Accepted Manuscript

An efficient and stereoselective synthesis of obolactone via modified Evans' Aldol protocol

Rayala Naveen Kumar, H.M. Meshram

PII: S0040-4020(17)30814-1

DOI: 10.1016/j.tet.2017.08.001

Reference: TET 28895

To appear in: *Tetrahedron*

Received Date: 11 June 2017

Revised Date: 2 August 2017

Accepted Date: 3 August 2017

Please cite this article as: Kumar RN, Meshram HM, An efficient and stereoselective synthesis of obolactone via modified Evans' Aldol protocol, *Tetrahedron* (2017), doi: 10.1016/j.tet.2017.08.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Tetrahedron journal homepage: www.elsevier.com

An efficient and stereoselective synthesis of obolactone via modified Evans' Aldol protocol

Rayala Naveen Kumar^{*}, H. M. Meshram

Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords: Thiazolidinethione auxiliary Crimmins' modified Evans Aldol Andos' diaryl phosphonate 1,3-Syn reduction Tandem lactonization Stereocontrolled total synthesis of obolactone was achieved from *trans*-cinnamaldehyde. The key steps in this synthetic sequence are a asymmetric Mukaiyama Aldol, a Crimmins' modified Evans' Aldol reaction to introduce C2' stereocentre, a nucleophilic addition of potassium salt of mono methyl malonate, a Z-olefination using Andos' modified Horner-Wadsworth-Emmons reagent to introduce Z-olefin at C3,C4 in the final lactone skeleton, and a tandem deprotection and lactonization.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

6-Substituted-5,6-dihydro-2H-pyran-2-ones are significant structural subunits in many biologically potent natural products.¹ The 5,6-dihydro- α -pyrone units are widely spread in all parts of plants like Lamiaceae, Piperaceae, Lauraceae, and Annonaceae families including leaves, stems, flowers, and fruits.¹ Natural products containing these subunits are recognized for a wide variety of biological activities, such as insect growth inhibition,^{2a,b} antimicrobial,^{2c} antifungal,^{2d} and potent *in vitro* activity against a broad range of cancer cell.³ The styryl α -pyron skeleton of obolactone **1** is closely related to those of cryptofolione, cryptocaryalactone and fostriecin (**Figure 1**). Most of these styryl α -pyrone containing natural products showed cytotoxicity against human tumour cells.⁴

Figure 1: Obolactone **1** and some natural products containing 5,6dihydro-*a*-pyrone. Two dihydro pyrone rings are fused to styryl skeletal, obolactone **1** was isolated from the fruits and the trunk bark of *Cryptocarya obovate* in the Hanoi,Vietnam by Guéritte and coworkers.⁵ Obolactone **1** shows a significant activity in vitro cytotoxic assays against the human nasopharyngeal KB cell line with an IC₅₀ values of 3 μ M.⁵ The 2'*R*, 6*R* configuration of obolactone **1** was assigned by X-ray crystallographic analysis and Cotton effect in CD curve.⁵ Due to its promising biological activity and skeletal structure, draws the attention of chemists to synthesize. Up until now, there were four syntheses appeared in the literature.⁶⁻⁹ In continuation of our research for the synthesis of new bioactive molecules,¹⁰ herein we wish to report enantioselective synthesis of obolactone **1** is under exploration and the results will be reported elsewhere in due course.

In 2006, She and co-workers reported the first asymmetric total synthesis of obolactone **1**, ring-closing metathesis and asymmetric allylation as the key steps of their approach⁶. In Sabitha *et al.*, Prins cyclization and ring-closing metathesis as strategic approach,⁷ and the following synthesis from Krishna *et al.* in 2010, Brønsted acid mediated cyclization and Keck allylation as their central approach.⁸ Recently, desymmetrization via Wacker oxidation was the significant approach by Bruckner.⁹ Here the salient features of our synthetic strategy include: Mukaiyama Aldol using 1,3-bis(trimethylsiloxy)diene **4** (Chan's diene), chiral thiazolidinethione mediated modified Evans' Aldol reaction which is finest technique to introduce stereogenic 1, 3 dihydroxy centers in the chain elongation route, usage of our

* Corresponding author. Tel.: +15129981537; fax: +91-40-27193275; e-mail: navirayala@gmail.com.

Tetrahedron

modified chopping method of the chiral auxiliary adduct 3 using magnesium iodide,¹¹ 1,3-syn reduction of δ -hydroxy- β -keto ester 11 with $Zn(BH_4)_2$ and introducing Z-olefin in α -pyrone by Andos' diaryl phosphonate. Introduction of double Aldol reaction makes the synthetic strategy highly stereoselective and reduces the number of steps.

Scheme 1. Retrosynthetic strategy of obolactone 1.

The retrosynthetic pathway of obolactone 1 is depicted in Scheme 1, we envisioned that obolactone 1 could be accomplished via sequential operation of selective deprotection of acetonide, oxidation of two 1,3-anti alcohols to 1, 3 diketones and direct lactonization of the Z-olefin 2. Z-olefin 2 could be readily obtained from Evans' Aldol adduct 3. Aldol adduct 3 was envisaged as being accessible from Chan's diene 4 by Mukaiyama asymmetric Aldol onto the commercially available trans-cinnamaldehyde 5.

