Cleavage of Aromatic C-O Bonds via Intramolecular $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction and Preparation of $P, C, A x i a l-S t e r e o g e n i c ~ M e n t h y l ~ P h o s p h i n e ~$ Derivatives

Bing-Xia Yan, ${ }^{\nabla}$ Yu Zhang, ${ }^{\nabla}$ Hong-Xing Zheng, Jing-Jing Ye, Xiao-Ning Wang, Qiang Li, ${ }^{*}$ and Chang-Qiu Zhao*

Cite This: https://dx.doi.org/10.1021/acs.orglett.0c02861

Read Online

| ACCESS \quad 岒 Metrics \& More | (国 Article Recommendations | Supporting Information |
| :--- | :--- | :--- | :--- | :--- |

Abstract

Phosphine ligands with up to six chiral sites were prepared, starting from 2-phenylphenol, via O - and P-alkylation, cyclization, and coupling. The chirality was transferred from (L)-menthyl to phosphorus, α-carbon, and axis, to achieve excellent diastereoselectivities. During an intramolecular $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction with alkoxyl as the leaving groups, the $\mathrm{C}-\mathrm{O}$ bond was converted to a $\mathrm{C}-\mathrm{C}$ bond. Both phosphine boranes and oxides could be used for the conversions, affording a series of cyclic phosphines.

Chiral bidentate phosphines ligands form chelated complexes with metallic ions and are widely applied in asymmetric catalysis. ${ }^{1}$ These compounds contain either a chiral carbon skeleton or chiral phosphorus. ${ }^{2}$ Compared to those having a sole chiral element, the multiply stereogenic bidentate phosphines (MSBP) are hoped to provide more significant asymmetric circumstances and to ensure better stereoselectivity. ${ }^{3}$

However, the existence of more than one chiral site in a molecule increases the difficulty to acquire MSBP. It is essential to establish a linkage, via $\mathrm{C}-\mathrm{C}$ or $\mathrm{C}-\mathrm{P}$ bonds, to connect chiral blocks together. A precursor suitable for MSPB, which has or will generate multichiral centers, is difficultly designed and obtained. ${ }^{4}$ The instability of the chiral center during a reaction also restricted the availability. In order to avoid annoying racemization, harsh reaction conditions such as ultralow temperature are usually employed. ${ }^{5,6}$ Although catalytic methods to generate chiral center are wellestablished, ${ }^{7}$ their application for the preparation of MSBP is limited. Beside the restriction of reaction scope, the imperfect enantiomeric excess (ee) would be amplified in a multichiral molecule, leading to the formation of more than one diastereoisomer.

Some representative MSBPs are shown in Scheme 1. BeePHOS was prepared via cyclization of a precursor with dilithiated o-phenylenediphosphine. The precursor was obtained via the resolution of a chiral alcohol. ${ }^{8}$ TangPhos was obtained from deprotonation of a P-cycle and coupling. The pure product was obtained via recrystallization of a

Scheme 1. Reported Representative MSBPs, Cleavages of $\mathrm{C}-\mathrm{O}$ Bonds via $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction, and Preparation of P,C,Axial-Stereogenic Menthyl Phosphines

diastereomeric mixture. ${ }^{9}$ BIBOPs and BINAPINE were also obtained via coupling of a cyclized P-precursor. ${ }^{10,11}$ Very recently, Zuo and co-workers reported P-stereogenic BINAP

[^0]that was obtained from axis to P chirality-transferring, via multistep conversions. ${ }^{12}$ The above approaches to generate MSBPs usually involved tedious resolution and included multistep reactions. Sometimes the poisonous, flammable, and very air-sensitive phosphines were employed.
In addition, nucleophilic aromatic substitution ($\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$) reactions offer a convenient access to benzenoid functionalization. However, the utility is limited to the arenes bearing strong EWG and with halides as the leaving groups. ${ }^{13}$ The $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction with alkoxyl as the leaving group is rare, likely due to the high activation energy barrier for breaking the $\mathrm{C}-\mathrm{O}$ bond. ${ }^{14}$ The reported activations of aromatic $\mathrm{C}-\mathrm{O}$ bonds usually use O, N, and S nucleophiles. ${ }^{15}$ To the best of our knowledge, the direct conversions of aromatic $\mathrm{C}-\mathrm{O}$ bonds to $\mathrm{C}-\mathrm{C}$ bonds are quite limited (see Scheme 1). ${ }^{16}$

