further biological studies. These three com-
pounds were also tested for the following IC50 calculations, 
apoptosis studies, cell cycle experiments, and DNA damage 
assay on K562 cells.

Afterward, to determine IC50 values of the compounds 
8, 15 and 34, K562 cells were treated with 0.1, 1, 10, 25 
and 50  µM concentrations of these compounds for 24 
and 48 h and cell viability assay was performed. Results 
obtained from IC50 calculations were demonstrated in Fig. 3 
and Table 4. As shown in Fig. 3, compound 15 was found 
to be the most potent compound towards K562 cells (IC50 
values of 4.86 ± 0.73 and 3.52 ± 0.91 μM for 24 and 48 h, 
respectively). For 24 and 48 h, the IC50 values were calcu-
lated as 9.97 ± 1.14 and 8.16 ± 1.27 μM for compound 34, 
8.79 ± 1.09 and 5.26 ± 1.03 μM for compound 8 in K562 
cells, respectively. IC50 values of imatinib as positive control 
were calculated as 0.73 ± 0.17 for 24 h and 0.59 ± 0.11 μM 
for 48 h in K562 cells. These IC50 values were used in sub-
sequent apoptosis and cell cycle assays.

Later on, the most active compounds 8, 15 and 34 were 
evaluated against mouse subcutaneous connective tissue 
cells (L929) to determine whether the synthesized com-
pounds display selective cytotoxicity between normal and 
tumor cells or not. Assertively, compounds 8, 15 and 34 

Fig. 2   Keto/enol and amino/
imino tautomeric forms of 
2-phenylimino-1,3-thiazolidin-
4-one ring
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exhibited a weak cytotoxic effect on L929 cells with IC50 val-
ues of 87.3 ± 4.96, 73.7 ± 5.13 and 69.1 ± 3.49 µM, respec-
tively, in comparison with imatinib (IC50 = 19.6 ± 1.33 µM). 
Results that are presented in Table 2 suggest that these com-
pounds possess relatively low cytotoxicity towards L929 
cells. It is noteworthy to emphasize that compounds 8, 15 
and 34 had lower toxicity according to imatinib on L929 
cells.

Imatinib constitutively eliminates K562 cells by inducing 
apoptosis [54]. In our study, it was also investigated whether 
the three most effective compounds have apoptotic effects 
on K562 cells. Before apoptosis experiments, the cells were 
treated with IC50 concentrations of the most active com-
pounds and imatinib for 24 and 48 h. Later, Annexin V bind-
ing assay was performed to evaluate the apoptotic effects of 
the compounds and imatinib on K562 cells. As shown in 
Fig. 4, step-up of incubation time from 24 to 48 h increased 

the amount of total apoptotic cells in all groups, especially 
for compounds 8 and 15 when compared to control cells. 
Percentages of total apoptotic cells were 27.27%, 19.18%, 
14.59% and 24.88% for compounds 8, 15, 34 and imatinib 
at 24 h, respectively. For 48 h, total apoptotic cell amount 
was significantly increased to 50.24%, 57.72%, 19.70%, and 
62.67% for compounds 8, 15, 34 and imatinib, respectively. 
These data indicate that compounds 8 and 15 induce mainly 
early and late apoptosis in K562 cells in a time-dependent 
manner.

Above-mentioned studies exhibited that the three com-
pounds inhibited cell proliferation and significantly induced 
apoptosis compared to control cells. In resuming studies, to 
investigate whether the compounds induce growth inhibition 
of cells via alterations in cell cycle arrest, we determined 
the effect of the compounds on cell cycle distribution by 
the cell cycle kit. The cell cycle results showed that, after 

Table 1   Cell viability % ± SD values of synthesized compounds 5–49 on K562 cells for 24 and 48 h

Compounds were implemented at 10 µM concentration on K562 cell line

R2 R1

–H –Me –Et

Comp. no. 24 h 48 h Comp. no. 24 h 48 h Comp. no. 24 h 48 h

Viab% Viab% Viab% Viab% Viab% Viab%

– 5 97.4 ± 5.32 83.1 ± 4.56 6 101.1 ± 4.22 91.3 ± 5.11 7 101.1 ± 3.33 95.7 ± 3.99
2-F 8 34.1 ± 3.46 31.8 ± 5.46 22 77.9 ± 3.04 63.4 ± 4.16 36 57.3 ± 3.47 49.3 ± 4.13
3-F 9 77.4 ± 4.96 68.1 ± 6.11 23 97.4 ± 3.78 89.5 ± 1.07 37 85.1 ± 1.35 73.4 ± 3.48
4-F 10 82.6 ± 1.99 63.4 ± 4.93 24 112.8 ± 4.12 101.3 ± 3.79 38 77.3 ± 2.34 70.1 ± 1.79
2,6-F2 11 63.5 ± 5.13 52.3 ± 1.89 25 83.7 ± 5.13 66.7 ± 5.12 39 54.5 ± 3.19 46.9 ± 4.11
2-Cl 12 75.2 ± 3.74 67.5 ± 4.19 26 94.3 ± 5.63 83.9 ± 4.13 40 61.5 ± 5.79 59.4 ± 4.19
4-Cl 13 86.1 ± 6.11 70.6 ± 5.98 27 98.8 ± 3.15 92.7 ± 5.09 41 71.8 ± 1.59 63.9 ± 3.46
4-Br 14 74.8 ± 3.12 62.2 ± 3.47 28 92.6 ± 3.89 85.8 ± 5.93 42 73.5 ± 4.65 68.1 ± 6.15
4-CF3 15 31.1 ± 3.97 24.6 ± 2.45 29 83.8 ± 4.29 67.9 ± 3.49 43 57.3 ± 4.16 47.9 ± 4.78
4-OCF3 16 81.1 ± 4.19 73.2 ± 1.79 30 85.5 ± 1.07 79.2 ± 3.97 44 59.3 ± 4.69 50.2 ± 5.05
2-OH 17 56.5 ± 4.17 49.3 ± 3.47 31 67.2 ± 4.17 60.4 ± 4.37 45 73.4 ± 3.48 62.5 ± 5.09
2-OMe 18 61.1 ± 1.95 55.9 ± 5.13 32 73.2 ± 5.11 66.6 ± 4.78 46 85.7 ± 1.99 73.9 ± 3.31
3-OMe 19 54.7 ± 3.47 48.1 ± 2.44 33 68.6 ± 4.13 59.7 ± 2.33 47 81.5 ± 2.11 72.7 ± 3.89
4-OMe 20 58.6 ± 3.11 50.1 ± 4.19 34 49.8 ± 5.97 41.7 ± 5.11 48 55.6 ± 3.12 44.6 ± 3.21
4-N(Me)2 21 66.9 ± 1.11 57.1 ± 3.47 35 91.9 ± 1.02 83.2 ± 1.03 49 63.1 ± 3.19 51.6 ± 4.13

24 h 48 h
Viab% Viab%

Imatinib 22.1 ± 4.13 16.7 ± 2.76
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48 h, G0/G1 phase population of control cells was 32.8% and 
the percentages significantly increased to 52.0%, 47.5% and 
57.6% for compounds 15, 34 and positive control imatinib, 
respectively. As several studies have reported, imatinib 
arrests K562 and different cells at G0/G1 phase of the cell 
cycle [55, 56] and our findings showed consistency with 
these works of literature. Assertively, compound 8 dramati-
cally induced G2/M phase arrest (69.2%) compared with 
control cells (33.0%). After the treatment of K562 cells with 
compounds 8, 15 and 34, the cell cycle results demonstrated 
that the growth inhibition was observed in all groups mainly 
associated with G0/G1 (compound 15 and 34) and G2/M 
phase arrest (compound 8). Figure 5 represents the cell cycle 
analysis of K562 cells exposed to compounds 8, 15, 34, and 
imatinib.

It is well known that DNA damage and apoptosis are 
closely related processes and in most cases, DNA dam-
age in the cells results in apoptosis. Therefore, DNA is 
the major target of most cytotoxic anticancer drugs and 
inducing DNA damage is an important anticancer strategy 
[57]. Many studies have reported that inducing DNA dam-
age results in apoptotic cell death in many types of cancer 
[58]. In this study, having compared to the control cells, 
while compound 34 exhibited low DNA damage response, 
compounds 8 and 15 significantly promoted DNA damage 
response (increased phosphorylation of ATM and H2AX) 
in K562 cells. As given in Fig. 6, total DNA damage per-
centage of control cells was 8.70% and the percentages 
were increased to 32.90%, 37.20%, and 10.40%, after treat-
ment of compounds 8, 15 and 34, respectively. For the 

Table 2   Cell viability % ± SD values of synthesized compounds 5–49 on PC-3 cells for 24 and 48 h

5-7     8-49

Compounds were implemented at 10 µM concentration on PC-3 cell line

R2 R1

–H –Me –Et

Comp. no. 24 h 48 h Comp. no. 24 h 48 h Comp. no. 24 h 48 h

Viab% Viab% Viab% Viab% Viab% Viab%

– 5 87.4 ± 2.72 80.1 ± 2.94 6 79.7 ± 1.02 77.1 ± 2.81 7 59.4 ± 3.92 50.3 ± 5.13
2-F 8 45.6 ± 3.23 40.9 ± 1.05 22 83.0 ± 3.27 78.1 ± 2.09 36 59.0 ± 2.24 53.8 ± 3.12
3-F 9 68.8 ± 3.56 60.1 ± 3.12 23 92.1 ± 1.09 88.9 ± 4.22 37 98.3 ± 1.91 92.4 ± 1.76
4-F 10 50.7 ± 2.46 43.7 ± 1.78 24 76.3 ± 4.95 69.3 ± 1.09 38 69.4 ± 2.13 63.3 ± 2.78
2,6-F2 11 55.2 ± 4.07 47.9 ± 2.94 25 98.9 ± 4.01 89.9 ± 5.01 39 52.7 ± 2.17 47.6 ± 1.97
2-Cl 12 73.4 ± 1.08 67.1 ± 2.36 26 99.5 ± 1.25 95.5 ± 3.13 40 79.2 ± 3.08 76.5 ± 2.91
4-Cl 13 80.6 ± 4.18 78.6 ± 1.96 27 73.4 ± 2.13 67.1 ± 1.57 41 68.9 ± 2.28 63.8 ± 3.11
4-Br 14 86.2 ± 4.53 78.2 ± 2.04 28 75.2 ± 2.98 66.1 ± 2.39 42 65.1 ± 1.89 59.6 ± 4.96
4-CF3 15 46.1 ± 1.21 40.1 ± 1.08 29 62.7 ± 1.83 57.1 ± 4.16 43 58.9 ± 3.07 52.9 ± 2.77
4-OCF3 16 59.2 ± 1.12 56.7 ± 2.07 30 94.6 ± 3.90 91.7 ± 4.19 44 55.7 ± 3.11 48.7 ± 5.07
2-OH 17 87.0 ± 3.94 77.8 ± 2.97 31 55.0 ± 4.87 51.6 ± 3.45 45 63.7 ± 4.15 58.6 ± 3.46
2-OMe 18 69.0 ± 1.10 65.2 ± 2.71 32 69.9 ± 5.13 62.9 ± 1.54 46 68.0 ± 1.78 57.8 ± 1.78
3-OMe 19 62.6 ± 2.86 51.9 ± 3.09 33 61.4 ± 2.46 58.3 ± 5.29 47 52.1 ± 3.09 48.1 ± 2.47
4-OMe 20 63.4 ± 5.64 59.7 ± 1.01 34 81.0 ± 2.19 74.5 ± 2.09 48 55.3 ± 4.26 49.1 ± 2.12
4-N(Me)2 21 93.7 ± 2.11 89.2 ± 5.10 35 88.9 ± 3.09 81.4 ± 2.23 49 72.6 ± 1.47 67.2 ± 1.01

24 h 48 h
Viab% Viab%

Imatinib 74.3 ± 2.69 67.1 ± 4.12
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Table 3   Cell viability % ± SD values of synthesized compounds 5–49 on SHSY-5Y cells for 24 and 48 h

5-7     8-49

Compounds were implemented at 10 µM concentration on SHSY-5Y cell line

R2 R1

–H –Me –Et

Comp. no. 24 h 48 h Comp. no. 24 h 48 h Comp. no. 24 h 48 h

Viab% Viab% Viab% Viab% Viab% Viab%

– 5 83.7 ± 1.09 72.4 ± 4.02 6 73.9 ± 3.78 65.1 ± 3.21 7 63.3 ± 5.96 54.3 ± 3.12
2-F 8 42.3 ± 3.08 33.9 ± 1.56 22 81.3 ± 4.25 72.9 ± 3.14 36 46.8 ± 2.02 43.1 ± 2.28
3-F 9 75.5 ± 2.48 62.9 ± 3.19 23 101.1 ± 4.12 93.1 ± 2.91 37 109.1 ± 3.28 97.1 ± 2.76
4-F 10 47.7 ± 3.24 42.1 ± 4.21 24 69.9 ± 4.19 61.9 ± 3.12 38 46.8 ± 4.75 42.8 ± 3.12
2,6-F2 11 49.0 ± 2.76 42.3 ± 2.75 25 54.1 ± 2.19 41.8 ± 5.21 39 49.2 ± 5.47 41.8 ± 3.17
2-Cl 12 58.6 ± 1.09 46.4 ± 2.09 26 55.5 ± 1.07 42.5 ± 3.09 40 52.2 ± 1.79 42.2 ± 2.08
4-Cl 13 83.0 ± 5.15 70.1 ± 3.17 27 77.8 ± 2.24 59.8 ± 1.23 41 66.7 ± 2.18 56.2 ± 1.92
4-Br 14 87.0 ± 3.45 74.3 ± 4.13 28 63.0 ± 2.78 71.8 ± 3.27 42 71.8 ± 3.27 60.9 ± 1.86
4-CF3 15 50.4 ± 2.91 42.6 ± 1.09 29 66.6 ± 4.56 53.1 ± 3.02 43 59.9 ± 3.48 47.9 ± 2.67
4-OCF3 16 63.1 ± 4.12 50.9 ± 3.56 30 59.5 ± 5.24 47.4 ± 2.24 44 57.8 ± 2.97 43.7 ± 1.26
2-OH 17 84.3 ± 3.58 69.1 ± 4.13 31 68.4 ± 1.45 56.4 ± 2.56 45 49.3 ± 3.56 42.8 ± 3.87
2-OMe 18 70.2 ± 4.18 59.2 ± 1.76 32 72.2 ± 2.09 61.2 ± 1.43 46 65.4 ± 3.47 51.4 ± 3.86
3-OMe 19 51.8 ± 4.10 42.8 ± 1.25 33 63.6 ± 2.47 50.6 ± 2.76 47 54.6 ± 2.85 41.9 ± 2.09
4-OMe 20 67.8 ± 1.08 51.6 ± 3.72 34 78.5 ± 3.25 64.5 ± 4.07 48 67.6 ± 2.18 53.1 ± 5.13
4-N(Me)2 21 104.2 ± 5.02 91.2 ± 3.02 35 98.5 ± 2.19 86.4 ± 2.12 49 76.8 ± 5.03 64.8 ± 2.99

24 h 48 h
Viab% Viab%

Imatinib 93.2 ± 1.25 89.3 ± 2.19

Fig. 3   The antiproliferative 
activity of compounds 8, 15 
and 34 on K652 cells (The cells 
were treated with the com-
pounds at various concentra-
tions (0.1–50 µM) for 24 and 
48 h and the cell viability 
was evaluated using the XTT 
assay. All data are expressed as 
mean ± SD in three replicates. 
The differences are identified 
as *p < 0.05 from the control 
cells.)
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positive control imatinib, total DNA damage was meas-
ured as 17.20%. These results demonstrate that compounds 
8 and 15 possess more genotoxic effect than imatinib.