2. Results and Discussion

Scheme 2. Synthesis of intermediate ester 13.

Synthesis of obolactone 1 commenced with the transformation of Chan's diene 4 into aldehyde 8 according to our earlier published protocol.¹² To introduce 2'R, 6R stereocentre in obolactone 1, herein we executed Crimmins' modified Evans' Aldol reaction with aldehyde 8. Chiral auxiliaries facilitated asymmetric Aldol reaction is considered to be one of the significant methods for asymmetric C-C bond formation and chain elongation.¹³ Most applied type of auxiliaries are the class of chiral oxazolidinones, initially developed in the Evans group,¹⁴ and further modified by other groups.¹⁵ These chiral oxazolidinones has been most effective in the stereoselective construction of numerous chiral building blocks, as well as antibiotics, natural products, and bioactive compounds.¹⁶ Modified Evans' chiral auxiliaries like chiral thiazolidinethiones are become prevalent tools for the modern organic synthesis attributed to their efficient stereoselective transformations.¹⁷ This Crimmins modified imides have been developed to exhibit different complimentary diastereoselectivity compared to the previous ones. Diastereoselective asymmetric acetate Aldol reaction of a chlorotitanium enolate of 4-(S)-N-acetyl-4benzylthiazolidine-2-thione 9^{17c} with aldehyde 8 to introduce the desired stereogenic center at C2', yielding 3 as the major diastereomer (dr-9:1) (Scheme 2). The subsequent treatment of Aldol adduct **3** with the methyl potassium malonate **10** and MgI₂ in the presence of imidazole resulted in β -keto-ester **11**.^{11, 17b} Diastereoselective reduction of δ -hydroxy- β -keto ester 11 with $Zn(BH_4)_2^{18, 12}$ at -30 °C afforded the desired syn-1,3-diol 12 in 84% yield (syn:anti 10:1).¹⁹ We be obliged to select the protecting group such a way that it would reduce the number of steps in the synthesis and should be intact during the acetonide deprotection at C6'C4'. Here our choice of protecting group was MOM protection. Thus, the resultant two secondary hydroxyl groups in syn-1,3-diol 12 were protected with methoxymethyl chloride (MOMCl) to obtain MOM ether 13 in 89% yield under an extended reaction condition.

The ester 13 was reduced to alcohol by DIBAL-H in THF at 0 °C, the subsequent oxidation of which using ortho-iodoxybenzoic acid (IBX) in EtOAc reflux provided the corresponding aldehyde 14 in 79% yield. Precursor, (Cresol)₂P(O)CH₂COOEt 15 was obtained through standard method of preparation produced by Ando which allowed access to the (Z)-olefins with high stereoselectivity.²⁰ Andos' modified Horner-Wadsworth-Emmons (HWE) olefination of aldehyde 14 using diaryl phosphonate, $(Cresol)_2 P(O) CH_2 COOEt$ 15 provided a α, β unsaturated ester 2 favoring the desired Z-isomer in 81% yield (Z:E ratio-11:1) (Scheme 3). The E:Z ratio of the HWE olefination was confirmed based on coupling constant 11.6 Hz and integration values in ¹H NMR. Controlled deprotection of acetonide in the Z-olefin adduct 2 using camphorsulfonic acid (CSA) in MeOH at 0 °C was proceeded efficiently to afford diol 16 in quantitative yield. Obtained 1,3 diol 16 was oxidised to the corresponding 1, 3 diketone 17 using IBX in EtOAc at 85 °C for 6 h. Finally, the treatment of 1,3 diketone 17 with PTSA in MeOH afforded obolactone 1 in 74% yield.⁸ In this asymmetric acetate Aldol synthetic strategy, obolactone 1 was successfully accomplished in 10 steps from aldehyde 8. ¹H and ¹³C NMR data of obolactone **1** was completely agreed with the literature data.^{5, 6}

3. Conclusion

In conclusion, we have completed the stereoselective synthesis of obolactone 1 in a concise approach and the overall yield of this synthetic strategy is about 9.9% from a commercially available *trans*-cinnamaldehyde E5. The MA28.48, 127.66, 126.43, 100.69, 67.45, 61.98, 49.14, 37.59 significance of our synthetic sequence lies in employing a 25.29, 24.74. EI-MS: m/z 261[M⁺+H].

Mukaiyama Aldol addition using Chan's diene, building of the desired stereocentre C2' by a modified form of Evans' thiazolidinethione auxiliary, diastereoselective 1,3-*syn* reduction of δ -hydroxy- β -keto ester with Zn(BH₄)₂, a Z-olefination using Andos' modified HWE reagent, and a tandem sequence of MOM deprotection and lactonization. An upgraded method of chopping the Evans' Aldol auxiliary was found to be extremely advantageous, and a selective deprotection of acetonide over MOM with CSA reduced the number of steps in this synthesis.