We were engaged in developing facile routes to acquire MSPBs. ${ }^{17}$ The enclosed work presented a procedure that utilized (L)-menthyl to induce the chiralities on phosphorus, carbon, and axis. An intramolecular $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction was studied, and the conversion of $\mathrm{C}-\mathrm{O}$ bonds to $\mathrm{C}-\mathrm{C}$ bonds was realized (see Scheme 1). The preparation avoided the resolution process, and the title compound had C, P, and axial chiral elements, up to six chiral sites.
The research was started with 2 that was obtained from 2phenylphenol 1 and phosphorus trichloride. Reaction of 2 with ($1 R, 2 S, 5 R$)-menthyl Grignard reagent afforded 3. After hydrolysis in situ, 3 was converted to secondary menthyl phosphine oxide 4, as a mixture of four stereoisomers that were derived from chiral biphenyl axis and phosphorus. Four single peaks were observed at $48.20,37.79,24.47$, and 24.04 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum. The ($1 R, 2 S, 5 R$)-structure of menthyl remained unchanged. ${ }^{17 \mathrm{i}}$ Besides 4, other byproducts were not detected. ${ }^{18}$
When reacted with methyl iodide in ethanol in the presence of $\mathrm{KOH}, 2^{\prime}$-hydroxyl of 4 was methylated and $\mathrm{P}-\mathrm{H}$ remained unchanged, affording 5 in excellent yield. The ${ }^{31} \mathrm{P}$ NMR spectrum indicated that 5 also was formed as a mixture of four stereoisomers. Both O, P-methylated products were not detected when 1 equiv of KOH was used (see Scheme 2A). ${ }^{19}$

Scheme 2. Preparation of Four Stereoisomers of 5 and the Conversion to Two Isomers of 6

Treatment of 5 with oxalyl chloride, followed by reaction with Grignard reagents at $-80^{\circ} \mathrm{C}$ and the addition of borane, afforded 6. During the process, the $R_{\mathrm{P}^{-}}$and S_{P}-stereoisomers of 5 were converted to $R_{\mathrm{p}}-6$; thus, the four stereoisomers were converted to two stereoisomers that were derived from the chiral axis. ${ }^{20}$ When methyl magnesium iodide was used, the two stereoisomers $R_{A}-6 a$ and $S_{A^{-}}-6 a$ were formed in 88% yield, as indicated by the two peaks at 20.35 and 17.50 ppm in the ${ }^{31} \mathrm{P}$

NMR spectrum. Various benzyl Grignard reagents afforded $\mathbf{6 b} \mathbf{- 6 f}$ in excellent yields and diastereomeric ratio $\left(\mathrm{dr}_{\mathrm{P}}\right)$ values (see Scheme 2B).

When the mixture of $R_{\mathrm{A}}-\mathbf{6 a} / S_{\mathrm{A}}-\mathbf{6 a}$ was treated with n-butyl lithium at $-30{ }^{\circ} \mathrm{C}$, followed by the addition of CuCl_{2}, three compounds 7a, 8, and 9 were obtained (see Scheme 3A). It

Scheme 3. Conversion of $R_{A^{-}}-6 a$ and $S_{A^{-}}-6 a$ to Single Stereoisomers of 7, 8, and 9

was interesting that the three products were detected as single stereoisomers, respectively, whose structures were confirmed by NMR spectrum and X-ray diffraction (XRD). Obviously, $R_{\mathrm{P}}, R_{\mathrm{A}}-7 \mathrm{a}$ was initially formed via intramolecular cyclization, which was converted to 8 and 9 via coupling or substitution. The results indicated that the two stereoisomers $R_{A}-6 a / S_{A}-6 a$ derived from chiral axis were converted to the single stereoisomer $R_{A}-7 a$.