Molecular modeling studies

To gain more molecular insight on the activity of the three 
compounds, molecular modeling studies were conducted 
with Abl enzyme. It is well known that imatinib owes its 
clinical success against CML by inhibiting Abl kinase pro-
tein [59]. Figure 7 represents the binding of imatinib and 
hydrogen bond interactions in the active site of Abl kinase. 
Evaluating possible binding mechanisms of the most active 
compounds is crucial in this respect. Imatinib makes hydro-
gen bond contacts with Glu286, Thr315, Met318, Ile360, 
His361, and Asp381 amino acid residues.

Binding poses of the three most active compounds were 
studied as representative conformations after docking calcu-
lations. Firstly, it is substantial to indicate that PAP cores did 
not place in the Abl binding site as it places in the structure 

Table 4   IC50 values of compounds 8, 15, 34 and imatinib on K562 
and L929 cell lines

Compound IC50 (µM)

K562_24 h K562_48 h L929_48 h

8 8.79 ± 1.09 5.26 ± 1.03 73.7 ± 5.13
15 4.86 ± 0.73 3.52 ± 0.91 69.1 ± 3.49
34 9.97 ± 1.14 8.16 ± 1.27 87.3 ± 4.96
Imatinib 0.73 ± 0.17 0.59 ± 0.11 19.6 ± 1.33

Fig. 4   a Apoptotic effects of compound 8, 15, 34 and imatinib, on 
K562 cells (The cells were treated with the IC50 concentrations of 
compounds 8, 15, 34 and imatinib for 24 and 48 h. After the incuba-
tion time, the cells were stained with Muse Annexin V & Dead Cell 
reagent and then   % gated values evaluated by Muse Cell Analyzer 
(Merck Millipore). Quantitative data demonstrate that total apoptosis 
significantly increased in compound 8 and compound 15-treated cells 

in a time‑dependent manner compared with control.) b Early and late 
apoptotic cell percentages significantly (p < 0.05) increased following 
compounds treatment (All experiments were carried out in triplicate 
and obtained similar results. Results are expressed as the mean ± SD. 
Statistically significant differences are *p < 0.05 from values com-
pared to control cells.)
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of imatinib after 5-arylidene-2-imino-4-thiazolidinone intro-
duction to the PAP core.

In detail, amino-imino tautomerization of 2-amino(/
imino)-4-thiazol(idin)one rings were needed to be consid-
ered for molecular modeling studies when R1 is hydrogen in 
the chemical structure of synthesized compounds [49]. As 
stated in the chemistry part and supporting file, amino-imino 
tautomerization of compounds 5 and 8–21 was demonstrated 
by spectral studies. According to NMR results, compounds 5 
and 8–21 possess both amino and imino isomers. For dock-
ing calculations, both configurations of the compounds were 
considered.

Out of the most active three compounds, 8 and 15 have 
H at R1 substitution. Tautomeric forms of compound 8 and 
15 were evaluated during docking studies. It was detected 

that while amino tautomers of 8 and 15 replace binding 
region of imatinib, imino tautomers of 8 (Fig. 8) and 15 
(Fig. 9) replaces allosteric sites away from hinge region. 
It was also observed that amino tautomers of ring systems 
form hydrogen bonds with Lys271 and Glu286. Amongst 
the most active compounds, the amino group of 2-amino-
4-thiazolidinone ring behaves as a hydrogen bond donor 
making hydrogen bond interaction with Glu286. Oxygen 
atom as hydrogen bond acceptor interacts with Lys271. 
Moreover, CF3 substitution of compound 15 interacts with 
Met318. This interaction is rather important since Met318 
amino acid residue takes place hinge region of Abl kinase.

Due to the bulky substitution, an additional methyl 
group to the nitrogen atom of 3-methyl-2-imino-4-thi-
azolidinone ring results with another conformational 

Fig. 5   a Effects of compounds 8, 15, 34 and imatinib on cell cycle 
distribution in K562 cells (K562 cells were treated with their IC50 
concentrations of compounds and imatinib for 48  h. While, com-
pounds 15 and 34 arrest G0/G1 phase similar to imatinib, compound 

8 induces cell cycle arrest G2/M phase.) b Histogram display the per-
centage of cell cycle phases of K562 cells (Results are expressed as 
the mean ± SD. The differences are given as compared to the control 
cells, *p < 0.05.)
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replacement in the Abl binding site. Fig 10 depicts the 
possible conformation of compound 34 in Abl binding 
region. Compound 34 also forms hydrogen bond interac-
tions with Asp381 and His361.

Apart from docking calculations, biological results 
revealed out that compounds 8 and 15 are more active than 
34. Coordination of compounds 8 and 15 in Abl binding site 

seems more reasonable and rational compared to 34. Tak-
ing into account all these biological and molecular findings, 
biological data and docking studies support each other.

Fig. 6   K562 cells were treated with the IC50 concentrations of com-
pounds 8, 15, 34 and positive control imatinib for 48  h to induce 
DNA damage (Activation of ATM and H2AX were determined 

using the Muse™ Cell Analyzer (Merck Millipore). Bars represent 
mean ± SD, *p < 0.05 compared to the control cells.)

Fig. 7   Imatinib in the Abl binding region and hyrdogen bond interactions between Abl and imatinib
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Conclusion

In conclusion, starting from 4-methyl-N3-[4-(pyridin-
3-yl)pyrimidin-2-yl]benzene-1,3-diamine, a novel series 
of PAP core containing 5-benzylidene-2-arylimino-4-thi-
azolidinone derivatives were designed and synthesized 
in this study. For the synthesis of designed compounds, 
starting material was first converted to thiourea deriva-
tives 1–4. Thiourea compounds were later reacted with 
α-chloroacetic acid to obtain 2-arylimino-4-thiazolidinone 
compounds 5–7. 5-Substituted benzylidene-2-arylimino-
4-thiazolidinone compounds 8–49 were achieved from 
related 2-arylimino-4-thiazolidinones and benzaldehydes 
in the presence of sodium methoxide via Knoevenagel con-
densation. After the confirmation of the structures of the 
compounds with spectral studies, compounds were tested 
for their anticancer activity on CML cell line. Based on the 
viability assay, the introduction of arylmethylene group 
to 2-arylimino-4-thiazolidinones prominently increased 
inhibitory activity on K562 cells. Compounds inhibiting 

Fig. 8   Interactions of amino tautomer of compound 8 in the Abl binding region

Fig. 9   Interactions of amino tautomer of compound 15 in the Abl binding region

Fig. 10   Interactions of compound 34 in the Abl binding region
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50.0% of the cells at 10 µM concentration were selected 
for follow-up studies to analyze induction of apoptosis, 
cell cycle arrest and DNA damage profiles. Prior to these 
further studies, IC50 values were found as 5.26, 3.52 and 
8.16 µM for compound 8, 15 and 34, respectively. After 
IC50 calculation, it was detected that compounds 8 and 
15 induced early and late apoptosis in a time-dependent 
manner. In depth, 48 h after the implementation of the 
compounds to K562 cells, the total apoptotic cell amount 
was 50.24%, 57.72%, 19.70% and 62.67% for 8, 15, 34 
and imatinib, respectively. In addition, cell cycle stud-
ies revealed out that compound 8 dramatically induced 
G2/M phase arrest (69.2%) compared with control cells 
(33.0%), while compound 15, 34 and imatinib caused an 
increment of the cell population to 52.0, 47.5 and 57.6%, 
respectively, at G0/G1 phase. Moreover, DNA damage 
assay results which are notably connected with cellular 
apoptotic results executed that compound 8 (32.90%) and 
15 (37.20%) possess more genotoxicity than imatinib 
(17.20%). It is better to state that inhibition of Abl protein 
results with apoptosis. From this point of view, in further-
ance compounds have PAP structure as so imatinib, molec-
ular modeling studies were held with Abl protein kinase. 
Finally, in light of biological results as well as docking 
studies, we purpose that our compounds may induce pro-
grammed cell death by inhibiting Abl kinase in CML cells.

Materials and methods

Chemistry

Solvents, reagents and starting materials except from 
4-methyl-N3-[4-(pyridin-3-yl)pyrimidin-2-yl]benzene-
1,3-diamine were purchased from Sigma-Aldrich or Merck. 
To monitor reactions, TLC studies were run on silica gel 60 
F254 plates. The RP-HPLC was used to prove the purity of 
the compounds. Agilent technologies 1100 series instrument 
equipped with a quaternary solvent delivery system, a model 
Agilent series G1315, a photodiode array detector, a Rheo-
dyne syringe loading sample injector with a 50-µL sample 
loop and Agilent ChemStation Plus software was used for 
chromatographic analysis. All synthesized compounds were 
significantly separated from the starting materials and chro-
matographic purities of the compounds were found above 
95% based on the peak area values obtained from chroma-
tograms. Chromatographic systems (CS1–7) which were used 
in RP-HPLC studies and chromatograms were presented in 
supplementary data. Melting points (°C) of the compounds 
were measured with Schmelzpunktbestimmer SMP II basic 
model melting point apparatus. Elemental analysis studies 
were held with LECO CHNS-932 instrument. Infrared spec-
tra were performed on a Shimadzu FTIR 8400S and data 

were implied by wavenumber ν (cm−1). 1H- and 13C-NMR 
spectra were recorded on Brüker AVANCE-DPX instrument. 
DMSO-d6 or CDCl3 was used as a solvent and chemical 
shifts were specified in δ (ppm) downfield from tetramethyl-
silane (TMS). Low-resolution mass spectra were acquired 
with AB SCIEX API 2000 LC–MS/MS instrument.

Documented spectral and chromatographic data of the 
compounds are presented as the supplementary file.

General procedure for the synthesis of thiourea derivatives 
(1–4)

Synthesis of thiourea derivatives (1–4) and structure charac-
terization of the compounds was published in our previous 
study [12].

N-(Benzoyl)-N′-(4-methyl-3-{[4-(pyridin-3-yl)pyrimidin-
2-yl]amino}phenyl)thiourea 1
White solid. M.p.: 204–205 °C [12].
N-(4-Methyl-3-{[4-(pyridin-3-yl)pyrimidin-2-yl]amino}
phenyl)thiourea 2
White solid. M.p.: 210–212 °C [12].
N-(4-Methyl)-N′-(4-methyl-3-{[4-(pyridin-3-yl)pyrimidin-
2-yl]amino}phenyl)thiourea 3
White solid. M.p.: 201–202 °C [12].
N-(4-Ethyl)-N′-(4-methyl-3-{[4-(pyridin-3-yl)pyrimidin-
2-yl]amino}phenyl)thiourea 4
White solid. M.p.: 187–188 °C [12].

General procedure for the synthesis of thiazolidin‑4‑one 
derivatives (5–7)

Corresponding thiourea derivative compounds 1–4 
(0.01 mol) were dissolved in ethanol and heated in the 
presence of sodium acetate (0.03 mol) and α-chloroacetic 
acid (0.02 mol) for 8–10 h. Ethanol was evaporated under 
vacuum at the end of the reaction. For the purification, the 
precipitate was washed with water first. The solid material 
obtained was washed with petroleum ether later and crystal-
lized from ethanol.

2‑[(4‑Methyl‑3‑{[4‑(pyridin‑3‑yl)pyrimidin‑2‑yl]amino}phe-
nyl)imino]‑1,3‑thiazolidin‑4‑one 5  Salmon color solid. 
Yield 42%, 1.52 g. TLC Rf: 0.43 (S1). HPLC tR (min): 3.19 
(CS1). M.p.: 200–201 °C. IR υmax (cm−1): 3435, 3229 (N–H 
str), 3031 (aromatic C–H str), 2981–2897 (aliphatic C–H 
str), 1708 (thiazolidin-4-one C=O str), 1647, 1585, 1553 
(C=N str, N–H bending, C=C str), 1406 (aliphatic C–H 
bending), 810–798 (aromatic C–H bending). 1H-NMR δ 
ppm (300 MHz, DMSO-d6): 9.27 and 9.24 (s and s, 1H), 
9.02 and 8.90 (s and s, 1H), 8.69 (s, 1H), 8.52 (d, 1H, 
J = 4.8 Hz), 8.42 (d, 1H, J = 7.8 Hz), 7.99 (s, 0.5H), 7.54 
(m, 1H), 7.43 (d, 1H, J = 5.1 Hz), 7.39 (m, 1H), 7.25 (m, 
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1H), 6.75 (d, 0.5H, J = 7.8 Hz), 3.98 and 3.92 (s and s, 2H, 
SCH2CO), 2.24 and 2.22 (s and s, 3H, ArCH3). 13C-NMR 
δ ppm (75 MHz, DMSO-d6): 188.08 and 177.04 (thiazoli-
din-4-one C=O), 161.68, 160.94, 159.43, 151.33, 148.14, 
138.44, 136.79, 134.39, 132.15, 130.44, 128.66, 127.92, 
123.77, 117.52, 116.34, 107.83, 35.26 (thiazolidin-4-one 
CH2) 17.63. (ArCH3). LC/MS ESI+ m/z (%): 399.154 
([M+Na]+, 77), 377.162 ([M+H]+, 100); ESI− m/z (%): 
375.394 ([M−H]−, 7), 97.027 (100). Elemental analysis cald 
for C19H16N6OS·5/4H2O, C 57.20, H 4.67, N 21.07, S 8.04; 
found C 57.21, H 4.64, N 21.18, S 7.61.

3‑Methyl‑2‑[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)pyrimidin‑2‑yl]
amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 6  Yellow-orange 
solid. Yield 80%, 3.12 g. TLC Rf: 0.49 (S1). HPLC tR (min): 
6.12 (CS1). M.p.: 182–184 °C. IR υmax (cm−1): 3352 (N–H 
str), 3031 (aromatic C–H str), 2945–2915 (aliphatic C–H 
str), 1708 (thiazolidin-4-one C=O str), 1627, 1581, 1519 
(C=N str, N–H bending, C=C str), 1415, 1400 (aliphatic 
C–H bending), 802 (aromatic C–H bending). 1H-NMR δ 
ppm (300 MHz, DMSO-d6): 9.30 (d, 1H, J = 1.5 Hz), 8.90 
(s, 1H, sec. NH), 8.70–8.68 (dd, 1H, J = 1.5 Hz, J = 3.2 Hz, 
J = 1.5 Hz), 8.53 (d, 1H, J = 5.3 Hz), 8.43 (d, 1H, J = 8.5 Hz), 
7.55–7.51 (q, 1H), 7.44 (d, 1H, J = 5.1 Hz), 7.28 (1H, d, 
J = 2.1  Hz), 7.21–7.19 (1H, d, J = 8.1  Hz), 6.68–6.64 
(dd, 1H, J = 2.1 Hz, J = 6.0 Hz, J = 2.3 Hz), 4.01 (s, 2H, 
SCH2CO), 3.16 (s, 3H, thiazolidin-4-one NCH3), 2.25 (s, 
3H, ArCH3). 13C-NMR δ ppm (75 MHz, DMSO-d6): 171.93 
(thiazolidin-4-one C=O), 161.53, 160.89, 159.41, 155.48, 
151.41, 148.18, 146.00, 138.40, 134.26, 132.03, 130.81, 
127.18, 123.75, 116.76, 116.62, 107.72, 32.60 (thiazoli-
din-4-one CH2), 29.14 (thiazolidin-4-one NCH3), 17.58 
(ArCH3). LC/MS APCI+ m/z (%): 390.927 ([M+H]+, 100); 
APCI− m/z (%): 389.285 ([M−H]−, 100), 347.083 (87), 
318,059 (27). Elemental analysis cald for C20H18N6OS, C 
61.52, H 4.65, N 21.52, S 8.21; found C 61.33, H 4.63, N 
21.35, S 7.95.