4. Experimental Section

All reactions were performed under inert atmosphere. All glassware apparatus used for reactions are perfectly oven/flame dried. Anhydrous solvents were distilled prior to use: THF from Na and benzophenone; CH₂Cl₂, DMSO from CaH₂; MeOH from Mg cake. Commercial reagents were used without purification. Column chromatography was carried out by using silica gel (60-120 mesh) unless otherwise mentioned. Analytical thin layer chromatography (TLC) was run on silica gel 60 F254 pre-coated plates (250 μ m thickness). Mass spectral data were obtained using MS (EI) ESI, HRMS mass spectrometers. High resolution mass spectra (HRMS) [ESI+] were obtained using either a TOF or a double focusing spectrometer. ¹H NMR spectra were recorded at 300 MHz, and ¹³C NMR spectra 75 MHz in CDCl₃ solution unless otherwise mentioned, chemical shifts are in ppm downfield from tetramethylsilane and coupling constants (J) are reported in hertz (Hz). The following abbreviations are used to designate signal multiplicity: s = singlet, d = doublet, t = triplet, q= quartet, quin = quintet, sex = sextet, m = multiplet, br = broad.

4.1. 2-((4*R*,6*R*)-2,2-dimethyl-6-((*E*)-styryl)-1,3-dioxan-4-yl)acetaldehyde (8)

To a stirred solution of the ethyl 2-((4R,6R)-2,2-dimethyl-6-((E)-styryl)-1,3-dioxan-4-yl)acetate (2.6 g, 10 mmol) in 40 mL dry THF at 0 °C was slowly added DIBAL-H (25 mL, 25 mmol; 1 M in hexanes) over 20 min. The reaction mixture was stirred at 0 °C for 1 h, then methanol (10 mL) was added dropwise slowly. The resulting solution was poured into aq. potassium sodium tartrate solution (100 mL) and EtOAc (100 mL) and stirred vigorously for 1 h. The organic layer was separated, and the aqueous layer extracted with further EtOAc (3x100 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography on silica gel gave the corresponding alcohol as a colorless oil.

Add 2-Iodoxybenzoic acid (IBX) (3.78 g, 13.5 mmol) to the stirred solution of above alcohol (2.36 g, 9 mmol) in EtOAc (18 mL) at rt, then heat the reaction mixture to 85 °C, then reflux for 2 h. After completion of reaction, quench with saturated aq. NaHCO₃ (50 mL), and the mixture stirred for 20 min at rt. The organic layer was extracted with ethyl acetate (3x100 mL), dried over MgSO₄, rotary evaporated, and flash chromatography to give the corresponding aldehyde 8 (1.85 g, 79%) as a colourless oil. $R_f = 0.6$ (petroleum ether–EtOAc, 3:2). IR (KBr) $v_{\text{max}} = 3440$, 3026, 2993, 2921, 2854, 2730, 1725, 1654, 1495, 1381, 1262, 1200, 1165, 1137, 1097, 968, 874, 750, 695, 523 cm⁻¹. 1 H NMR (300 MHz, CDCl₃) δ 9.77 (t, J = 1.9 Hz, 1H), 7.40-7.19 (m, 5H), 6.56 (dd, J = 16.0, 1.3 Hz, 1H), 6.21 (dd, J = 16.0, 6.1 Hz, 1H),4.54 (dtd, J = 9.4, 6.3, 1.5 Hz, 1H), 4.44 (dtd, J = 10.7, 5.9, 5.2, 3.0 Hz, 1H), 2.67 (ddd, J = 16.7, 8.1, 2.3 Hz, 1H), 2.52 (ddd, J = 16.6, 4.8, 1.6 Hz, 1H), 1.98 (ddd, *J* = 12.9, 9.0, 5.9 Hz, 1H), 1.81 (ddd, J = 12.9, 9.4, 6.2 Hz, 1H), 1.45 (s, 3H), 1.42 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 199.79, 136.54, 130.48, 129.35,

4.2. (S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-4-((4S,6R)-2,2-dimethyl-6-((E)-styryl)-1,3-dioxan-4-yl)-3-hydroxybutan-1-one (3)