Further investigation indicated the cyclization of $R_{\mathrm{A}}{ }^{-} \mathbf{6 a} / \mathrm{S}_{\mathrm{A}^{-}}$ 6a could be realized in the absence of copper. When the reaction was performed at $-30^{\circ} \mathrm{C}$, with n-butyl lithium as a base, $R_{\mathrm{P}}, R_{\mathrm{A}}-7$ a was formed in 90% yield and $>99: 1 \mathrm{dr}_{\mathrm{A}}$ (see Scheme 3B). It was believed that the chiral menthylphosphorus moiety induced and fixed the flexibly axial chirality via a six-membered cycle. As we previously reported, the effective asymmetric induction was also observed for the sevenmembered cycle or metallic linkage. ${ }^{16 c, 19}$

The cyclization of P-benzyl-substituted compounds $\mathbf{6 b} \mathbf{- 6 f}$ cannot occur without a catalyst. In the presence of CuI, the cyclization occurred. The reaction was optimized with $\mathbf{6 b}$ (Scheme 4A). After treatment with LDA and the addition of 1 equiv of CuI, $\mathbf{6 b}$ was converted to a product that gave two signals at 18.89 and 8.11 ppm , in a ratio of 96:4, in a ${ }^{31} \mathrm{P}$ NMR spectrum. The two signals were assigned as the stereoisomers $7 \mathbf{b} / 7 \mathbf{b}^{\prime}$ derived from chiral α-carbon. Quenching the reaction with aqueous ammonia led to a poor ratio of $7 \mathbf{b} / 7 \mathbf{b}^{\prime}$, perhaps because of water freezing at the quenching temperature (run 2). The ratio was improved when quenched with a solution of acetic acid in tetrahydrofuran (THF).

Reducing the amount of CuI could improve the yield and dr_{C} of $7 \mathbf{b}$ (runs 3-5). When 25 equiv of CuI was used, $7 \mathbf{b}$ was formed in 74% yield and $>99: 1 \mathrm{dr}_{\mathrm{C}}$. When the amount of LDA was reduced, the yield became poor (run 6).

Scheme 4. Cyclization of P-Benzyl-Substituted 6

Under the above optimized conditions, various α-substituted compounds $\mathbf{7 b}-7 \mathbf{f}$ were obtained (Scheme 4B). The excellent dr_{C} values that were exhibited by the chiral α-carbon were successfully controlled by the menthyl phosphorus moiety, whose S-configuration was confirmed by XRD analysis of $S_{\mathrm{P}}, S_{\mathrm{C}}, R_{\mathrm{A}}-7 \mathrm{e}$.
The cyclization was proposed as an intramolecular nucleophilic attack of the α-carbon anion toward an adjacent phenyl, and alkoxyl was displaced as a leaving group (see Scheme 5). It was well-known that the cleavage of the $\mathrm{C}_{\text {sp2 }}-\mathrm{O}$

Scheme 5. Proposed Mechanism of Intramolecular Cyclization and the Subsequent Formation of 8 and 9

bond via $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction was difficult. However, the facile cyclization, especially for $\mathbf{6 a}$, probably benefitted from a sixmembered cyclic transition state $\mathbf{1 0}$. The cleavage of the $\mathrm{C}-\mathrm{O}$ bond of $\mathbf{1 0}$ afforded $\mathbf{1 1}$. When the reaction was performed in the presence of CuCl_{2}, the subsequent oxidative coupling of $\mathbf{1 1}$ afforded 8. The formation of 9 probably was relevant to a copper-promoted $\mathrm{C}-\mathrm{H}$ activation and further attack of $\mathbf{1 1}$ to the para-position of $\mathbf{1 0}$.
For P-benzyl-substituted subtrates, the formation of $\mathbf{1 0}$ became difficult, likely because of spatial hindrance on the α carbon anion. The presence of CuI was supposed to decrease the electron cloud density on the benzene ring via the formation of a π-complex 12, and enabling the nucleophilic attack of the α-anion became easy.
In order to dominantly obtain 8, various coupling reagents were examined. When 7a was treated with LDA, followed by the addition of $\mathrm{CuCl}_{2}, \mathbf{8}$ was formed in 39% yield. Other diasteroisomer of $\mathbf{8}$ were not detected (see Table 1, entry 1). ${ }^{21}$
Diiodomethane (DIM) was initially attempted to connect two molecules of 7 a with methylene. However, when 0.5 equiv of DIM was used, 8 was obtained as the major product (Table 1 , entries $2-4$). Iodine was employed as a coupling reagent to afford 8 and 13b (Table 1, entry 5). It was strange when