3‑Ethyl‑2‑[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)pyrimidin‑2‑yl]amino}
phenyl)imino]‑1,3‑thiazolidin‑4‑one 7  Orange solid; yield 
51%, 2.06 g. TLC Rf: 0.52 (S1). HPLC tR (min): 6.03 (CS1). 
M.p.: 159–160 °C. IR υmax (cm−1): 3340 (N–H str), 2983–
2947 (aliphatic C–H str), 1712 (thiazolidin-4-one C=O 
str), 1635, 1606, 1587, 1519 (C=N str, N–H bending, C=C 
str), 1402, 1386 (aliphatic C–H bending), 1230 (C–N str), 
896, 786, 702 (aromatic C–H bending). 1H-NMR δ ppm 
(300 MHz, DMSO-d6): 9.30 (d, 1H, J = 1.8 Hz), 8.90 (s, 1H, 
sec. NH), 8.70–8.68 (dd, 1H, J = 1.8, J = 3.0 Hz, J = 4.8 Hz), 
8.53 (d, 1H, J = 5.7 Hz), 8.42 (d, 1H, J = 8.4 Hz), 7.55–7.50 
(q, 1H), 7.45 (d, 1H, J = 5.1 Hz), 7.31 (1H, d, J = 2.1 Hz), 
7.22 (1H, d, J = 8.4 Hz), 6.67–6.64 (dd, 1H, J = 2.3 Hz, 
J = 5.6 Hz, J = 2.1 Hz), 4.01 (s, 2H, -SCH2CO), 3.79–3.72 
(q, 2H, NCH2CH3), 2.25 (s, 3H, ArCH3), 1.19–1.15 (t, 

3H, NCH2CH3, J = 6.9 Hz, J = 7.2 Hz). 13C-NMR δ ppm 
(75 MHz, DMSO-d6): 172.24 (thiazolidin-4-one C=O), 
162.02, 161.43, 160.05, 155.17, 152.02, 148.78, 146.57, 
138.98, 134.78, 132.61, 131.38, 127.66, 124.31, 117.24, 
117.10, 108.29, 39.81 (thiazolidin-4-one NCH2CH3), 33.10 
(thiazolidin-4-one CH2), 18.17 (ArCH3), 12.83 (thiazo-
lidin-4-one NCH2CH3). LC/MS APCI+ m/z (%): 419.155 
([M+CH3]+, 100), 405.259 ([M+H]+, 29); APCI− m/z (%): 
403.275 ([M−H]−, 6), 97.034 (100). Elemental analysis cald 
for C21H20N6OS·1/2EtOH, C 61.81, H 5.42, N 19.66, S 7.50; 
found C 61.54, H 5.03, N 19.99, S 6.82.

General procedure for the synthesis of 5‑substituted 
benzylidene‑1,3‑thiazolidin‑4‑one derivatives (8–49)

Compounds 2–4 (1.0 mmol) were dissolved in methanolic 
solution of sodium methoxide (1.0 mmol). Corresponding 
aldehyde (1.1 mmol) was added into the reaction medium. 
The mixture was refluxed for 4–24 h. At the end of the reac-
tion, the product was cooled, washed with ice-cold water, 
and neutralized by 10% acetic acid. The precipitate was fil-
tered and the crude product was washed with hot ethanol to 
obtain pure compounds (8–49).

5‑(2‑Fluorobenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)pyrimi-
din‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 8  Yellow 
solid. Yield 80%, 0.385 g. TLC Rf: 0.49 (S1). HPLC tR (min): 
6.12 (CS1). M.p.: 183–186 °C. IR υmax (cm−1): 3352 (N–H 
str), 3031 (aromatic C–H str), 2945–2915 (aliphatic C–H 
str), 1708 (thiazolidin-4-one C=O str), 1627, 1581, 1519 
(C=N str, N–H bending, C=C str), 1415, 1400 (aliphatic 
C–H bending), 802 (aromatic C–H bending). 1H-NMR δ 
ppm (300 MHz, DMSO-d6): 9.30 (d, 1H, J = 1.5 Hz), 8.90 
(s, 1H, sec. NH), 8.70–8.68 (dd, 1H, J = 1.5 Hz, J = 3.2 Hz, 
J = 1.5 Hz), 8.53 (d, 1H, J = 5.3 Hz), 8.42 (d, 1H, J = 8.5 Hz), 
7.55–7.51 (q, 1H), 7.44 (d, 1H, J = 5.1 Hz), 7.28 (1H, d, 
J = 2.1  Hz), 7.21–7.19 (1H, d, J = 8.1  Hz), 6.68–6.64 
(dd, 1H, J = 2.1 Hz, J = 6.0 Hz, J = 2.3 Hz), 4.01 (s, 2H, 
SCH2CO), 3.16 (s, 3H, thiazolidin-4-one NCH3), 2.25 (s, 
3H, ArCH3). LC/MS APCI+ m/z (%): 390.927 ([M+H]+, 
100); APCI− m/z (%): 389.285 ([M−H]−, 100), 347.083 
(87), 318,059 (27). Elemental analysis cald for C20H18N6OS, 
C 64.14, H 4.39, N 16.62, S 6.34; found C 63.78, H 4.06, N 
16.68, S 6.28.

5‑(3‑Fluorobenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)pyrimi-
din‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 9  Yellow 
solid. Yield 47%, 0.226 g. TLC Rf: 0.57 (S1). HPLC tR (min): 
4.30 (CS1). M.p.: 254–256 °C. IR υmax (cm−1): 3437 (N–H 
str), 2978 (aliphatic C–H str), 1691 (thiazolidin-4-one C=O 
str), 1654, 1602, 1581, 1564, 1523 (C=N str, N–H bending, 
C=C str), 1446, 1415, 1402 (aliphatic C–H bending), 1224 
(C–N str), 1147 (C–F str), 794, 777, 700 (aromatic C–H 
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bending). 1H-NMR δ ppm (300 MHz, DMSO-d6): 12.80–
11.52 (bs, 3H-thiazolidin-4-one), 9.26 (s, 1H), 9.10 and 8.97 
(s and s, 1H, sec. NH), 8.69–8.68 (dd, 0.5H, J = 1.5 Hz, 
J = 4.8 Hz, J = 3.3 Hz), 8.65–8.63 (dd, 0.5H, J = 1.5 Hz, 
J = 4.8 Hz, J = 3.3 Hz), 8.54–8.50 (q, 1H), 8.47–8.39 (m, 
1H), 8.12 (s, 0.5H), 7.71 and 7.63 (s and s, 1H, =CH–Ar), 
7.61–7.22 (m, 8H), 6.81–6.79 (d, 0.5H, J = 7.5 Hz), 2.28 and 
2.26 (s, s, 3H, ArCH3). LC/MS APCI+ m/z (%): 482.892 
([M+H]+ (100), 376.084 (48), 278.108 (22); APCI− m/z 
(%): 481.136 ([M−H]−, 100). Elemental analysis cald for 
C26H19FN6OS, C 64.72, H 3.97, N 17.42, S 6.65; found C 
64.13, H 4.09, N 17.30, S 6.37.

5‑(4‑Fluorobenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)pyrimi-
din‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 10  Yel-
low solid. Yield 43%, 0.207 g. TLC Rf: 0.52 (S1). HPLC tR 
(min): 5.48 (CS2). M.p.: 240–243 °C. IR υmax (cm−1): 3452 
(N–H str), 3071 (aromatic C–H str), 2918 (aliphatic C–H str 
1653 (thiazolidin-4-one C=O str), 1577, 1539, 1516 (C=N 
str, N–H bending, C=C str), 1456, 1417 (aliphatic C–H 
bending), 1261 (C–N str), 1159 (C–F str), 887, 827, 788, 
771 (aromatic C–H bending). 1H-NMR δ ppm (300 MHz, 
DMSO-d6): 12.50–11.40 (bs, 3H-thiazolidin-4-one), 9.26 
(s, 1H), 9.09 and 8.98 (s, 1H, sec. NH), 8.69–8.67 (d, 0.5H, 
J = 3.3 Hz), 8.65–8.64 (d, 0.5H, J = 4.8 Hz), 8.54–8.51 (t, 
1H, J = 4.8 Hz, J = 4.2 Hz), 8.46–8.40 (m, 1H), 8.11 (s, 
0.5H), 7.46 and 7.44 (s and s, 1H, =CH–Ar), 7.61–7.22 
(m, 8H), 6.80–6.77 (d, 0,5H, J = 8.4 Hz), 3.83–3.77 (s, s, 
2H), 2.28 and 2.26 (s, s, 3H, ArCH3). LC/MS ESI+ m/z (%): 
505.192 ([M+Na]+, 100), 483.101 ([M+H]+, 77), ESI− m/z 
(%): 481.268 ([M−H]−, 7), 89.203 (100). Elemental analysis 
cald for C26H19FN6OS·MeOH, C 63.02, H 4.51, N 16.33, S 
6.32; found C 63.42, H 4.35, N 16.74, S 6.03.

5‑(2,6‑Difluorobenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)
pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
11  Yellow solid. Yield 41%, 0.205 g. TLC Rf: 0.47 (S1). 
HPLC tR (min): 1.56 (CS6). M.p.: 161–163 °C. IR υmax 
(cm−1): 3446 (N–H str), 2935 (aliphatic C–H str), 1639 (thi-
azolidin-4-one C=O str), 1604, 1573, 1523 (C=N str, N–H 
bending, C=C str), 1473, 1452, 1423, 1321 (aliphatic C–H 
bending, C–N str), 1091 (C–F str), 779, 748, 702 (aromatic 
C–H bending). 1H-NMR δ ppm (300 MHz, DMSO-d6): 9.20 
(s, 1H), 8.66 (d, 1H, J = 3.3 Hz), 8.50 (d, 1H, J = 5.1 Hz), 
8.34 (d, 1H, J = 8.1), 8.02 (s, 1H), 7.83 and 7.70 (s, 1H, 
=CH–Ar), 7.38–7.17 (m, CHCl3 and 3.5H), 6.90–6.82 (m, 
3H), 6.91–6.82 (m, 0.5H), 2.32 and 2.28 (s, s, 3H, ArCH3). 
Elemental analysis cald for C26H18F2N6OS·2H2O, C 58.20, 
H 4.13, N 15.66, S 5.98; found C 58.58, H 4.16, N 15.53, 
S 5.32.

5‑(2‑Chlorobenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)
pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 

12  Yellow solid. Yield 68%, 0.338 g. TLC Rf: 0.52 (S1). 
HPLC tR (min): 5.68 (CS1). M.p.: 240–242 °C. IR υmax 
(cm−1): 3444 (N–H str), 3051 (aromatic C–H str), 2978 (ali-
phatic C–H str), 1691 (thiazolidin-4-one C=O str), 1643, 
1573, 1552, 1533, 1514 (C=N str, N–H bending, C=C str), 
1471, 1454, 1435, 1427, 1394 (aliphatic C–H bending), 
1222 (C–N str), 1190 (C–Cl str), 881, 808, 756 (aromatic 
C–H bending). 1H-NMR δ ppm (300 MHz, DMSO-d6): 9.25 
(s, 1H), 9.08 and 8.95 (s, 1H, sec. NH), 8.68–8.67 (d, 0.5H, 
J = 3.5 Hz), 8.65–8.63 (d, 0.5H, J = 3.5 Hz), 8.54–8.52 (d, 
0.5H, J = 5.0 Hz), 8.49–8.48 (d, 0.5H, J = 5.0 Hz), 8.46–8.38 
(m, 1H), 8.12 (s, 0.5H), 7.88 and 7.78 (s, s, 1H, =CH–Ar), 
7.68–7.24 (m, 8H), 6.75–6.72 (d, 0.5H, J = 7.7 Hz), 2.27 and 
2.26 (s, 3H, ArCH3). 13C-NMR δ ppm (75 MHz, DMSO-d6): 
179.74 and 170.22, 161.71 and 161.55, 160.91 and 160.80, 
159.44 and 159.37, 151.33, 148.12 and 148.08, 138.59 and 
138.28, 134.39 and 134.03 (=CH–Ar), 134.28 and 134.22, 
132.10 and 132.01, 131.44, 131.16 and 131.06, 130.65, 
130.22 and 130.13, 128.64, 128.57, 128.00, 127.87, 125.11, 
124.40, 123.77 and 123.64, 117.33 and 117.16, 116.96 and 
116.68, 107.91, 17.70 and 17.63. LC/MS APCI+ m/z (%): 
500.991 ([M+2]+, 62), 498.938 ([M+H]+, 98), 463.087 
(54), 376.07 (100); APCI− m/z (%): 497.103 ([M−H]−, 
100), 461.311 (54), 139.17 (47). Elemental analysis cald 
for C26H19ClN6OS·1/2H2O, C 61.47, H 3.97, N 16.54, S 
6.31; found C 61.77, H 4.05, N 16.77, S 6.43.

5‑(4‑Chlorobenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)pyrimi-
din‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 13  Yel-
low solid. Yield 13%, 0.065 g. TLC Rf: 0.54 (S1). HPLC 
tR (min): 2.08 (CS3). M.p.: 227–231 °C. IR υmax (cm−1): 
3443 (N–H str), 1691 (thiazolidin-4-one C=O str), 1637, 
1612, 1571, 1564, 1523, 1518 (C=N str, N–H bending, C=C 
str), 1454, 1445, 1415, 1398 (aliphatic C–H bending), 1089 
(C–Cl str), 783, 700 (aromatic C–H bending). 1H-NMR δ 
ppm (300 MHz, DMSO-d6): 12.09 (bs, 3H-thiazolidin-4-one 
0.6H), 9.26 (s, 1H), 9.02 and 8.97 (s, s 1H, sec. NH), 8.69–
8.65 (dd, 1H, J = 3.3 Hz, J = 6.6 Hz, J = 1.5 Hz), 8.54–8.51 
(t, 1H, J = 4.5 Hz, J = 5.1 Hz), 8.44–8.40 (m, 1H), 8.09 (s, 
0.4H), 7.69–7.25 (m, 9H), 6.79–6.77 (d, 0.6H, J = 7.8 Hz), 
2.28 and 2.25 (s, s, 3H, ArCH3). LC/MS APCI+ m/z (%): 
521.127 ([M+Na]+, 100), 523.066 ([M+Na+2]+, 40), 
499.099 ([M+H]+, 37), 343.18 (37), 303.133 (40), 259.180 
(43), 131.173 (83); APCI− m/z (%): 497.068 ([M−H]−, 
7), 181.15 (34), 155.209 (41), 97.039 (46), 59.118 (100). 
Elemental analysis cald for C26H19ClN6OS·2H2O, C 58.37, 
H 4.33, N 15.71, S 5.99; found C 58.94, H 3.98, N 16.25, 
S 5.58.

5‑(4‑Bromobenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)pyrimi-
din‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 14  Yel-
low solid. Yield 59%, 0.320 g. TLC Rf: 0.55 (S1). HPLC 
tR (min): 3.28 (CS4). M.p.: 198–200 °C. IR υmax (cm−1): 
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3446 (N–H str), 1649 (thiazolidin-4-one C=O str), 1587, 
1548, 1535 (C=N str, N–H bending, C=C str), 1415 (ali-
phatic C–H bending), 1003 (C–Br str), 812–798 (aromatic 
C–H bending). 1H-NMR δ ppm (300 MHz, DMSO-d6): 
9.25–9.23 (dd, 1H, J = 1.5 Hz, J = 5.5 Hz, J = 1.8 Hz), 8.83 
(s, 1H, sec. NH), 8.68–8.67 (dd, 0.5H, J = 1.5 Hz, J = 4.8 Hz, 
J = 1.5 Hz), 8.66–8.63 (dd, 0.5 H, J = 1.5 Hz, J = 4.7 Hz, 
J = 1.8 Hz), 8.50 (d, 1H, J = 5.1 Hz), 8.48–8.42 (m, 1H), 
7.64–7.35 (m, 6.5H), 7.18–7.03 (m, 3H), 6.75–6.72 (dd, 
0,5H, J = 2.1 Hz, J = 6.0 Hz, J = 8.1 Hz), 2.23 and 2.17 (s, 
s, 3H, ArCH3). LC/MS ESI+ m/z (%): 564.962 ([M+Na]+, 
100), 347.165 (47); ESI− m/z (%): 541.276 ([M−H]−, 100). 
Elemental analysis cald for C26H19BrN6OS·MeOH, C 63.02, 
H 4.51, N 16.33, S 6.23; found C 63.42, H 4.35, N 16.74, 
S 6.03.