In a dry round bottom flask under argon atmosphere, (S)-1-(4benzyl-2-thioxothiazolidin-3-yl)ethanone 9 (1.26 g, 5 mmol) was dissolved in CH₂Cl₂ (10 mL), then cooled to 0 °C. A solution of $TiCl_4$ (0.66 mL, 6 mmol) in CH_2Cl_2 (5 mL) was added dropwise to the reaction mixture, and the thick suspension was stirred for 20 minutes, upon which diisopropylethylamine (1.07 mL, 6 mmol) was added dropwise at 0 °C. The solution after stir for 20 min at same temperature, then cooled to -78 °C and to the reaction mixture was added freshly prepared aldehyde 8 (1.3 g, 5 mmol) in CH₂Cl₂ (10 mL). The reaction was further stirred for 1 h, then guenched with saturated NH₄Cl, and warmed to rt. The layers were separated and the aqueous layer was extracted CH₂Cl₂ (3x100 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (petroleum ether-EtOAc, 7:3) to provide the product 3 (1.98 g, 78%) as a yellow liquid. $R_f = 0.4$ (petroleum ether–EtOAc, 7:3). IR (KBr) $v_{\text{max}} = 3424, 3027, 2992,$ 2940, 1754, 1650, 1492, 1448, 1381, 1260, 1199, 1164, 1136, 1078, 966, 876, 748, 694, 523 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.43-7.16 (m, 10H), 6.62 (d, J = 16.0 Hz, 1H), 6.19 (ddd, J =16.0, 6.2, 1.0 Hz, 1H), 5.29-5.21 (m, 1H), 4.62-4.51 (m, 1H), 4.35-4.16 (m, 1H), 3.94-3.88 (m, 1H), 3.68 (d, J = 11.1, 2.8 Hz, 1H), 3.43-3.32 (m, 2H), 3.23 (dd, J = 12.3, 4.1 Hz, 1H), 3.03 (dt, J = 10.4, 2.0 Hz, 1H), 2.84 (d, J = 11.4 Hz, 1H), 2.67-2.49 (br, 1H), 1.89-1.61 (m, 4H), 1.55 (s, 3H), 1.47 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 201.75, 172.18, 136.45, 136.37. 130.70, 130.58, 129.50, 129.25, 128.35, 127.59, 126.35, 100.79, 69.76, 68.78, 64.15, 63.40, 46.38, 43.31, 37.72, 36.55, 32.14, 25.52, 24.21. MS (ESI): $m/z = 534 [M + Na]^+$. HRMS: calcd. for C₂₈H₃₃NO₄S₂Na $[M + Na]^+$: 534.17487: found: 534.17478.

4.3. Methyl (*S*)-6-((*4S*,6*R*)-2,2-dimethyl-6-((*E*)-styryl)-1,3-dioxan-4-yl)-5-hydroxy-3-oxohexanoate (11)

To a solution of thiazolidinethione Aldol adduct 3 (5 mmol, 1.0 equiv) in THF (20 mL) was added methyl potassium malonate 10 (10 mmol, 2.0 equiv) followed by MgI₂ (5 mmol, 1.0 equiv) under Argon. The suspension was stirred at rt for 30 min, then imidazole (5 mmol, 1.0 equiv) was added in one portion, and the reaction mixture was stirred at rt for 5 h. After completion, the reaction was diluted with EtOAc (100 mL), washed with 0.5 M HCl (50 mL), and the aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic layers were then washed with 0.5 M NaHCO₃ (50 mL). Finally, the combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo to give a light yellow oily liquid. The resulting crude mixture was purification by flash chromatography (petroleum ether–EtOAc, 3:2) to afford the pure δ -hydroxy- β ketoester 11 (1.73 g, 92%). $R_f = 0.3$ (petroleum ether-EtOAc, 7:3). IR (KBr) v_{max} = 3478, 2992, 2923, 2854, 1745, 1715, 1652, 1438, 1381, 1324, 1262, 1200, 1163, 1093, 968, 937, 748, 695 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.12 (m, 5H), 6.59 (d, J = 15.9 Hz, 1H), 6.15 (ddd, J = 16.0, 6.2, 4.7 Hz, 1H), 4.55 (ddd, *J* = 9.8, 6.6, 2.7 Hz, 1H), 4.42-4.15 (m, 2H), 3.73 (s, 3H), 3.51 (d, J = 7.0 Hz, 2H), 3.08 (br, 1H), 2.83-2.58 (m, 2H), 1.77-155 (m, 4H), 1.54 (d, J = 5.3 Hz, 3H), 1.45 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 202.23, 167.35, 136.45, 130.70, 129.50, 128.35, 127.59, 126.35, 100.29, 69.91, 65.89, 64.15, 52.25, 49.80, 49.49, 42.15, 36.88, 25.22, 24.63. MS (ESI): $m/z = 399 [M + Na]^+$.

HRMS: calcd. for $C_{21}H_{28}O_6Na \ [M + Na]^+$: 399.17781: found: M concentration 399.17671.