Table 1. Investigation of the Coupling Reaction of 7 a

$$
\begin{aligned}
& \text { (} \\
& R_{\mathrm{P}} \text {-7a } \\
& S_{P}, S_{P}, R_{A}, R_{A}{ }^{\prime}, S_{C}, S_{C}{ }^{\prime}-8 \\
& 13
\end{aligned}
$$

${ }^{a}$ The yield and dr_{C} were estimated using the ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\} \mathrm{NMR}$ spectrum.
dimethylformamide (DMF) was used: $\mathbf{8}$ was also obtained in 52% yield (Table 1, entry 6).

Tandem reaction of cyclization and coupling, i.e., direct formation of 8 from $\mathbf{6 a}$, could be realized in a diluted solution. When the reaction was carried out in a 1.4 M solution of 6 a in THF, the mixture of 8 and $\mathbf{1 3 b}$ was formed, similar to the results of Table 1 . In a 0.5 M solution, 8 was formed as a major product (see Scheme 3C).

The XRD result of 8 indicated that the chiral α - and α^{\prime} carbon atoms had the same S-configuration, which was similar to 7 e . The chirality on α-carbon was controlled by chiral phosphorus. It could be observed that the bulky menthyl located at a position trans to the α-alkyl group in the X-ray structures of 7 e and 8 (see Schemes 2A and 3B).

The intramolecular cyclization of phosphines oxide $R_{P}-\mathbf{1 4 a}$ $(\mathrm{R}=\mathrm{Me})$ also occurred in the absence of CuI, and the two axial stereoisomers were converted to the same $R_{P}, S_{\mathrm{A}}-\mathbf{1 5 a}$ in $>99: 1 \mathrm{dr}_{\mathrm{A}}$, as indicated by the two peaks of $R_{\mathrm{P}}-14 \mathrm{a}$ at 45.17 and 42.32 ppm becoming one peak at 33.85 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum. Similarly, S_{P} - 14 a afforded $S_{\mathrm{P}}, R_{\mathrm{A}}-\mathbf{1 5 a}$ in 88% yield and $<1: 99 \mathrm{dr}_{\mathrm{A}}$. The structures of $R_{\mathrm{P}}, S_{\mathrm{A}}-\mathbf{1 5 a}$ and $S_{\mathrm{P}}, R_{\mathrm{A}}-\mathbf{1 5 a}$ were confirmed by XRD (see Scheme 6A).

After deprotonation and treatment with $\mathrm{CuCl}_{2}, R_{\mathrm{P}}, \mathrm{S}_{\mathrm{A}}-\mathbf{1 5 a}$ was converted to 16 in excellent dr_{C} (Scheme 6B). The sole peak at 35.87 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum indicated that only one stereoisomer was formed. The bs peak at 4.33 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum indicated that the two α-C atoms have the same configuration. The structure of 16 was also confirmed by XRD.

Similar to $\mathbf{7 b} \mathbf{- 7}$, the cyclization of P-benzyl-substituted $\mathbf{1 4 b} \mathbf{- 1 4 f}$ did not occur in the absence of a catalyst. When catalyzed by CuI, the reaction readily occurred to afford $\mathbf{1 5 b} \mathbf{-}$ 15e in moderate to good yields (see Scheme 7). As seen in run 3 , quenching the reaction of 14 c at room temperature afforded $\mathbf{1 5 c} / \mathbf{1 5} \mathrm{c}^{\prime}$ in 78:22 dr_{C}, which indicated that the chirality on α carbon was influenced by temperature. The dr_{C} was improved to $>99: 1$ at a reduced quenching temperature (run 2).