5‑(4‑Trifluoromethylbenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑3
‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
15  Yellow solid. Yield 71%, 0.377 g. TLC Rf: 0.57 (S1). 
HPLC tR (min): 11.94 (CS1). M.p.: 257–262 °C (dec.). IR 
υmax (cm−1): 3441 (N–H str), 3055 (aromatic C–H str), 1699 
(thiazolidin-4-one C=O str), 1639, 1612, 1583, 1537, 1514 
(C=N str, N–H bending, C=C str), 1456, 1438 (aliphatic 
C–H bending), 1224 (C–N str), 1114 (C–F str), 810, 783, 
752 (aromatic C–H bending). 1H-NMR δ ppm (300 MHz, 
DMSO-d6): 13.05–11.20 (bs, 3H-thiazolidin-4-one), 9.26 (s, 
1H), 9.10 and 8.97 (s, 1H, sec. NH), 8.68 (d, 1H, J = 3.4 Hz), 
8.63 (d, 1H, J = 3.4  Hz), 8.55–8.51 (t, 1H, J = 5.1  Hz, 
J = 9.1 Hz, J = 6.0 Hz), 8.47–8.39 (m, 1H), 8.12 (s, 0.5H), 
7.93–7.71 (m, 5H), 7.53–7.26 (m, 4H), 6.81–6.79 (d, 0.5H, 
J = 7.7 Hz), 2.29 and 2.26 (s, s, 3H, ArCH3). LC/MS APCI+ 
m/z (%): 532.659 ([M+H]+, 100), 338.199 (17); APCI− m/z 
(%): 531.087 ([M−H]−, 100). Elemental analysis cald for 
C27H19F3N6OS·3/2H2O, C 57.95, H 3.96, N 15.02, S 5.73; 
found C 58.17, H 3.07, N 15.00, S 5.82.

5‑(4‑Trifluoromethoxybenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑3
‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
16  Yellow-orange solid. Yield 47%, 0.260 g. TLC Rf: 0.57 
(S1). HPLC tR (min): 4.30 (CS1). M.p.: 250–256 °C (dec.). 
IR υmax (cm−1): 3444 (N–H str), 3063 (aromatic C–H str), 
2978 (aliphatic C–H str), 1697 (thiazolidin-4-one C=O 
str), 1641, 1583, 1541, 1516 (=N str, N–H bending, C=C 
str), 1458, 1438, 1400 (aliphatic C–H bending), 1249 (C–O 
str), 1224 (C–N str), 1157 (C–F str), 810, 783, 702 (aro-
matic C–H bending). 1H-NMR δ ppm (300 MHz, DMSO-
d6): 12.90–11.40 (bs, 3H-thiazolidin-4-one), 9.26 (d, 1H, 
J = 1.8 Hz), 9.10 and 8.98 (s, 1H, sec. NH), 8.69–8.75 
(dd, 0.5 H, J = 1.5 Hz, J = 4.8 Hz, J = 1.5 Hz), 8.70–8.62 
(dd, 0.5 H, J = 1.5 Hz, J = 4.7 Hz, J = 1.8 Hz), 8.55–8.50 
(t, 1H, J = 5.2 Hz, J = 11.4 Hz, J = 5.2 Hz), 8.47–8.39 (m, 
1H), 8.12 (s, 0.5H), 7.78–7.25 (m, 9H), 6.75–6.72 (d, 0.5 H, 
J = 5.4 Hz), 2.28 and 2.25 (s, s, 3H, ArCH3). LC/MS APCI+ 

m/z (%): 548.663 (M+, 100); APCI− m/z (%): 547,095 
([M−H]−, 100). Elemental analysis cald for C27H19F3N6O2S, 
C 59.12, H 3.49, N 15.32, S 5.85; found C 58.52, H 3.72, N 
15.09, S 5.80.

5‑(2‑Hydroxybenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)
pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
17  Yellow solid. Yield 27%, 0.130 g. TLC Rf: 0.49 (S1). 
HPLC tR (min): 2.61 (CS2). M.p.: 217–218 °C (dec.). IR 
υmax (cm−1): 3450–3100 (O–H str, N–H str), 3066 (aro-
matic C–H str), 2974 (aliphatic C–H str), 1680 (thiazoli-
din-4-one C=O str), 1573, 1525 (C=N str, N–H bending, 
C=C str), 1444, 1417, 1402 (aliphatic C–H bending, C–N 
str), 1193 (C–O str), 800, 758 (aromatic C–H bending). 
1H-NMR δ ppm (300 MHz, DMSO-d6): 9.26–6.77 (14H, 
ArH), 2.35–2.15 (3H, ArCH3). Elemental analysis cald for 
C26H20N6O2S·3/2EtOH, C 63.37, H 5.32, N 15.29, S 5.83; 
found C 62.74, H 4.56, N 14.40, S 3.83.

5‑(2‑Methoxybenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)
pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
18  Yellow-orange solid. Yield 29%, 0.145  g.  TLC Rf: 
0.49 (S1). HPLC tR (min): 1.56 (CS5). M.p.: 228–230 °C. 
IR υmax (cm−1): 3443 (N–H str), 2902 (aliphatic C–H str), 
1687 (thiazolidin-4-one C=O str), 1645, 1581, 1521 (C=N 
str, N–H bending, C=C str), 1479, 1442, 1415 (aliphatic 
C–H bending), 1330 (C–N str), 1209 (C–O str), 833, 798, 
723 (aromatic C–H bending). 1H-NMR δ ppm (300 MHz, 
D2O Exchange, DMSO-d6): 9.25 (s, 1H), 8.69–8.65–6.80 
(m, 14H), 3.86 (D2O), 3.90–3.86 (s, 3H, OCH3), 2.29 
and 2.27 (s, 3H, ArCH3). Elemental analysis cald for 
C27H22N6O2S·EtOH, C 64.97, H 4.87, N 16.24, S 6.19; 
found C 64.86, H 4.60, N 16.47, S 6.14.

5‑(3‑Methoxybenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)
pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
19  Yellow-orange solid. Yield 56%, 0.275  g.  TLC Rf: 
0.49 (S1). HPLC tR (min): 1.69 (CS3). M.p.: 160–161 °C. 
IR υmax (cm−1): 3453 (N–H str), 2962 (aliphatic C–H str), 
1691 (thiazolidin-4-one C=O str), 1649, 1606, 1564, 1552, 
1523 (C=N str, N–H bending, C=C str), 1446, 1415 (ali-
phatic C–H bending), 1398 (C–N str), 1147 (C–F str), 877, 
785, 763, 752 (aromatic C–H bending). 1H-NMR δ ppm 
(300 MHz, CDCl3): 9.24 and 9.20 (s, s, 1H), 8.63–8.33 (m, 
3H), 8.00 (s, 1H), 7.77–6.57 (m, CHCl3 and 9H), 3.87–3.75 
(m, 3H, OCH3), 2.37 and 2.33 (s, s, 3H, ArCH3). Elemen-
tal analysis cald for C27H22N6O2S·H2O·3/2H2O, C 62.17, 
H 5.41, N 15.04, S 6.15; found C 62.15, H 4.95, N 15.84, 
S 5.66.

5‑(4‑Methoxybenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)
pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
20  Yellow-orange solid. Yield 61%, 0.300 g. TLC Rf: 0.49 
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(S1). HPLC tR (min): 1.47 (CS6). M.p.: 235–238 °C. IR υmax 
(cm−1): 3450 (N–H str), 3012 (aromatic C–H str), 2972 (ali-
phatic C–H str), 1710 (thiazolidin-4-one C=O str), 1649, 
1600, 1573, 1537, 1514 (C=N str, N–H bending, C=C str), 
1454, 1417, 1402, 1336 (aliphatic C–H bending, C–N str), 
1180, 1157 (C–O str), 825, 790, 769, 700 (aromatic C–H 
bending). 1H-NMR δ ppm (300 MHz, DMSO-d6): 12.5–11.5 
(bs), 9.26 (d, 1H, J = 1.5 Hz), 9.08 and 8.96 (s, and s, 1H, 
sec. NH), 8.68–8.64 (m, 1H), 8.52 (d, 1H, J = 5,1 Hz), 8.46–
8.41 (m, 1H), 8.11 (s, 0.4H), 7.67–7.38 (m, 6H), 7.31–7.25 
(t, 1H, J = 7.5 Hz, J = 7.8 Hz), 7.13 (d, 1H, J = 8.4 Hz), 7.03 
(d, 1H, J = 8.7 Hz), 6.80 (d, 1H, J = 7.2 Hz), 6.77 (d, 0.6H, 
J = 7.2 Hz), 3.83–3.78 (s, s, 3H, OCH3), 2.28 and 2.25 (s, 
s, 3H, ArCH3). Elemental analysis cald for C27H22N6O2S, 
C 65.57, H 4.48, N 16.99, S 6.47; found C 65.12, H 4.53, N 
16.82, S 5.77.

5‑(N,N‑Dimethylaminobenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑
3‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
21  Yellow solid. Yield 43%, 0.220 g. TLC Rf: 0.45 (S1). 
HPLC tR (min): 3.28 (CS3). M.p.: 246–251 °C. IR υmax 
(cm−1): 3446 (N–H str), 2899 (aliphatic C–H str), 1649 (thi-
azolidin-4-one C=O str), 1620, 1573, 1548 (C=N str, N–H 
bending, C=C str), 1473, 1444, 1413 (aliphatic C–H bend-
ing), 1338 (C–N str), 1195 (C–Cl str), 802, 754, 705 (aro-
matic C–H bending). 1H-NMR δ ppm (300 MHz, DMSO-
d6): 12.12 and 11.51 (bs and bs 0.9 H, 3H-thiazolidin-4-one), 
9.27 (s, 1H, sec. NH), 9.08 and 8.97 (s, s 1H), 8.66 (s, 1H), 
8.53–8.52 (d, 1H, J = 5.1 Hz), 8.44–8.40 (m, 1H), 8.11 (s, 
0.5H), 7.60–7.26 (m, 7H), 6.85–6.72 (m, 2.5H), 3.01 and 
3.95 (s and s, 6H), 2.28 and 2.26 (s and s, 3H, ArCH3). LC/
MS APCI+ m/z (%): 482.892 [M+H]+, 100), 376.084 (48), 
278.108 (22); APCI− m/z (%): 481.136 ([M−H]−, 100). 
Elemental analysis cald for C28H25N7OS·3/2H2O, C 62.90, 
H 5.28, N 18.34, S 6.00; found C 62.65, H 5.00, N 18.56, 
S 5.63.

5‑(2‑Fluorobenzylidene)‑3‑methyl‑[(4‑methyl‑3‑{[4‑(pyridin‑3
‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
22  Yellow solid. Yield 65%, 0.322 g. TLC Rf: 0.56 (S1). 
HPLC tR (min): 13.47 (CS6). M.p.: 210–213 °C. IR υmax 
(cm−1): 3410 (N–H str), 3030 (aromatic C–H str), 2912 
(aliphatic C–H str), 2858 (aliphatic C–H str sim.), 1703 
(thiazolidin-4-one C=O str), 1631, 1604, 1583, 1556, 1516 
(C=N str, N–H bending, C=C str), 1435, 1411, 1398, 1363 
(aliphatic C–H bending), 1232 (C–N str), 1118 (C–F str,), 
825, 806, 752, 700 (aromatic C–H bending). 1H-NMR δ 
ppm (300  MHz, DMSO-d6): 9.27 (d, 1H, J = 1.5  Hz), 
8.95 (s, 1H, sec. NH), 8.65–8.63 (dd, 1H, J = 1.5  Hz, 
J = 3.2 Hz, J = 1.6 Hz), 8.51 (d, 1H, J = 5.0 Hz), 8.42 (d, 
1H, J = 8.5 Hz), 7.75 (s, 1H, =CH–Ar), 7.52–7.26 (m, 6H), 
7.37 (d, J = 2.7 Hz, 1H), 7.28 (d, 1H, J = 8.1 Hz), 6.76–6.73 
(dd, 1H, J = 2.1 Hz, J = 5.8 Hz, J = 2.1 Hz), 3.35 (s, 3H, 

thiazolidin-4-one NCH3), 2.28 (s, 3H, ArCH3). 13C-NMR 
δ ppm (75 MHz, DMSO-d6): 166.15 (thiazolidin-4-one 
C=O), 162.11, 161.42, 159.94, 159.57, 151.93, 150.34, 
148.68, 146.17, 139.16, 134.79 (=CH–Ar), 132.73, 132.58, 
131.66, 129.20, 128.53, 125.83, 125.00, 124.25, 121.80, 
121.28, 117.45, 117.18, 116.76, 116.55, 108.42, 30.24 (thi-
azolidin-4-one NCH3), 18.22 (ArCH3). LC/MS APCI+ m/z 
(%): 496.757 (M+, 100), 498.002 ([M+H]+), 338.187 (38); 
LC/MS APCI− m/z (%): 495.228 ([M−H]−, 100), 219.358 
(26). Elemental analysis cald for C27H21FN6OS·1/2MeOH, 
C 64.44, H 4.52, N 16.40, S 6.26; found C 64.60, H 4.44, N 
16.64, S 6.43.

5‑(3‑Fluorobenzylidene)‑3‑methyl‑[(4‑methyl‑3‑{[4‑(pyridin‑3
‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
23  Yellow solid. Yield 56%, 0.277 g. TLC Rf: 0.60 (S1). 
HPLC tR (min): 12.49 (CS6). M.p.: 184–185 °C. IR υmax 
(cm−1): 3446 (N–H str), 3010 (aromatic C–H str), 1720 
(thiazolidin-4-one C=O str), 1641, 1577, 1533 (C=N str, 
N–H bending, C=C str), 1415 (aliphatic C–H bending), 
1120 (C–F str), 792–783 (aromatic C–H e.b). 1H-NMR 
δ ppm (300 MHz, DMSO-d6): 9.26 (d, 1H, J = 1.5 Hz), 
8.96 (s, 1H, sec. NH), 8.64–8.62 (dd, 1H, J = 1.5  Hz, 
J = 3.0 Hz, J = 1.5 Hz), 8.51 (d, 1H, J = 5.27 Hz), 8.41 (d, 
1H, J = 7.9 Hz), 7.75 (s, 1H, =CH–Ar), 7.54–7.23 (m, 8H), 
6.77 (d, 1H, J = 5.6 Hz), 3.37 (s, 3H, thiazolidin-4-one 
NCH3), 2.29 (s, 3H, ArCH3). 13C-NMR δ ppm (75 MHz, 
DMSO-d6): 165.66 (thiazolidin-4-one C=O), 163.77, 
161.61, 160.87, 160.53, 159.33 151.33, 149.71, 148.09, 
145.59, 138.58, 135.77, 135.66, 134.22 (=CH–Ar), 132.03, 
131.15, 128.40, 127.92, 125.20, 125.16, 123.65, 123.29, 
116.82, 116.68, 116.27, 107.86, 29.62 (thiazolidin-4-one 
NCH3), 17.62 (ArCH3). LC/MS APCI+ m/z (%): 498.081 
([M+H]+, 100), 496.897 (M + , 70). LC/MS APCI− m/z (%): 
495.312 ([M−H]−, 100), 347.148 (24). Elemental analysis 
cald for C27H21FN6OS, C 65.31, H 4.26, N 16.92, S 6.46; 
found C 65.20, H 4.26, N 16.89, S 6.29.