4.4. Methyl (3*S*,5*R*)-6-((4*S*,6*R*)-2,2-dimethyl-6-((*E*)-styryl)-1,3-dioxan-4-yl)-3,5-dihydroxyhexanoate (12)

A freshly prepared solution of $Zn(BH_4)_2$ in ether (~1M, 5 mL) was added to a solution of δ -hydroxy- β -ketoester 11 (1.5 g, 4 mmol) in ether (20 mL) at -30 °C and the reaction mixture was stirred for 1 h at this temperature. The reduction was almost completed within 10 min. The reaction was quenched by the successive addition of water (10 mL) and aqueous 0.1N HCl (20 mL), and the mixture was extracted with ether (3x100 mL). The combined ether layers was washed with saturated aqueous NaHCO₃ (50 mL) solution and brine, then dried over MgSO₄ and concentrated. The crude product was purified by chromatography on silica gel (petroleum ether-EtOAc, 1:1) to obtain syn-1,3-diol **12** (1.27 g, 84%) with *dr*-10:1. $R_f = 0.3$ (petroleum ether-EtOAc, 3:2). IR (KBr) $v_{\text{max}} = 3449, 2925, 2859, 1732, 1641, 1436, 1381,$ 1263, 1201, 1164, 1090, 927, 935, 877, 750, 694, 522 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.17 (m, 5H), 6.57 (d, J = 16.0Hz, 1H), 6.23 (dt, J = 16.0, 5.7 Hz, 1H), 4.63-4.46 (m, 1H), 4.42-4.16 (m, 2H), 3.88-4.04 (m, 1H), 3.71 (s, 3H), 3.35-3.14 (br, 1H), 2.74-2.47 (m, 2H), 1.73-1.50 (m, 7H), 1.50-1.31 (m, 5H). ¹³C NMR (75 MHz, CDCl₃) & 172.61, 136.47, 130.89, 129.32, 128.46, 127.70, 126.47, 100.74, 71.40, 69.94, 68.73, 66.44, 51.68, 43.13, 42.75, 41.59, 37.12, 25.49, 24.83. MS (ESI): *m*/*z* = 401 $[M + Na]^+$. HRMS: calcd. for $C_{21}H_{30}O_6Na [M + Na]^+$: 401.1935: found: 401.1925.

4.5. Methyl (3*S*,5*R*)-6-((4*S*,6*R*)-2,2-dimethyl-6-((*E*)-styryl)-1,3-dioxan-4-yl)-3,5-bis(methoxymethoxy)hexanoate (13)

To a solution of 12 (1.13 g, 3 mmol) in dry CH₂Cl₂ (6 mL) were added *i*-Pr₂NEt (3.16 mL, 18 mmol) and methoxymethyl chloride (MOMCl, 0.905 mL, 12 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 16 h. Then the reaction was quenched with sat. aqueous NH₄Cl and the whole was extracted with EtOAc (3x75 mL). The organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated. The residue was purified by column chromatography (petroleum ether–EtOAc, 7:3) to give 13 (1.25 g, 89%) as a thick liquid. R_f = 0.3 (petroleum ether-EtOAc, 7:3). IR (KBr) $v_{\text{max}} = 2991, 2946,$ 2853, 1739, 1600, 1440, 1379, 1200, 1151, 1100, 1035, 969, 918, 748, 695, 522 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.44-7.16 (m, 5H), 6.60 (d, J = 16.0 Hz, 1H), 6.16 (dd, J = 16.0, 6.1 Hz, 1H), 4.72-4.60 (m, 4H), 4.59-4.46 (m, 1H), 4.23-4.04 (m, 2H), 3.95-3.81 (m, 1H), 3.69 (d, J = 1.2 Hz, 3H), 3.41 (s, 3H), 3.36 (s, 3H),2.72-2.45 (m, 2H), 2.03-1.82 (m, 2H), 1.79-1.56 (m, 4H), 1.51 (d, J = 3.4 Hz, 3H), 1.44 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 171.69, 136.58, 130.64, 129.76, 128.41, 127.58, 126.44, 100.36, 96.35, 95.87, 72.27, 71.70, 70.10, 67.67, 55.77, 55.61, 51.52, 40.85, 40.11, 39.46, 38.22, 25.86, 24.94. MS (ESI): m/z = 489 $[M + Na]^+$. HRMS: calcd. for C₂₅H₃₈O₈Na $[M + Na]^+$: 489.2458: found: 489.2444.

4.6. Ethyl (*5R*,*7R*,*Z*)-8-((*4S*,*6R*)-2,2-dimethyl-6-((*E*)-styryl)-**1**,3-dioxan-4-yl)-5,7-bis(methoxymethoxy)oct-2-enoate (2)

To a stirred solution of the ester **13** (932 mg, 2 mmol) in dry THF (10 mL) at 0 °C was slowly added DIBAL-H (5 mL, 5 mmol; 1 M in hexanes) over 20 min. The reaction mixture was stirred at 0 °C for 1 h, then MeOH (10 mL) was added dropwise slowly. The resulting solution was poured into aqueous sodium potassium tartrate solution (15 mL) and EtOAc (50 mL) and stirred vigorously for l h. The organic layer was separated and the aqueous layer extracted with further EtOAc (3x75 mL). The combined organic layers were dried (MgSO₄), filtered and

concentrated in vacuo. The crude extract was purified by flash column chromatography (petroleum ether–EtOAc, 1:1) to give corresponding alcohol as a thick liquid. $R_f = 0.3$ (petroleum ether–EtOAc, 1:1). Add IBX (767 mg, 1.74 mmol) to the stirred solution of above alcohol (180 mg, 0.40 mmol) in EtOAc (10 mL) at rt, then heat the reaction mixture at 85 °C reflux for 2 h and check TLC for the completion of reaction. After completion of reaction, quench with saturated aqueous NaHCO₃ (20 mL) and the mixture stirred for another 30 min. The organic layer was extracted with ethyl acetate (3x75 mL), dried over MgSO₄ and rotary evaporated to give aldehyde **14** (689 mg, 79%) as a colourless oil. $R_f = 0.5$ (petroleum ether–EtOAc, 3:2). This aldehyde used for further reaction without purification.