5‑(4‑Fluorobenzylidene)‑3‑methyl‑[(4‑methyl‑3‑{[4‑(pyridin‑3
‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
24  Yellow solid. Yield 65%, 0.320 g. TLC Rf: 0.60 (S1). 
HPLC tR (min): 14.17 (CS6). M.p.: 217–219 °C. IR υmax 
(cm−1): 3410 (N–H str), 3053 (aromatic C–H str), 2912 (ali-
phatic C–H str); 1699 (thiazolidin-4-one C=O str), 1629, 
1581, 1558, 1519,1508 (C=N str, N–H bending, C=C str), 
1437, 1402, 1363 (aliphatic C–H bending), 1116 (C–F 
str), 802 (aromatic C–H e.b). 1H-NMR δ ppm (300 MHz, 
DMSO-d6): 9.25 (d, 1H, J = 2.0 Hz), 8.94 (s, 1H, sec. NH), 
8.63–8.61 (dd, 1H, J = 1.6  Hz, J = 3.2  Hz, J = 1.5  Hz), 
8.51 (d, 1H, J = 5.27 Hz), 8.43–8.39 (d, 1H, J = 7.9 Hz), 
7.74 (s, 1H, =CH–Ar), 7.36 (d, 1H, J = 2.0 Hz), 7.60–
7.25 (m, 8H), 6.76–6.72 (dd, 1H, J = 2.0 Hz, J = 5.9 Hz, 
J = 2.1 Hz), 3.33 (s, 3H, thiazolidin-4-one NCH3), 2.28 (s, 
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3H, ArCH3).13C-NMR δ ppm (75 MHz, DMSO-d6): 166.43 
(thiazolidin-4-one C=O), 162.14, 161.79, 161.42, 159.95, 
151.93, 150.58, 148.68, 146.30, 139.16, 134.81 (=CH–Ar), 
132.85, 132.66, 132.59, 131.65, 130.59, 129.33, 128.42, 
124.25, 121.86, 117.45, 117.13, 117.03, 116.81, 108.43, 
29.66 (thiazolidin-4-one NCH3), 18.22 (ArCH3). LC/MS 
APCI+ m/z (%): 519.242 ([M+Na]+, 100); LC/MS APCI− 
m/z (%): 495.398 ([M−H]−, 92), 219, 369 (71), 78.972 
(100). Elemental analysis cald for C27H21FN6OS·H2O, C 
63.02, H 4.51, N 16.33, S 6.24; found C 63.06, H 4.37, N 
16.26, S 6.24.

5‑(2,6‑Difluorobenzylidene)‑3‑methyl‑[(4‑methyl‑3‑{[4‑(pyr
idin‑3‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazoli-
din‑4‑one 25  Yellow solid. Yield 64%, 0.330 g. TLC Rf: 
0.55 (S1). HPLC tR (min): 11.94 (CS6). M.p.: 172–174 °C. 
IR υmax (cm−1): 3429 (N–H str), 3041, 3022 (aromatic C–H 
str), 2939 (aliphatic C–H str), 1710 (thiazolidin-4-one C=O 
str), 1629, 1602, 1583, 1519 (C=N str, N–H bending, C=C 
g.b), 1452, 1437, 1415, 1398, 1369 (aliphatic C–H bending), 
1257 (C–N str), 1114 (C–F str), 877, 792, 740 (aromatic 
C–H bending). 1H-NMR δ ppm (300 MHz, DMSO-d6): 
9.26 (d, 1H, J = 1.5 Hz), 8.92 (s, 1H, sec. NH), 8.66–8.64 
(dd, 1H, J = 1.5 Hz, J = 3.2 Hz, J = 1.6 Hz), 8.48 (d, 1H, 
J = 5.1 Hz), 8.40 (d, 1H, J = 8.5 Hz), 7.60 (s, 1H, =CH–Ar), 
7.57–7.43 (m,3H), 7.32 (d, 1H, J = 2.1 Hz), 7.25–7.16 (m, 
3H), 6.72–6.69 (dd, J = 2.1 Hz, 1H, J = 5.8 Hz, J = 8.1 Hz), 
3.34 (s, 3H, thiazolidin-4-one NCH3), 2.26 (s, 3H, ArCH3). 
13C-NMR δ ppm (75 MHz, DMSO-d6): 166.59 (thiazoli-
din-4-one C=O), 162.11, 161.40, 161.05, 159.91, 158.56, 
151.91, 150.31, 148.67, 146.19, 139.10, 134.76 (=CH–Ar), 
133.14, 132.55, 131.55, 129.54, 128.52, 124.20, 117.83, 
117.40, 117.18, 112.89, 112.79, 111.39, 108.36, 30.27 
(thiazolidin-4-one NCH3), 18.17 (ArCH3). LC/MS APCI+ 
m/z (%): 515.893 ([M+H]+, 100), 514.655 (M+, 90), APCI− 
m/z (%): 513.128 ([M−H]−, 100), 219.338 (17). Elemental 
analysis cald for C27H20F2N6OS·H2O, C 60.89, H 4.16, N 
15.78, S 6.02; found C 60.83, H 4.05, N 15.80, S 6.17.

5‑(2‑Chlorobenzylidene)‑3‑methyl‑[(4‑methyl‑3‑{[4‑(pyrid
in‑3‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazoli-
din‑4‑one 26  Yellow solid. Yield 55%, 0.282 g. TLC Rf: 
0.56 (S1). HPLC tR (min): 4.08 (CS1). M.p.: 205-210 °C. 
IR υmax (cm−1): 3443 (N–H str), 3070 (aromatic C–H str), 
2976 (aliphatic C–H str), 1708 (thiazolidin-4-one C=O str), 
1663, 1600, 1583, 1518 (C=N str, N–H bending, C=C str), 
1437, 1417, 1398, 1365 (aliphatic C–H bending), 1259 (C–N 
str), 1105 (C–Cl str), 881, 798, 759, 702 (aromatic C–H 
bending). 1H-NMR δ ppm (300 MHz, DMSO-d6): 9.26 (d, 
1H, J = 1.7 Hz), 8.95 (s, 1H, sec. NH), 8.66–8.63 (dd, 1H, 
J = 1.5 Hz, J = 3.2 Hz, J = 1.7 Hz), 8.50 (d, 1H, J = 5.0 Hz), 
8.41 (d, 1H, J = 8.5 Hz), 7.78 (s, 1H, =CH–Ar), 7.62–7.60 
(m, 1H),7.49–7.38 (m, 5H), 7.35 (d, 1H, J = 2.0 Hz), 7.27 (d, 

1H, J = 8.3 Hz), 6.75–6.72 (dd, 1H, J = 2.3 Hz, J = 5.6 Hz, 
J = 2.1 Hz), 3.34 (s, 3H, thiazolidin-4-one NCH3), 2.27 
(s, 3H, ArCH3). 13C-NMR δ ppm (75 MHz, DMSO-d6): 
166.05 (thiazolidin-4-one C=O), 162.13, 162.02, 161.41, 
159.94, 151.93, 150.38, 148.69, 146.16, 139.15, 134.79 
(=CH–Ar), 134.59, 132.81, 132.59, 131.96, 131.87, 130.77, 
129.33, 128.55, 125.95, 125.50, 124.23, 117.44, 117.17, 
108.43, 30.23 (thiazolidin-4-one NCH3), 18.21 (ArCH3). 
LC/MS ESI+ m/z (%): 513.125 ([M+H]+, 34), 515.129 
([M+H+2]+, 29), 325.376 (69), 288.347 (100). LC/MS 
ESI− m/z (%): 78.95 (100). Elemental analysis cald for 
C27H21ClN6OS·3/4H2O, C 61.59, H 4.31, N 15.96, S 6.09; 
found C 61.98, H 4.28, N 16.06, S 6.08.

5‑(4‑Chlorobenzylidene)‑[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)pyrimi-
din‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 27  Yel-
low solid. Yield 63%, 0.323 g. TLC Rf: 0.60 (S1). HPLC tR 
(min): 3.44 (CS4). M.p.: 190–193 °C. IR υmax (cm−1): 3435 
(N–H str), 3093, 3049 (aromatic C–H str), 1712 (thiazoli-
din-4-one C=O str), 1643, 1606, 1575, 1548, 1523 (C=N 
str, N–H bending, C=C str), 1413 (aliphatic C–H bending), 
1093 (C–Cl str), 798 (aromatic C–H e.b). 1H-NMR δ ppm 
(300 MHz, DMSO-d6): 9.25 (d, 1H, J = 2.0 Hz), 8.94 (s, 
1H, sec. NH), 8.63–8.61 (dd, 1H, J = 1.5 Hz, J = 3.2 Hz, 
J = 1.7 Hz), 8.50 (d, 1H, J = 5.3 Hz), 8.41 (d, 1H, J = 8.1 Hz), 
7.71 (s, 1H, =CH–Ar), 7.53–7.41 (m, 6H), 7.36 (d, 1H, 
J = 2.1 Hz), 7.27 (d, 1H, J = 8.1 Hz), 6.75–6.72 (dd, 1H, 
J = 2.3 Hz, J = 5.8 Hz, J = 2.1 Hz), 3.33 (s, 3H, thiazolidin-
4-one NCH3), 2.28 (s, 3H, ArCH3). Elemental analysis cald 
for C27H21ClN6OS, C 63.21, H 4.13, N 16.38, S 6.25; found 
C 64.24, H 4.42, N 16.72, S 6.55.

5‑(4‑Bromobenzylidene)‑3‑methyl‑[(4‑methyl‑3‑{[4‑(pyridin‑3
‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
28  Yellow solid. Yield 58%, 0.325 g. TLC Rf: 0.58 (S1). 
HPLC tR (min): 14.17 (CS6). M.p.: 205–207 °C. IR υmax 
(cm−1): 3433 (N–H str), 3095(aromatic C–H str), 1714 
(thiazolidin-4-one C=O str), 1641 1604, 1575, 1548, 1523 
(C=N str, N–H e.b), (C=C str), 1413 (aliphatic C–H bend-
ing), 1003 (C–Br str), 798 (aromatic C–H e.b). 1H-NMR δ 
ppm (300 MHz, DMSO-d6): 9.25 (d, 1H, J = 1.8 Hz), 8.94 
(s, 1H, sec. NH), 8.63–8.61 (dd, 1H, J = 1.5 Hz, J = 3.2 Hz, 
J = 1.7 Hz), 8.51 (d, 1H, J = 5.3 Hz), 8.41 (d, 1H, J = 8.1 Hz), 
7.69 (s, 1H, =CH–Ar), 7.65 (d, 2H, J = 8.4 Hz), 7.45–7.42 
(m, 3H), 7.36 (d, 1H, J = 2.1 Hz), 7.28 (d, 1H, J = 8.1 Hz), 
6.75–6.72 (dd, 1H, J = 2.1 Hz, 1H, J = 5.8 Hz, J = 2.3 Hz), 
3.33 (s, 3H, thiazolidin-4-one NCH3), 2.28 (s, 3H, ArCH3). 
13C-NMR δ ppm (75 MHz, DMSO-d6): 166.37 (thiazoli-
din-4-one C=O), 162.14, 161.42, 159.96, 151.96, 150.43, 
148.69, 146.26, 139.19, 134.80 (=CH–Ar), 133.11, 132.86, 
132.59, 132.74, 132.56, 132.10, 131.66, 129.17, 128.43, 
124.25, 123.86, 123.01, 117.45, 117.06, 108.43, 30.20 (thi-
azolidin-4-one NCH3), 18.23 (ArCH3). LC/MS ESI+ m/z 
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(%): 580.097 ([M+Na]+, 100); ESI− m/z (%): 75.12 (100). 
Elemental analysis cald for C27H21BrN6OS·H2O, C 56.35, 
H 4.03, N 14.60, S 5.57; found C 56.92, H 3.86, N 14.80, 
S 5.74.

5 ‑ ( 4 ‑ T r i f l u o r o m e t h y l b e n z y l i d e n e ) ‑ 3 ‑ m e t h y l ‑
[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)pyrimidin‑2‑yl]amino}phenyl)
imino]‑1,3‑thiazolidin‑4‑one 29  Yellow solid. Yield 40%, 
0.218 g. TLC Rf: 0.58(S1). HPLC tR (min): 4.49 (CS4). 
M.p.: 196–200 °C. IR υmax (cm−1): 3435 (N–H str), 3030 
(aromatic C–H str), 2945 (aliphatic C–H str), 1703 (thia-
zolidin-4-one C=O str), 1639, 1602, 1579, 1566, 1554, 
1523 (C=N str N–H bending, C=C str), 1448, 1415, 1400, 
1319 (aliphatic C–H bending), 1263 (C–N str), 1114 
(C–F str), 794, 702 (aromatic C–H bending). 1H-NMR 
δ ppm (300 MHz, DMSO-d6): 9.27 (d, 1H, J = 1.5 Hz), 
8.95 (s, 1H, sec. NH), 8.65–8.63 (dd, 1H, J = 1.5  Hz, 
J = 3.2 Hz, J = 1.6 Hz), 8.51 (d, 1H, J = 5.0 Hz), 8.42 (d, 
1H, J = 8.5 Hz), 7.75 (s, 1H, =CH–Ar), 7.52–7.26 (m, 6H), 
7.37 (d, 1H, J = 2.7 Hz), 7.29 (d, 1H, J = 8.1 Hz), 6.76–6.73 
(dd, J = 2.1 Hz, 1H, J = 5.8 Hz, J = 8.1 Hz), 3.35 (s, 3H, 
thiazolidin-4-one NCH3), 2.28 (s, 3H, ArCH3). 13C-NMR 
δ ppm (75 MHz, DMSO-d6): 166.20 (thiazolidin-4-one 
C=O), 162.15, 162.42, 159.94, 151.93, 150.25, 148.68, 
146.19, 139.20, 137.88, 134.77 (=CH–Ar), 132.58, 
131.66, 130.74, 129.86, 129.54, 128.56, 128.49, 126.52, 
125.75, 125.21, 124.20, 123.03, 117.42, 117.02, 108.43, 
30.24 (thiazolidin-4-one NCH3), 18.23 (ArCH3). LC/MS 
APCI+ m/z (%): 547.860 ([M+H]+, 100), 546.547 (M+, 
94), 514.953 (21), 338.200 (22); APCI− m/z (%): 545.146 
([M−H]−, 100), 219.351 (11). Elemental analysis cald for 
C28H21F3N6OS·H2O, C 61.53, H 3.87, N 15.38, S 5.87; 
found C 61.26, H 3.90, N 15.27, S 5.93.

5 ‑ ( 4 ‑ T r i f l u o r o m e t h o x y b e n z y l i d e n e ) ‑ 3 ‑ m e t h y l ‑
[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)pyrimidin‑2‑yl]amino}phenyl)
imino]‑1,3‑thiazolidin‑4‑one 30  Yellow solid. Yield 53%, 
0.296 g. TLC Rf: 0.58 (S1). HPLC tR (min): 4.59 (CS1). 
M.p.: 184–187 °C. IR υmax (cm−1): 3446 (N–H str), 3038 
(aromatic C–H str), 1713 (thiazolidin-4-one C=O str), 1644, 
1581, 1567, 1556, 1529 (C=N str, N–H bending, C=C str), 
1412 (aliphatic C–H bending), 1153 (C–F str), 794 (aro-
matic C–H e.b). 1H-NMR δ ppm (300 MHz, DMSO-d6): 
9.27 (d, 1H, J = 1.5 Hz), 8.96 (s, 1H, sec. NH), 8.64–8.62 
(dd, 1H, J = 1.7 Hz, J = 3.2 Hz, J = 1.7 Hz), 8.52 (d, 1H, 
J = 5.1 Hz), 8.42 (d, 1H, J = 8.5 Hz), 7.78 (s, 1H, =CH–
Ar), 7.68–7.64 (m, 2H), 7.47–7.42 (m, 4H), 7.37 (d, 1H, 
J = 2.0 Hz), 7.28 (d, 1H, J = 8.3 Hz), 6.76–6.73 (dd, 1H, 
J = 2.3 Hz, J = 5.8 Hz, J = 2.1 Hz), 3.35 (s, 3H, thiazolidin-
4-one NCH3), 2.29 (s, 3H, ArCH3). LC/MS APCI+ m/z (%): 
585.155 ([M+Na]+, 23), 563.111 ([M+H]+, 100), 360.380 
(53); APCI− m/z (%): 97.036 (100). Elemental analysis cald 

for C28H21F3N6O2S, C 59.78, H 3.76, N 14.94, S 5.70; found 
C 59.49, H 3.89, N 14.84, S 5.62.

5‑(2‑Hydroxybenzylidene)‑3‑methyl‑[(4‑methyl‑3‑{[4‑(pyri
din‑3‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazoli-
din‑4‑one 31  Yellow solid. Yield 32%, 0.158 g. TLC Rf: 
0.53 (S1). HPLC tR (min): 1.72 (CS7). M.p.: 195–198 °C. 
IR υmax (cm−1): 3387 (O–H str, N–H str), 3041 (aromatic 
C–H str), 2951 (aliphatic C–H str), 1716 (thiazolidin-4-one 
C=O str), 1633, 1593, 1560, 1527 (C=N str, N–H bending, 
C=C str), 1444, 1415 (aliphatic C–H bending, C–N str), 
1122 (C–O str), 896, 758, 704 (aromatic C–H bending). 1H-
NMR δ ppm (300 MHz, DMSO-d6): 10.47 (s, 0.7 H), 9.27 
(d, 1H, J = 1.5 Hz), 8.98 (s, sec. NH), 8.66–8.64 (dd, 1H, 
J = 1.8 Hz, J = 3.0 Hz, J = 1.5 Hz), 8.51 (d, 1H, J = 5.1 Hz), 
8.44–8.40 (m, 1H), 7.98 (s, 1H, =CH–Ar), 7.47–7.43 (m, 
2H), 7.33 (d, 1H, J = 2.1 Hz), 7.27–7.23 (m, 3H), 7.21 (d, 
1H, J = 8.1 Hz), 6.87 (t, 1H, J = 7.8 Hz, J = 7.5 Hz), 6.76–
6.73 (dd, 1H, J = 2.1 Hz, J = 6.0 Hz, J = 2.1 Hz), 3.34 (s, 3H, 
thiazolidin-4-one NCH3), 2.27 (s, 3H, ArCH3). 13C-NMR 
δ ppm (75 MHz, DMSO-d6): 166.68 (thiazolidin-4-one 
C=O), 162.11, 161.46, 159.94, 151.93, 151.17, 148.68, 
146.45, 139.12, 134.80 (=CH–Ar), 132.61, 132.65, 131.60, 
128.74, 128.39, 125.65, 124.26, 120.85, 120.55, 120.05, 
117.59, 117.17, 116.52, 110.33, 108.35, 30.03 (thiazolidin-
4-one NCH3), 18.21 (ArCH3). Elemental analysis cald for 
C27H22N6O2S·H2O, C 63.27, H 4.72, N 16.40, S 6.26; found 
C 62.97, H 4.44, N 15.97, S 6.04.

5‑(2‑Methoxybenzylidene)‑3‑methyl‑[(4‑methyl‑3‑{[4‑(pyr
idin‑3‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazoli-
din‑4‑one 32  Yellow solid. Yield 67%, 0.340 g. TLC Rf: 
0.59 (S1). HPLC tR (min): 3.09 (CS3). M.p.: 177–180 °C. 
IR υmax (cm−1): 3450 (N–H str), 3051, 3016 (aromatic C–H 
str), 2897, 2845(aliphatic C–H str), 1716 (thiazolidin-4-one 
C=O str), 1643, 1612, 1577, 1558, 1523 (C=N str, N–H 
bending, C=C str), 1454, 1410, 1396 (aliphatic C–H bend-
ing, C–N str), 1128 (C–O str), 879, 796, 746 (aromatic C–H 
bending). 1H-NMR δ ppm (300 MHz, DMSO-d6): 9.27 (d, 
1H, J = 1.5 Hz), 8.96 (s, 1H, sec. NH), 8.66–8.63 (dd, 1H, 
J = 1.5 Hz, J = 3.3 Hz, J = 1.5 Hz), 8.51 (d, 1H, J = 5.1 Hz), 
8.43–8.40 (m, 1H), 7.95 (s, 1H, =CH–Ar), 7.45–7.27 (m, 
6H), 7.13 (d, 1H, J = 8.4 Hz), 7.02–6.97 (t, 1H, J = 7.5 Hz, 
J = 7.8  Hz), 6.76–6.72 (dd, 1H, J = 2.1  Hz, J = 3.0  Hz, 
J = 2.1 Hz), 3.87 (s, 3H, OCH3), 3.34 (s, 3H, thiazolidin-
4-one NCH3, covered by DMSO peak), 2.28 (s, 3H, ArCH3). 
13C-NMR δ ppm (75 MHz, DMSO-d6): 166.50 (thiazoli-
din-4-one C=O), 162.12, 161.45, 159.93, 158.33, 151.96, 
150.93, 148.67, 146.35, 139.12, 134.79 (=CH–Ar), 132.60, 
132.42, 131.61, 128.62, 128.44, 124.81, 124.24, 122.36, 
122.05, 121.37, 117.54, 117.28, 112.29, 108.37, 56.33 
(2-OCH3), 30.07 (thiazolidin-4-one NCH3), 18.21 (ArCH3). 
Elemental analysis cald for C28H24N6O2S·1/2MeOH, C 
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65.25, H 5.00, N 16.02, S 6.11; found C 65.41, H 4.53, N 
16.38, S 5.57.

5‑(3‑Methoxybenzylidene)‑3‑methyl‑[(4‑methyl‑3‑{[4‑(pyr
idin‑3‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazoli-
din‑4‑one 33  Yellow solid. Yield 56%, 0.285 g. TLC Rf: 
0.59 (S1). HPLC tR (min): 3.02 (CS3). M.p.: 158–161 °C. 
IR υmax (cm−1): 3448 (N–H str), 3043, 3001 (aromatic C–H 
str), 2893, 2978 (aliphatic C–H str), 1712 (thiazolidin-4-one 
C=O str), 1641, 1608, 1579, 1558, 1554, 1525 (C=N str, 
N–H bending, C=C str), 1475, 1410 (aliphatic C–H bend-
ing), 1396, 1300 (C–N str), 1147 (C–F str), 875, 790, 705 
(aromatic C–H bending). 1H-NMR δ ppm (300  MHz, 
CDCl3): 9.21 (d, 1H, J = 1,8  Hz), 8.65–8.63 (dd, 1H, 
J = 1.8 Hz, J = 3.0 Hz, J = 1.8 Hz), 8.51 (d, 1H, J = 5.1 Hz), 
8.38–8.34 (m, 1H), 8.01 (m, 1H), 7.72 (s, 1H, =CH–Ar), 
7.35–7.22 (m, 3H), 7.17 (d, 1H, J = 8.1 Hz), 7.08–6.86 (m, 
3H), 6.73–6.70 (dd, 1H, J = 2.1 Hz, J = 5.7 Hz, J = 2.1 Hz), 
3.77 (s, 3H, OCH3), 3.49 (s, 3H, thiazolidin-4-one NCH3), 
2.39 (s, 3H, ArCH3), 1.70 (H2O). 13C-NMR δ ppm (75 MHz, 
DMSO-d6): 166.38 (thiazolidin-4-one C=O), 162.14, 
161.45, 160.04, 159.93, 151.93, 150.67, 148.67, 146.24, 
139.13, 135.25, 134.76 (=CH–Ar), 132.60, 131.63, 130.88, 
130.33, 128.51, 124.24, 122.54, 121.85, 117.48, 117.31, 
116.39, 115.88, 108.38, 55.75 (3-OCH3), 30.12 (thiazolidin-
4-one NCH3), 18.23 (ArCH3). Elemental analysis cald for 
C28H24N6O2S·1/2H2O, C 64.97, H 4.87, N 16.24, S 6.19; 
found C 65.25, H 4.49, N 16.27, S 5.64.

5‑(4‑Methoxybenzylidene)‑3‑methyl‑[(4‑methyl‑3‑{[4‑(pyr
idin‑3‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazoli-
din‑4‑one 34  Yellow solid. Yield 51%, 0.260 g. TLC Rf: 
0.56 (S1). HPLC tR (min): 2.28 (CS3). M.p.: 195–198 °C. 
IR υmax (cm−1): 3446 (N–H str), 3010 (aromatic C–H str), 
2947 (aliphatic C–H str), 1708 (thiazolidin-4-one C=O 
str), 1635, 1577, 1533, 1508 (C=N str, N–H bending, C=C 
str), 1435, 1410, 1402, 1365 (aliphatic C–H bending, C–N 
str), 1101 (C–O str), 885, 785, 700 (aromatic C–H bend-
ing). 1H-NMR δ ppm (300 MHz, DMSO-d6): 9.26 (d, 1H, 
J = 1.5 Hz), 8.95 (s, sec. NH), 8.65–8.63 (dd, 1H, J = 1.8 Hz, 
J = 3.0 Hz, J = 1.5 Hz), 8.52 (d, 1H, J = 5.4 Hz), 8.45–8.41 
(m, 1H), 7.70 (s, 1H, =CH–Ar), 7.49–7.42 (m, 4H), 7.29 
(d, 1H, J = 8.1 Hz), 7.04 (d, 2H, J = 8.7 Hz), 6.77–6.74 (dd, 
1H, J = 2.1 Hz, J = 5.7 Hz, J = 2.1 Hz), 3.77 (s, 3H, OCH3), 
3.33 (s, 3H, thiazolidin-4-one NCH3), 2.28 (s, 3H, ArCH3). 
13C-NMR δ ppm (75 MHz, DMSO-d6): 166.62 (thiazoli-
din-4-one C=O), 162.11, 161.45, 160.06, 159.95, 151.94, 
150.94, 148.67, 146.46, 143.49, 139.14, 134.76 (=CH–Ar), 
132.59, 132.27, 132.25, 131.62, 130.38, 128.36, 126.37, 
124.24, 118.97, 117.55, 117.25, 115.31, 108.37, 55.92 
(4-OCH3), 30.04 (thiazolidin-4-one NCH3), 18.32 (ArCH3). 
Elemental analysis cald for C28H24N6O2S, C 66.12, H 4.76, 
N 16.52, S 6.30; found C 65.68, H 4.50, N 16.43, S 5.39.

5‑(N,N‑Dimethylaminobenzylidene)‑3‑methyl‑[(4‑methyl‑3‑
{[4‑(pyridin‑3‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thi-
azolidin‑4‑one 35  Yellow solid. Yield 55%, 0.285 g. TLC 
Rf: 0.57 (S1). HPLC tR (min): 3.35, 3.95 (CS3). M.p.: 203–
205 °C. IR υmax (cm−1): 3448 (N–H str), 3024 (aromatic 
C–H str), 2893, 2818 (aliphatic C–H str), 1699 (thiazoli-
din-4-one C=O str), 1641, 1612, 1579, 1554, 1523 (C=N 
str, N–H bending, C=C str), 1442, 1400, 1402, 1363 (ali-
phatic C–H bending, C–N str), 877, 790 (aromatic C–H 
bending). 1H-NMR δ ppm (300 MHz, DMSO-d6): 9.28 (d, 
1H, J = 1.5 Hz), 8.96 (s, 1H, sec. NH), 8.66–8.64 (dd, 1H, 
J = 1.5 Hz, J = 3.3 Hz, J = 1.5 Hz), 8.53 (d, 1H, J = 5.1 Hz), 
8.45–8.41 (m, 1H), 7.62 (s, 1H, =CH–Ar), 7.45–7.36 (m, 
2H), 7.36–7.34 (m, 3H), 7.28–7.25 (d, 1H, J = 8.1 Hz), 
6.77–6.72 (m, 3H), 3.32 (s, 3H, thiazolidin-4-one NCH3), 
2.96 (s, 6H, N(CH3)2), 2,28 (s, 3H, ArCH3). 13C-NMR δ 
ppm (75 MHz, DMSO-d6): 166.84 (thiazolidin-4-one C=O), 
162.07, 161.49, 159.97, 151.96, 151.58, 151.44, 151.40, 
148.67, 146.72, 139.11, 134.76 (=CH–Ar), 132.61, 132.23, 
131.56, 131.47, 128.27, 124.26, 120.83, 117.68, 117.39, 
114.63, 112.50, 108.30, 59.38 (4-N(CH3)2), 29.91 (thiazo-
lidin-4-one NCH3), 18.22 (ArCH3). Elemental analysis cald 
for C29H27N7OS·1/2MeOH, C 65.90, H 5.44, N 18.24, S 
5.96; found C 65.82, H 4.92, N 18.68, S 5.55.

5‑(2‑Fluorobenzylidene)‑3‑ethyl‑[(4‑methyl‑3‑{[4‑(pyridin‑3
‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiaz olidin‑4‑one 
36  Yellow solid. Yield 75%, 0.380 g. TLC Rf: 0.59 (S1). 
HPLC tR (min): 4.42 (CS5). M.p.: 170–171 °C. IR υmax 
(cm−1): 3443 (N–H str), 3036, 2976, 2933 (aliphatic C–H 
str), 1708 (thiazolidin-4-one C=O str), 1639, 1608, 1581, 
1558, 1554, 1518 (C=N str, N–H bending, C=C str), 1431, 
1390, 1371, 1340 (aliphatic C–H bending, C–N str), (1118 
(C–F str), 875, 796, 769, 707 (aromatic C–H bending). 1H-
NMR δ ppm (300 MHz, D2O Exchange, DMSO-d6): 9.24 (d, 
1H, J = 1.5 Hz), 8.65–8.63 (dd, 1H, J = 1.5 Hz, J = 3.3 Hz, 
J = 1.5 Hz), 8.51 (d, 1H, J = 5.1 Hz), 8.43–8.39 (m, 1H), 
7.72 (s, 1H, =CH–Ar), 7.50–7.21 (m, 8H), 6.77–6.74 (dd, 
1H, J = 2.1 Hz, J = 5.7 Hz, J = 2.1 Hz), 3.98 (q, 2H, thiazo-
lidin-4-one NCH2CH3), 2.56 (H2O), 2.29 (s, 3H, ArCH3), 
1.30–1.25 (t, 3H, thiazolidin-4-one NCH2CH3, J = 6.9 Hz, 
J = 7.2 Hz). Elemental analysis cald for C28H23FN6O2S·H2O, 
C 63.62, H 3.59, N 15.90, S 6.07; found C 63.69, H 4.30, N 
15.85, S 5.94.

5‑(3‑Fluorobenzylidene)‑3‑ethyl‑[(4‑methyl‑3‑{[4‑(pyridin‑3
‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
37  Yellow solid. Yield 56%, 0.285 g. TLC Rf: 0.62 (S1). 
HPLC tR (min): 4.49 (CS4). M.p.: 184 °C. IR υmax (cm−1): 
3446 (N–H str), 3068 (aromatic C–H str), 2970 (aliphatic 
C–H str), 1712 (thiazolidin-4-one C=O str), 1647, 1606, 
1573, 1529 (C=N str, N–H bending, C=C str), 1438, 1413, 
1386 (aliphatic C–H bending), 1249 (C–N str), 1120 (C–F 
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str), 840, 808, 783, 707 (aromatic C–H e.b). 1H-NMR δ ppm 
(300 MHz, DMSO-d6):): 9.26 (d, 1H, J = 1.8 Hz), 8.96 (s, 
1H, sec. NH), 8.65–8.63 (dd, 1H, J = 1.5 Hz, J = 3.0 Hz, 
J = 1.7 Hz), 8.52 (d, 1H, J = 5.4 Hz), 8.43–8.39 (d, 1H, 
J = 8.4 Hz), 7.75 (s, 1H, =CH–Ar), 7.54–7.22 (m, 6H), 
7.41 (d, 1H, J = 2.1 Hz), 7.29 (d, 1H, J = 8.3 Hz), 6.78–6.74 
(dd, 1H, J = 2.1 Hz, J = 5.7 Hz, J = 2.1 Hz), 3.98–3.91 (q, 
2H), 2.29 (s, 3H, ArCH3), 1.29–1.25 (t, 3H, J = 6.9 Hz, 
J = 7.2 Hz). 13C-NMR δ ppm (75 MHz, DMSO-d6): 166.89 
(thiazolidin-4-one C=O), 163.93, 162.11, 161.50, 161.40, 
159.96, 151.95, 149.42, 148.68, 146.14, 139.16, 136.26, 
134.73 (=CH–Ar), 132.59, 131.63, 129.06, 128.44, 125.73, 
124.19, 123.81, 117.33, 117.17, 117.12, 116.97, 108.43, 
38.55 (thiazolidin-4-one NCH2CH3), 18.22 (ArCH3), 12.99 
(thiazolidin-4-one NCH2CH3). LC/MS APCI+ m/z (%): 
511.997 ([M+H]+, 95), 510.786 (M+, 100); APCI− m/z 
(%): 509.275 ([M−H]−, 100). Elemental analysis cald for 
C28H23FN6OS, C 65.87, H 4.54, N 16.46, S 6.28; found C 
65.51, H 4.67, N 16.42, S 6.11.