To a stirred suspension of NaH (60% dispersion in oil) (48 mg, 1.2 mmol) in dry THF (5 mL) was added a solution of (Cresol)₂P(O)CH₂COOEt phosphonate 15 (417 mg, 1.2 mmol) in dry THF (2.5 mL) at -78 °C under argon, and the reaction mixture was stirred for 30 min at the same temperature. Then a solution of the aldehyde 14 (436 mg, 1.0 mmol) in THF (2.5 mL) was added dropwise, and the reaction mixture was stirred at -78°C for about 30 min. After completion of reaction, brought the reaction mixture to -35 °C and quenched with aq. ammonium chloride. The reaction mixture was extracted with CH₂Cl₂ (3x50 mL), and the organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated. The crude residue was purified by column chromatography (petroleum ether-EtOAc, 7:3) to give (Z)- α , β -unsaturated ester 2 (409 g, 81%) as a thick liquid, $R_f = 0.3$ (petroleum ether–EtOAc, 4:1). IR (KBr) $v_{max} =$ 2926, 2856, 1727, 1647, 1456, 1377, 1278, 1170, 1106, 1036, 953, 758, 700, 514 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.21 (m, 5H), 6.59 (dt, J = 16.6, 1.3 Hz, 1H), 6.34 (dtt, J = 10.3, 6.8, 3.3 Hz, 1H), 6.17 (ddd, J = 16.0, 6.3, 1.6 Hz, 1H), 5.88 (dt, J = 10.3, 1.8 Hz, 1H), 4.73-4.63 (m, 4H), 4.57-4.50 (m, 1H), 4.32-4.06 (m, 4H), 3.94-3.79 (m, 1H), 3.39 (s, 3H), 3.36 (s, 3H), 3.07-2.83 (m, 2H), 1.96-1.84 (m, 2H), 1.73-1.55 (m, 4H), 1.51 (d, J = 3.5 Hz, 3H), 1.46-1.42 (m, 3H), 1.30-1.22 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.12, 145.47, 136.56, 131.38, 129.76, 128.37, 126.39, 125.26, 121.41, 100.33, 95.85, 95.34, 73.84, 71.91, 70.08, 65.44, 61.88, 55.62, 55.58, 42.19, 39.31, 37.20, 33.66, 25.38, 24.77, 14.17. MS (ESI): $m/z = 529 [M + Na]^+$. HRMS: calcd. for $C_{28}H_{42}O_8Na [M + Na]^+$: 529.27719: found: 529.27542.

4.7. Ethyl (2Z,5R,7S,9R,11R,12E)-9,11-dihydroxy-5,7bis(methoxymethoxy)-13-phenyltrideca-2,12-dienoate (16)

CSA (4 mg, 5 mol%) was added to a solution of (Z)- α , β unsaturated ester 2 (151 mg, 0.30 mmol) in MeOH (3 mL) and the mixture was stirred at 0 °C for 30 min. After completion of reaction, extracted with ether (2x50 mL). The ether extract was washed with saturated aq. NaHCO₃ solution, and NaCl solution, then dried over MgSO₄ and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether-EtOAc, 1:1) to afford diol 16 (120 mg, 86%) as a thick liquid. R_f = 0.3 (petroleum ether–EtOAc, 1:1). IR (KBr) v_{max} = 3446, 2925, 2856, 1723, 1634, 1454, 1278, 1035, 762, 502 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.18 (m, 5H), 6.61 (d, J = 15.9 Hz, 1H), 6.31 (dtd, J = 11.5, 7.3, 2.0 Hz, 1H), 6.21 (dd, J = 15.9, 6.3 Hz, 1H), 5.88 (dq, J = 11.5, 1.9 Hz, 1H), 4.67 (ddt, J = 13.8, 12.4, 5.6 Hz, 4H), 4.56 (q, J = 4.6, 3.9 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 4.10-3.88 (m, 2H), 3.86-3.73 (m, 1H), 3.38 (d, J = 1.1 Hz, 3H), 3.36 (s, 3H), 3.03-2.81 (m, 2H), 1.97-1.84 (m, 1H), 1.82-1.54 (m, 4H), 1.32-1.23 (m, 4H). $^{13}\mathrm{C}$ NMR (75 MHz, CDCl₃) δ 166.28, 145.20, 136.75, 131.93, 129.49, 128.41, 127.40, 126.34, 121.66, 95.30, 95.15, 73.66, 72.71, 70.89, 68.47, 59.95, 55.79, 55.68, 43.70, 42.34, 39.54, 33.52, 14.14. MS (ESI):

4.8. Ethyl (2Z,5R,7R,12E)-5,7-bis(methoxymethoxy)-9,11dioxo-13-phenyltrideca-2,12-dienoate (17)

Add IBX (560 mg, 2 mmol, 5 equiv.) to the stirred solution of diol 16 (187 mg, 0.40 mmol, 1 equiv.) in ethyl acetate (5 mL) at rt, then heat the reaction mixture at 85 °C reflux for 6 h and check TLC for the completion of reaction. After completion of reaction, quench with saturated aqueous NaHCO₃ (20 mL), and the mixture stirred for 20 min. The organic layer was extracted with EtOAc (3x75 mL), dried over MgSO₄ and rotary evaporated. The residue was purified by flash chromatography on silica gel (petroleum ether-EtOAc, 3:2) to give the corresponding diketone 17 (152 mg, 82%) as a colourless thick liquid. $R_f = 0.3$ (petroleum ether–EtOAc, 7:3). $[\alpha]_D^{20} = -42$ (c = 0.5, CHCl₃). IR (KBr) $v_{\text{max}} = 2923$, 2852, 1716, 1638, 1586, 1445, 1379, 1217, 1149, 1098, 1031, 917, 771, 696 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.47 (m, 3H), 7.45-7.31 (m, 3H), 6.48 (d, J = 15.9 Hz, 1H), 6.33 (dt, J = 11.5, 7.3 Hz, 1H), 5.89 (dt, J = 11.5, 1.9 Hz, 1H), 5.70 (d, J = 3.5 Hz, 1H), 4.68 (d, J = 9.4 Hz, 4H), 4.19 (p, J = 7.0 Hz, 2H), 3.88 (dt, J = 12.2, 6.0 Hz, 1H), 3.39 (s, 3H), 3.34 (s, 3H), 3.09-2.85 (m, 2H), 2.66 (dd, J = 6.3, 1.8 Hz, 2H), 1.95 (dt, J = 13.8, 6.7 Hz, 1H), 1.71 (dt, J = 14.4, 6.1 Hz, 2H), 1.32-1.24 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 197.81, 177.22, 166.21, 145.26, 139.94, 135.02, 129.91, 128.88, 127.91, 122.75, 121.71, 101.75, 95.87, 95.36, 73.62, 72.19, 59.92, 55.81, 55.68, 45.76, 39.76, 33.52, 29.69, 14.25. MS (ESI): m/z = 485 [M + $Na]^+$. HRMS: calcd. for $C_{25}H_{34}O_8Na$ $[M + Na]^+$: 485.2146: found: 485.2148.

4.9. Obolactone (1)

To a stirred solution of diketone 17 (46 mg, 0.1 mmol) in MeOH was added PTSA (2 mg, 0.01 mmol) under an N₂ atmosphere. Heat the reaction mixture to 50 °C and stir at this temperature for 4 h. After completion of the reaction, quenched with solid NaHCO₃ and filtered off, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel (petroleum ether-EtOAc, 1:1) to afford obolactone 1 as a yellow solid (22 mg, 74%). $[\alpha]_{D}^{2}$ = +247 (c = 0.1, CHCl₃). IR (KBr) v_{max} = 2927, 2853, 1726, 1650, 1447, 1377, 1279, 1211, 1149, 1098, 1035, 974, 917, 750, 697 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.59–7.49 (m, 2 H), 7.45– 7.26 (m, 4 H), 6.95–6.82 (m, 1 H), 6.53 (d, J = 16.0 Hz, 1 H), 6.09 (dt, J = 9.7, 1.6 Hz, 1 H), 5.62 (s, 1 H), 4.85-4.64 (m, 2 H)2.63-2.45 (m, 5 H), 2.21-1.98 (m, 1 H). ¹³C NMR (75 MHz, CDCl₃) δ 192.02, 167.97, 163.66, 144.64, 137.40, 134.75, 129.66, 128.64, 127.43, 121.54, 121.02, 106.27, 75.67, 74.49, 41.32, 39.18, 29.27. MS (ESI): $m/z = 311 [M + H]^+$. HRMS: calcd. for $C_{19}H_{19}O_4 [M + H]^+$: 311.1278: found: 311.1275.

Acknowledgment

RNK thanks to CSIR, New Delhi for the award of fellowship and to Dr. S. Chandrasekhar, Director of IICT, for the support and encouragement.

Supplementary data

¹H and ¹³C NMR spectra of compounds are available.

References and Notes

 (a) Andrianaivoravelona, J. O.; Sahpaz, S.; Terreaux, C.; Phytochemistry 1999, 52, 265. (b) Siegel, S. M. Phytochemistry