5‑(4‑Fluorobenzylidene)‑3‑ethyl‑[(4‑methyl‑3‑{[4‑(pyridin‑3
‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
38  Yellow solid. Yield 55%, 0.280 g. TLC Rf: 0.57 (S1). 
HPLC tR (min): 3.98, 4.30 (CS4). M.p.: 139 °C. IR υmax 
(cm−1): 3437 (N–H str), 3026 (aromatic C–H str), 2974 
(aliphatic C–H str) 1707 (thiazolidin-4-one C=O str), 
1637, 1575, 1533, 1506 (C=N str, N–H bending, C=C 
str), 1442, 1417, 1386, 1367, 1338 (aliphatic C–H bend-
ing), 1228 (C–N str), 1124 (C–F str), 885, 825, 796 (aro-
matic C–H e.b). 1H-NMR δ ppm (300 MHz, DMSO-d6): 
9.26 (d, 1H, J = 1.8 Hz), 8.96 (s, 1H, sec. NH), 8.65–8.63 
(dd, 1H, J = 1.5 Hz, J = 3.0 Hz, J = 1.7 Hz), 8.52 (d, 1H, 
J = 5.4 Hz), 8.43–8.39 (d, 1H, J = 8.4 Hz), 7.75 (s, 1H, 
=CH–Ar), 7.60–7.56 (m, 2H), 7.45–7.43 (m, 1H), 7.40 
(d, 1H, J = 2.1 Hz), 7.33–7.25 (m, 3H), 6.76–6.73 (dd, 1H, 
J = 2.1 Hz, J = 5.7 Hz, J = 2.2 Hz), 3.97–3.91 (q, 2H), 2.29 
(s, 3H, ArCH3), 1.29–1.24 (t, 3H, J = 6.9 Hz, J = 7.2 Hz). 
LC/MS APCI+ m/z (%):510.877 ([M+H]+, 100); APCI− m/z 
(%): 509.250 ([M−H]−, 100). Elemental analysis cald for 
C28H23FN6OS·1/2 MeOH, C 65.00, H 4.79, N 15.96, S 6.09; 
found C 64.84, H 4.77, N 16.09, S 6.07.

5‑(2,6‑Difluorobenzylidene)‑3‑ethyl‑[(4‑methyl‑3‑{[4‑(pyridin‑
3‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
39  Yellow solid. Yield 27%, 0.142 g. TLC Rf: 0.57 (S1). 
HPLC tR (min): 4.03 (CS4). M.p.: 151–153 °C. IR υmax 
(cm−1): 3431 (N–H str), 3095, 3730 (aromatic C–H str), 
2976, 2947 (aliphatic C–H str), 1708 (thiazolidin-4-one C=O 
str), 1633, 1604, 1581, 1554, 1519 (C=N str, N–H bending, 
C=C str), 1435, 1390, 1371, 1342 (aliphatic C–H bending), 
1253 (C–N str), 1118 (C–F g.b), 792, 744, 707 (aromatic 
C–H e.b). 1H-NMR δ ppm (300 MHz, DMSO-d6): 9.25 (d, 
1H, J = 1.5 Hz), 8.92 (s, 1H, sec. NH), 8.63–8.63 (dd, 1H, 

J = 1.5 Hz, J = 3.0 Hz, J = 1.6 Hz), 8.48 (d, 1H, J = 5.1 Hz), 
8.41–8.37 (d, 1H, J = 6.3  Hz), 7.58 (s, 1H, =CH–Ar), 
7.56–7.42 (m, 3H), 7.35 (d, 1H, J = 2.1 Hz), 7.25–7.16 (m, 
3H), 6.72–6.69 (dd, 1H, J = 2.4 Hz, J = 5.7 Hz, J = 2.3 Hz), 
3.97–3.90 (q, 2H), 2,25 (s, 3H, ArCH3), 1.30–1.25 (t, 3H, 
J = 6.9 Hz, J = 7.2 Hz). LC/MS APCI+ m/z (%): 529.896 
([M+H]+, 66), 528.564 (M+, 100); APCI− m/z (%): 527.271 
([M−H]−, 100), 219.363 (18). Elemental analysis cald for 
C28H22F2N6OS, C 63.62, H 4.20, N 15.90, S 6.07; found C 
63.36, H 4.31, N 15.80, S 5.75.

5‑(2‑Chlorobenzylidene)‑3‑ethyl‑[(4‑methyl‑3‑{[4‑(pyridi
n‑3‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazoli-
din‑4‑one 40  Yellow solid. Yield 60%, 0.315 g. TLC Rf: 
0.55 (S1). HPLC tR (min): 6.00 (CS4). M.p.: 160–162 °C. 
IR υmax (cm−1): 3444 (N–H str), 3036 (aromatic C–H str), 
2974, 2933 (aliphatic C–H str), 1705 (thiazolidin-4-one 
C=O str), 1633, 1581, 1554, 1518 (C=N str, N–H bending, 
C=C str), 1431, 1390, 1371, 1342 (aliphatic C–H bending), 
1284 (C–N str), 1093 (C–Cl str), 796, 763, 704 (aromatic 
C–H e.b). 1H-NMR δ ppm (300 MHz, DMSO-d6): 9.26 (d, 
1H, J = 1.8 Hz), 8.95 (s, 1H, sec. NH), 8.65–8.64 (dd, 1H, 
J = 1.5 Hz, J = 3.0 Hz, J = 1.7 Hz), 8.50 (d, 1H, J = 5.1 Hz), 
8.43–8.39 (d, 1H, J = 8.5 Hz), 7.88 (s, 1H, =CH–Ar), 7.62–
7.59 (m, 1H), 7.49–7.41 (m, 5H), 7.38 (d, 1H, J = 2.1 Hz), 
7.27 (d, 1H, J = 8.4 Hz), 6.76–6.72 (dd, 1H, J = 2.4 Hz, 
J = 5.7 Hz, J = 2.3 Hz), 3.99–3.91 (q, 2H), 2.27 (s, 3H, 
ArCH3), 1.30–1.25 (t, 3H, J = 6.9 Hz, J = 7.2 Hz). LC/MS 
APCI+ m/z (%): 528.789 ([M+2]+, 75), 526.787 ((M + H]+, 
100); APCI− m/z (%): 525.172 ([M−H]−, 100). Elemental 
analysis cald for C28H23ClN6OS·MeOH, C 62.30, H 4.87, 
N 15.03, S 5.74; found C 62.14, H 4.39, N 15.54, S 5.37.

5‑(4‑Chlorobenzylidene)‑3‑ethyl‑[(4‑methyl‑3‑{[4‑(pyridin‑3
‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
41  Yellow solid. Yield 25%, 0.130 g. TLC Rf: 0.59 (S1). 
HPLC tR (min): 5.35 (CS4). M.p.: 162–163 °C. IR υmax 
(cm−1): 3441 (N–H str), 3022 (aromatic C–H str), 2991 (ali-
phatic C–H str), 1703 (thiazolidin-4-one C=O str), 1641, 
1573, 1535 (C=N str, N–H bending, C=C str), 1450, 1423, 
1388, 1373, 1333 (aliphatic C–H bending), 1234 (C–N str), 
1093 (C–Cl str), 829, 802, 707 (aromatic C–H e.b). 1H-NMR 
δ ppm (300 MHz, DMSO-d6): 9.26 (d, 1H, J = 1.8 Hz), 
8.96 (s, 1H, sec. NH), 8.65–8.63 (dd, 1H, J = 1.8  Hz, 
J = 3.0 Hz, J = 1.7 Hz), 8.50 (d, 1H, J = 5.1 Hz), 8.43–8.39 
(d, 1H, J = 8.1 Hz), 7.74 (s, 1H, =CH–Ar), 7.45–7.39 (m, 
6H), 7.40 (d, 1H, J = 2.1 Hz), 7.28 (d, 1H, J = 8.1 Hz), 
6.76–6.73 (dd, 1H, J = 2.4  Hz, J = 5.7  Hz, J = 2.4  Hz), 
3.98–3.91 (q, 2H), 2.28 (s, 3H, ArCH3), 1.29–1.24 (t, 3H, 
J = 6.9 Hz, J = 7.2 Hz). LC/MS APCI+ m/z (%): 548.917 
([M+Na]+, 34), 526.873 (M+, 100), 363.16 (27); APCI− m/z 
(%): 525.189 ([M−H]−, 100). Elemental analysis cald for 
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C28H23ClN6OS, C 63.81, H 4.40, N 15.95, S 6.08; found C 
63.32, H 4.55, N 15.88, S 5.71.

5‑(4‑Bromobenzylidene)‑3‑ethyl‑[(4‑methyl‑3‑{[4‑(pyridi
n‑3‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazoli-
din‑4‑one 42  Yellow solid. Yield 62%, 0.355 g. TLC Rf: 
0.60 (S1). HPLC tR (min): 6.98 (CS4). M.p.: 167–170 °C. 
IR υmax (cm−1): 3309 (N–H str), 3084 (aromatic C–H str), 
2974 (aliphatic C–H str), 1701 (thiazolidin-4-one C=O str), 
1635, 1604, 1573, 1548, 1533 (C=N str, N–H bending, 
C=C str), 1452, 1421, 1384, 1369 (aliphatic C–H bending), 
1240 (C–N str), 1114 (C–Br str), 812, 794, 705 (aromatic 
C–H e.b). 1H-NMR δ ppm (300 MHz, DMSO-d6): 9.26 (d, 
1H, J = 1.8 Hz), 8.96 (s, 1H, sec. NH), 8.65–8.63 (dd, 1H, 
J = 1.5 Hz, J = 3.0 Hz, J = 1.8 Hz), 8.52 (d, 1H, J = 5.4 Hz), 
8.43–8.39 (d, 1H, J = 8.5 Hz), 7.71 (s, 1H, =CH–Ar), 7.76–
7.73 (d, 2H, J = 9.0 Hz), 7.47–7.41 (m, 4H), 7.40 (d, 1H, 
J = 4.2 Hz), 7.28 (d, 1H, J = 8.1 Hz), 6.76–6.73 (dd, 1H, 
J = 2.4 Hz, J = 5.7 Hz, J = 2.3 Hz), 3.98–3.91 (q, 2H), 2.28 
(s, 3H, ArCH3), 1.29–1.24 (t, 3H, J = 6.9 Hz, J = 7.2 Hz). 
LC/MS APCI+ m/z (%): 572.796 ([M+2]+, 96), 570.700 
(M+, 100); APCI− m/z (%): 569.078 ([M−H]−, 100), 
219.352 (21). Elemental analysis cald for C28H23BrN6OS, 
C 57.93, H 4.17, N 14.48, S 5.52; found C 58.05, H 4.06, N 
14.59, S 4.92.

5‑(4‑Trifluoromethylbenzylidene)‑3‑ethyl‑[(4‑methyl‑3‑{[4‑(p
yridin‑3‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazoli-
din‑4‑one 43  Yellow solid. Yield 22%, 0.125 g. TLC Rf: 
0.62 (S1). HPLC tR (min): 6.91 (CS4). M.p.: 152–153 °C. IR 
υmax (cm−1): 3267 (N–H str), 2997, 2972 (aliphatic C–H str), 
1707 (thiazolidin-4-one C=O str), 1637, 1579, 1556, 1525 
(C=N str, N–H bending, C=C str), 1417, 1386, 1373 (ali-
phatic C–H bending), 1253 (C–N str), 1165 (C–F str), 798, 
786, 705 (aromatic C–H e.b). 1H-NMR δ ppm (300 MHz, 
DMSO-d6): 9.26 (d, 1H, J = 1.5 Hz), 8.96 (s, 1H, sec. NH), 
8.64-8.62 (dd, 1H, J = 1.5 Hz, J = 3.0 Hz, J = 1.8 Hz), 8.52 
(d, 1H, J = 5.1 Hz), 8.43–8.39 (d, 1H, J = 6.3 Hz), 7.78 (s, 
1H, =CH–Ar), 7.68–7.63 (d, 2H), 7.47–7.42 (m, 4H), 7.41 
(d, 1H, J = 2.4 Hz), 7.29 (d, 2H, J = 8.4 Hz), 6.77–6.74 
(dd, 1H, J = 2.1 Hz, J = 5.7 Hz, J = 2.1 Hz), 3.99–3.92 (q, 
2H), 2.28 (s, 3H, ArCH3), 1.30–1.25 (t, 3H, J = 6.9 Hz, 
J = 7.8 Hz). LC/MS APCI+ m/z (%): 560.584 (M+, 100), 
562.870 ([M+2]+, 66); APCI− m/z (%): 559.241 ([M−H]−, 
100). Elemental analysis cald for C29H23FN6O2S, C 60.41, 
H 4.02, N 14.58, S 5.56; found C 61.25, H 4.29, N 14.75, 
S 5.48.

5‑(4‑Trifluoromethoxybenzylidene)‑3‑ethyl‑[(4‑methyl‑3‑{[4‑(
pyridin‑3‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazo-
lidin‑4‑one 44  Yellow solid. Yield 36%, 0.205 g. TLC Rf: 
0.62 (S1). HPLC tR (min): 6.29 (CS4). M.p.: 191–193 °C. 
IR υmax (cm−1): 3452 (N–H str), 3034 (aromatic C–H str), 

2931, 2872 (aliphatic C–H str), 1701 (thiazolidin-4-one 
C=O str), 1637, 1602, 1583, 1558, 1523 (C=N str, N–H 
bending, C=C str), 1413, 1338 (aliphatic C–H bending), 
1234 (C–N str), 1163 (C–O str), 1112 (C–F str), 800, 705 
(aromatic C–H e.b). 1H-NMR δ ppm (300 MHz, DMSO-d6): 
9.26 (d, 1H, J = 1.5 Hz), 8.96 (s, 1H, sec. NH), 8.64–8.62 
(dd, 1H, J = 1.5 Hz, J = 3.0 Hz, J = 1.8 Hz), 8.52 (d, 1H, 
J = 5.1 Hz), 8.43–8.39 (d, 1H, J = 6.3 Hz), 7.78 (s, 1H, 
=CH–Ar), 7.78–7.70 (dd, 4H), 7.45–7.43 (m, 2H), 7.41 (d, 
1H, J = 2.1 Hz), 7.29 (d, 2H, J = 8.1 Hz), 6.77–6.74 (dd, 1H, 
J = 2.1 Hz, J = 5.7 Hz, J = 2.1 Hz), 3.99–3.92 (q, 2H), 2.29 
(s, 3H, ArCH3), 1.30–1.26 (t, 3H, J = 6.9 Hz, J = 7.8 Hz). 
LC/MS APCI+ m/z (%): 576.564 (M+, 100); APCI− m/z 
(%): 575.247 ([M−H]−, 100). Elemental analysis cald for 
C29H23FN6O2S, C 60.41, H 4.02, N 14.58, S 5.56; found C 
61.25, H 4.29, N 14.75, S 5.48.