- (a) Tawata, S.; Fukuta, M.; Xuan, T. D.; Deba, F. J. Pestic. Sci.,
 2008, 33, 40. (b) Neal, J. J.; Wu, D. Pesticide Biochemistry and Physiology 1994, 50, 43. (c) Cowan, M. M. Clinical Microbiology Reviews 1999, 12, 564. (d) Juliawaty, L. D.; Kitajima, M.; Takayama, H.; Achmad, S. A.; Aimi, N. Phytochemistry 2000, 54, 989.
- (a) Marco, J. A.; Carda, M.; Murga, J.; Falomir, E. *Tetrahedron* 2007, 63, 2929. (b) Kalesse, M.; Christmann, M. *Synthesis* 2002, 981. (c) Tunac, J. B.; Graham, B. D.; Dobson, W. E. *J. Antibiot.* 1983, 36, 1595. (d) Stamplwala, S. S.; Bunge, R. H.; Hurley, T. R.; Willmer, N. E.; Brankiewicz, A. J.; Steinman, C. E.; Smitka, T. A.; French, J. C. *J. Antibiot.* 1983, 36, 1601. (e) Leopold, W. R.; Shillis, J. L.; Mertus, A. E.; Nelson, J. M.; Roberts, B. J.; Jackson, R. C. *Cancer Res.* 1997, 44, 1928. (f) Spencer, G. F.; England, R. E.; Wolf, R. B. *Phytochemistry* 1984, 23, 2499.
- (a) Fang X.; Anderson, J. E.; Chang, C.; Fanwick; McLaughlin. J. Chem. Soc., Perkin Trans. I. 1990, 1655. (b) Fu, X.; Seavenet, T.; Hadi, A.; Remy, F.; Paoes, M. Phytochemistry 1993, 33, 1272.
- Dumonter, V.; Hung, N. V.; Adeline, M.-T.; Riche, C.; Chiaroni, A.; Sevenet, T.; Gueritte, F. J. Nat. Prod. 2004, 67, 858.
- Zhang, J.; Li, Y.; Wang, W.; She, X.; Pan, X. J. Org. Chem. 2006, 71, 2918.
- Sabitha, G.; Prasad, M. N.; Shankaraiah, K.; Yadav, J. S. Synthesis 2010, 7, 1171.
- 8. Krishna, P. R.; Srinivas, P. Tetrahedron Letters 2010, 51, 2295.
- 9. Walleser, P.; Bruckner, R. Organic Letters 2013, 15, 1294.
- (a) Kumar, R. N.; Meshram, H. M. *Tetrahedron* 2015, *71*, 5669.
 (b) Kumar, R. N.; Lee, S. *Steroids* 2017, *118*, 68. (c) Kumar, R. N.; Kumar, N. S.; Meshram, H. M. *Synlett* 2017, *28*, 1046. (d) Kumar, N. S.; Kumar, R. N.; Rao, L. C.; Muthineni, N.; Ramesh, T.; Babu, N. J.; Meshram, H. M. *Synthesis* 2017, *49*, 3171. (e) Kumar, N. S.; Kumar, R. N.; Rao, L. C.; Meshram, H. M. *ChemistrySelect* 2016, *1*, 5034. (f) Ramesh, P.; Meshram, H. M. *Tetrahedron* 2012, *68*, 9289.
- 11. Rao, N. N.; Meshram, H. M. Tetrahedron Letters 2013, 54, 4544.
- 12. Kumar, R. N.; Meshram, H. M. *Tetrahedron Letters*, **2011**, *52*, 1003.
- (a) Ager, D. J. Chem Rev. 1996, 96, 835. (b) Evans, D. A. J. Am. Chem. Soc. 1981, 103, 2127.
- (a) Evans, D. A.; *Aldrichimica Acta*, **1982**, *15*, 23. (b) Evans, D. A.; Tedrow, J. S;, Shaw, J. T.; Downey C. W.; *J. Am. Chem. Soc.*, **2002**, *124*, 392.
- (a) Nagao, Y.; Yamada, S.; Kumagai, T.; Ochiai, M.; Fujita, E.; *Chem. Commun.*, **1985**, 1418. (b) Crimmins, M. T.; King, B. W.; Tabet, E. A.; *J. Am. Chem. Soc.*, **1997**, *119*, 7883.
- (a) Arya, P.; Qin, H. *Tetrahedron*, 2000, 56, 917. (b) Velàzquez,
 F.; Olivo, H. F. *Curr. Org. Chem.* 2002, 6, 303. (c) Hodge, M. B.;
 Olivo, H. F. *Tetrahedron*, 2004, 69, 9397. (d) Crimmins, M. T. J.
 Org. Chem., 2001, 66, 894. (e) Paquette, L. A.; Braun, A.
 Tetrahedron Lett., 1997, 38, 5119. (f) Crimmins, M. T.; DeBaillie,
 A. C. J. Am. Chem. Soc. 2006, 128, 4936.
- (a) Crimmins, M. T.; Chaudhary, K. *Organic Letters* **2000**, *2*, 775.
 (b) Smith, T. E.; Djang, M.; Velander, A. J.; Downey, C. W.; Carroll, K. A.; Alphen, S. *Organic Letters* **2004**, *6*, 2317. (c) Yadav, J. S.; Ganganna, B.; Bhunia, D. C. Synthesis **2012**, *44*, 1365.
- (a) Gensler, W. J.; Johnson, F.; Sloan, A. D. B. J. Am. Chem. Soc. 1960, 82, 6074. (b) Crabbe, P.; Garcia, G. A.; Rius, C. J. Chem. Soc., Perkin Trans. 1 1973, 810.
- 19. syn and anti-1,3-diol ratio was determined based on ¹H NMR.
- 20. Ando, K. J. Org. Chem. 1998, 63, 8411.