5‑(2‑Hydroxybenzylidene)‑3‑ethyl‑[(4‑methyl‑3‑{[4‑(pyridin‑3
‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
45  Yellow solid. Yield 40%, 0.202 g. TLC Rf: 0.54 (S1). 
HPLC tR (min): 2.46 (CS7). M.p.: 250–255 °C. IR υmax 
(cm−1): 3228 (O–H str, N–H str), 3039 (aromatic C–H str), 
2970, 2928 (aliphatic C–H str), 1701 (thiazolidin-4-one 
C=O str), 1622, 1597, 1587, 1554 (C=N str, N–H bending, 
C=C str), 1448, 1388, 1371 (aliphatic C–H bending, C–N 
str), 1244 (C–O str), 788, 704 (aromatic C–H bending). 1H-
NMR δ ppm (300 MHz, DMSO-d6): 10.49 (s, 0.9 H), 9.27 
(d, 1H, J = 1.5 Hz), 8.97 (s, sec. NH), 8.66–8.64 (dd, 1H, 
J = 1.2 Hz, J = 3.3 Hz, J = 1.5 Hz), 8.52 (d, 1H, J = 5.1 Hz), 
8.44–8.40 (m, 1H), 7.99 (s, 1H, =CH–Ar), 7.46–7.43 (m, 
2H), 7.38 (d, 1H, J = 1.8 Hz), 7.27–7.23 (m, 3H), 7.22 
(d, 1H, J = 8.1 Hz), 6.87 (t, 1H, J = 7.5 Hz, J = 7.5 Hz), 
6.77–6.74 (dd, 1H, J = 2.1  Hz, J = 6.0  Hz, J = 2.1  Hz), 
3.97 (q, 2H, thiazolidin-4-one NCH2CH3), 3.43 (H2O), 
2.29 (s, 3H, ArCH3), 1.29–1.24 (t, 3H, thiazolidin-4-one 
NCH2CH3, J = 6.9 Hz, J = 6.9 Hz). Elemental analysis cald 
for C28H24N6O2S, C 66.12, H 4.76, N 16.52, S 6.30; found 
C 65.97, H 4.58, N 16.07, S 6.07.

5‑(2‑Methoxybenzylidene)‑3‑ethyl‑[(4‑methyl‑3‑{[4‑(pyridin‑3
‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
46  Yellow solid. Yield 81%, 0.422 g. TLC Rf: 0.57 (S1). 
HPLC tR (min): 4.16 (CS7). M.p.: 205–208 °C. IR υmax 
(cm−1): 3221 (N–H str), 3039–2841 (aliphatic C–H str), 
1703 (thiazolidin-4-one C=O str), 1637, 1593, 1579, 1529 
(C=N str, N–H bending, C=C str), 1419, 1384 (aliphatic 
C–H bending, C–N str), 1244 (C–O str), 800, 705 (aromatic 
C–H bending). 1H-NMR δ ppm (300 MHz, D2O Exchange, 
DMSO-d6): 9.25 (d, 1H, J = 1.8 Hz), 8.65–8.63 (dd, 1H, 
J = 1.8 Hz, J = 3.0 Hz, J = 1.5 Hz), 8.51 (d, 1H, J = 5.1 Hz), 
8.43–8.39 (m, 1H), 7.93 (s, 1H, =CH–Ar), 7.46–7.42 (m, 
4H), 7.29 (d, 1H, J = 7.8 Hz), 7.13 (d, 1H, J = 8.7 Hz), 7.01 
(t, 1H, J = 7.5 Hz, J = 7.5 Hz), 6.77–6.74 (dd, 1H, J = 2.1 Hz, 
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J = 5.7  Hz, J = 2.1  Hz), 3.98 (q, 2H, thiazolidin-4-one 
NCH2CH3), 3.86 (D2O), 3.73 (s, 3H, OCH3), 3.18 (MeOH), 
2.29 (s, 3H, ArCH3), 1.29–1.25 (t, 3H, thiazolidin-4-one 
NCH2CH3, J = 7.2 Hz, J = 6.9 Hz). Elemental analysis cald 
for C29H26N6O2S·1/7MeOH, C 66.39, H 5.08, N 15.94, S 
6.08; found C 65.71, H 5.37, N 16.03, S 5.78.

5‑(3‑Methoxybenzylidene)‑3‑methyl‑[(4‑methyl‑3‑{[4‑(pyridin‑
3‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
47  Yellow solid. Yield 31%, 0.162 g. TLC Rf: 0.57 (S1). 
HPLC tR (min): 4.08 (CS7). M.p.: 164–165 °C. IR υmax 
(cm−1): 3490 (N–H str), 2949, 2901, 2829 (aliphatic C–H 
str), 1716 (thiazolidin-4-one C=O str), 1639, 1608, 1579, 
1554, 1523 (C=N str, N–H bending, C=C str), 1446, 1427, 
1386 (aliphatic C–H bending, C–N str), 1242 (C–O str), 781, 
682 (aromatic C–H bending). 1H-NMR δ ppm (300 MHz, 
DMSO-d6): 9.27 (d, 1H, J = 1.5 Hz), 8.97 (s, sec. NH), 8.66–
8.64 (dd, 1H, J = 1.5 Hz, J = 3.3 Hz, J = 1.5 Hz), 8.52 (d, 
1H, J = 5.1 Hz), 8.44–8.40 (m, 1H), 7.72 (s, 1H, =CH–Ar), 
7.46–7.36 (m, 4H), 7.29 (d, 1H, J = 8.1 Hz), 7.10–6.89 (m, 
3H), 6.78–6.74 (dd, 1H, J = 1.5 Hz, J = 5.7 Hz, J = 2.1 Hz), 
3.98 (q, 2H, thiazolidin-4-one NCH2CH3), 3.74 (s, 3H, 
OCH3) 3.45 (H2O), 2.29 (s, 3H, ArCH3), 1.29–1.25 (t, 3H, 
thiazolidin-4-one NCH2CH3, J = 7.2 Hz, J = 6.9 Hz). Ele-
mental analysis cald for C29H26N6O2S·1/2EtOH, C 66.03, 
H 5.36, N 15.40, S 5.88; found C 65.69, H 5.19, N 15.78, 
S 5.98.

5‑(4‑Methoxybenzylidene)‑3‑ethyl‑[(4‑methyl‑3‑{[4‑(pyridin‑3
‑yl)pyrimidin‑2‑yl]amino}phenyl)imino]‑1,3‑thiazolidin‑4‑one 
48  Yellow solid. Yield 58%, 0.305 g. TLC Rf: 0.56 (S1). 
HPLC tR (min): 3.58 (CS7). M.p.: 170–174 °C. IR υmax 
(cm−1): 3295 (N–H str), 2966–2829 (aliphatic C–H str), 
1697 (thiazolidin-4-one C=O str), 1637, 1595, 1579, 1525 
(C=N str, N–H bending, C=C str), 1421,1384 (aliphatic 
C–H bending, C–N str), 1249 (C–O str), 798, 705 (aromatic 
C–H bending). 1H-NMR δ ppm (300 MHz, DMSO-d6): 9.25 
(d, 1H, J = 1.5 Hz), 8.95 (s, sec. NH), 8.64–8.62 (dd, 1H, 
J = 1.5 Hz, J = 3.3 Hz, J = 1.5 Hz), 8.51 (d, 1H, J = 5.1 Hz), 
8.43–8.39 (m, 1H), 7.68 (s, 1H, =CH–Ar), 7.47–7.38 (m, 
4H), 7.28 (d, 1H, J = 8.1 Hz), 7.02 (d, 2H, J = 9.0 Hz), 
6.76–6.73 (dd, 1H, J = 2.1 Hz, J = 5.7 Hz, J = 2.1 Hz), 3.96 
(q, 2H, thiazolidin-4-one NCH2CH3), 3.76 (s, 3H, OCH3), 
2.28 (s, 3H, ArCH3), 1.27–1.23 (t, 3H, thiazolidin-4-one 
NCH2CH3, J = 6.9 Hz, J = 7.2 Hz). Elemental analysis cald 
for C29H26N6O2S, C 66.65, H 5.01, N 16.08, S 6.14; found 
C 66.24, H 4.77, N 15.87, S 5.84.

5 ‑ ( N , N ‑ D i m e t h y l a m i n o b e n z y l i d e n e ) ‑ 3 ‑ e t h y l ‑
[(4‑methyl‑3‑{[4‑(pyridin‑3‑yl)pyrimidin‑2‑yl]amino}phenyl)
imino]‑1,3‑thiazolidin‑4‑one 49  Yellow solid. Yield 40%, 
0.215 g. TLC Rf: 0.55 (S1). HPLC tR (min): 4.61, 5.34 (CS5). 
M.p.: 187–190 °C. IR υmax (cm−1): 3454 (N–H str), 2972, 

2893 (aliphatic C–H str), 1697 (thiazolidin-4-one C=O str), 
1639, 1610, 1579, 1554, 1523 (C=N str, N–H bending, C=C 
str), 1452, 1443, 1398 (aliphatic C–H bending), 1365, 1344 
(C–N str), 792, 700 (aromatic C–H bending). 1H-NMR δ 
ppm (300 MHz, DMSO-d6): 9.28 (d, 1H, J = 1.8 Hz), 8.95 
(s, 1H, sec. NH), 8.66–8.64 (dd, 1H, J = 1.5 Hz, J = 3.3 Hz, 
J = 1.5 Hz), 8.53 (d, 1H, J = 5.1 Hz), 8.45–8.41 (m, 1H), 7.62 
(s, 1H, =CH–Ar), 7.46–7.41 (m, 2H), 7.38–7.33 (m, 3H), 
7.26 (d, 1H, J = 8.1 Hz), 6.77–6.72 (m, 3H), 3.95–3.89 (q, 
2H, thiazolidin-4-one NCH2CH3), 2.95 (s, 6H, N(CH3)2), 
2.29 (s, 3H, ArCH3), 1.28–1.23 (t, 3H, thiazolidin-4-one 
NCH2CH3, J = 6.9 Hz, J = 7.2 Hz). Elemental analysis cald 
for C30H29N7OS·1/2MeOH, C 66.40, H 5.66, N 17.77, S 
5.81; found C 66.38, H 5.31, N 18.12, S 5.70.

Anticancer activity

Cell culture conditions and reagents

K562 (CCL-243), PC3 (CRL-1435), SHSY-5Y (CRL-
2266) and L929 (CRL-6364) cells were acquired from 
American Type Culture Collection (Manassas, VA, USA). 
PC3, SHSY-5Y and L929 cells were cultured in DMEM 
and K562 cells were grown in RPMI-1640 (Gibco Thermo 
Fisher Scientific) medium supplemented with 10% (v/v) 
heat-inactivated FBS (Sigma-Aldrich) and 1% penicil-
lin/streptomycin (Gibco Thermo Fisher Scientific). Cells 
were cultured in a 25 cm2 cell culture flask and incubated 
at 37 °C in a 5% CO2 humidified atmosphere until they 
reached approximately 80% confluence.

Cell viability assay

Cell viability was assessed using the XTT (2,3-bis-
(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-
5-carboxanilide) colorimetric assay (Roche Diagnostic, 
Germany). Imatinib and compounds 5–49 were dissolved 
in dimethyl sulfoxide (DMSO concentration did not exceed 
0.1%) and diluted in DMEM or RPMI-1640 prior to treat-
ment. The cells were incubated with 10 µM constant con-
centration of compounds for 24 and 48 h. At the end of the 
incubation period, for determination of living cells, 50-μL 
XTT labeling mixture was added to each well and then 
the plates were incubated at 37 °C for another 4 h. After 
mixing, the absorbance of XTT-formazan was measured 
using an ELISA microplate reader (Thermo, Germany) at 
450 nm. All experiments were performed in three inde-
pendent experiments and the cell viability was expressed 
in percentage related to control (100% of viability).
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Annexin V binding assay

After treatment of K562 cells with IC50 concentrations 
of the compounds (8, 15 and 34) and imatinib, the extent 
apoptosis was examined using the Muse Annexin V/Dead 
Cell (Merck Millipore, Germany) assay, as described in 
the manufacturer’s instructions. Briefly, K562 cells were 
treated with selected compounds and imatinib for 24 and 
48 h. After that, the cells were collected, diluted with PBS 
containing 1% FBS and incubated with Muse™ Annexin 
V & Dead Cell reagent for 20 min at room temperature in 
the dark. The events for live, dead, early and late apoptotic 
cells were analyzed by Muse™ Cell Analyzer (Merck Mil-
lipore, Germany). Data of apoptosis induction by com-
pounds and imatinib were calculated from three independent 
experiments.

Cell cycle analysis

Cell cycle arrest was evaluated by Muse Cell Cycle Assay 
Kit (Merck Millipore, Germany) according to the user’s 
guide. The cells were treated with IC50 concentrations of the 
compounds (8, 15 and 34) and imatinib first and then incu-
bated for 48 h at 37 °C. After completion of the incubation, 
the cells were collected by centrifugation (300×g, 5 min), 
washed with cold PBS and fixed in chilled 70% (v/v) ethanol 
for at least 3 h at − 20 °C before staining. Next, the fixed 
cells were washed once with PBS and incubated with 200 μL 
of assay solution for 30 min in the dark at room temperature 
according to the manufacturer’s protocol. After staining, the 
percentages of the cells at different stages of the cell cycle 
(G0/G1, S and G2/M phases) were analyzed by the Muse 
Cell Analyzer (Merck Millipore, Germany).

DNA damage assay

DNA damage induced by the compounds (8, 15 and 34) 
was evaluated using Muse™ Multi-Color DNA Damage kit 
(Merck Millipore, Germany) according to the manufacturer’s 
instructions. Initially, K562 cells were treated with IC50 con-
centrations of the compounds and imatinib and then they 
were incubated for 48 h at 37 °C. Next, the cells were centri-
fuged, washed once with 1X PBS and fixed in fixation buffer 
for 10 min on ice, followed by washing and permeabilization 
in the ice-cold buffer. Ten µL antibody cocktail solution was 
added to each tube containing the cell suspension and incu-
bated again for 30 min in dark at room temperature. After the 
final centrifugation and washing steps, the cells were resus-
pended in 200 µL 1X assay buffer and percentages of nega-
tive cells (no DNA damage), percentages of ATM activated 
cells, percentages of H2AX activated cells and percentages 

of DNA double-strand breaks were determined using the 
Muse™ Multi-Color DNA Damage software module.

Statistical analyses

Statistical significances for the assays were assessed using 
the GraphPad Prism 7.0 (GraphPad Software, Inc.). The 
data obtained from the experiments were expressed as the 
mean ± standard deviation (SD) and one-way ANOVA test 
was performed for multiple comparisons. p values less 
than 0.05 were considered to be statistically significant.

Molecular modeling studies

Molecular modeling studies with Abl kinase protein were 
carried out to simulate the potential inhibition profile of 
designed compounds. Protein crystal structure of the Abl 
enzyme was obtained from protein data bank with the 
1IEP PDB ID. Prior to molecular modeling studies, water 
was removed from the crystal structure and protein was 
prepared using the Schrödinger Protein Preparation Wiz-
ard. Ligands were subsequently prepared as not charged 
by using the Schrödinger LigPrep tool. Energy minimiza-
tion was held using the OPLC force field. Prepared ligand 
structures were docked into protein binding site at pH: 
7.0 ± 1.0 using the Schrödinger Glide-Standard Precision 
docking procedure considering induced fit approach [60]. 
In the meantime, imatinib which was extracted from the 
1IEP structure was re-docked for the validation of the 
docking procedure. RMSD between co-crystallized and 
re-docked conformations of imatinib was found less than 
3.0 Å that exists under the limitations. Superposition of 
co-crystallized and re-docked conformations of imatinib 
is presented in the supplementary file. Detailed analyses 
of the most active compounds are visualized in Figs. 7, 8, 
9 and 10. Figures are prepared using the PyMOL software.
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