The cyclization was supposed to proceed via a mechanism similar to that described in Scheme 5, except the benzyloxy was displaced by the α-C anion. The poor yield of $\mathbf{1 5 f}$ was ascribed to the electronically enriched m-methoxyl benzyl, which behaved as a worse leaving group. XRD analysis of the $S_{\mathrm{P}}, S_{\mathrm{C}}, S_{\mathrm{A}}-15 \mathrm{c}$ and $S_{\mathrm{P}}, S_{\mathrm{C}}, S_{\mathrm{A}}-15 \mathrm{~d}$ confirmed the S-configuration on α-C.

Scheme 6. Cyclization/Coupling of $R_{P}-14 \mathrm{a}$ and $S_{\mathrm{P}}-14 \mathrm{a}$
Part A

Scheme 7. Cyclization of 14 to Form 15

In summary, a new family of $P, C, a x i a l-$ stereogenic menthyl phosphines was obtained, starting from 2-phenylphenol, via four pots of reactions. The secondary phosphine oxide 4 was formed from a reaction with (L)-menthyl Grignard reagent, which was converted to 5 via O-alkylation. After treatment with oxalyl chloride and reaction with Grignard reagents, the R_{P} and S_{P} stereoisomers of 5 were converted to $R_{P}-6$. An intramolecular cyclization of $\mathbf{6 a}$ occurred when deprotonated, and the two axial stereoisomers of R_{P} - $\mathbf{6 a}$ were converted to single $R_{\mathrm{P}}, R_{\mathrm{A}}-7 \mathbf{a}$. In the presence of diiodomethane, the coupling of $R_{\mathrm{A}}-7 \mathbf{a}$ afforded 8. 8 could be directly formed from $R_{P}-6$ in a diluted solution. The intramolecular cyclization of P-benzyl-substituted 6 was realized when catalyzed by CuI , affording α-substituted 7 in excellent diastereoselectivity. Similar cyclization and coupling also occurred for the corresponding phosphine oxides 14 , which afforded $S_{\mathrm{p}}, R_{\mathrm{A}^{-}}$ $15 \mathrm{a}, R_{\mathrm{P}}, S_{\mathrm{A}}-15 \mathrm{a}$, and 16 as single diastereoisomers.
Our research has provided a facile and convenient method for the formation of a new family of chiral phosphine ligands. The various structures and multiply chiral elements of the compounds could enable a fine-tuning of the asymmetric induction. In addition, because of the potential ability to be modified, the products could be further converted to more diverse structures suitable for asymmetric catalysis.

- ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c02861.

Experimental details; photocopies of ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$, and ${ }^{13} \mathrm{C}$ NMR spectra (PDF)

Accession Codes

CCDC 2011387, 2011393-2011395, 2011403, 2011404, 2011407, 2011654, and 2016257 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

- AUTHOR INFORMATION

Corresponding Authors

Chang-Qiu Zhao - College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China; © orcid.org/0000-0002-9016-8151; Email: literabc@hotmail.com
Qiang Li - College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China; © orcid.org/0000-0002-8687-0773; Email: tiamochem@ hotmail.com

Authors

Bing-Xia Yan - College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
Yu Zhang - College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
Hong-Xing Zheng - College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
Jing-Jing Ye - College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
Xiao-Ning Wang - College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.orglett.0c02861

Author Contributions

${ }^{\nabla}$ B.-X.Y. and Y.Z. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of the Natural Science Foundation of China (Grant No. 21802062) and the Natural Science Foundation of Shandong Province (Grant Nos. ZR2016BM18 and ZR2018PB008).

- REFERENCES

(1) (a) Zhou, Q.-L. In Privileged Chiral Ligands and Catalysts; Zhou, Q.-L., Ed.; Wiley-VCH: Weinheim, Germany, 2011; p 6. (b) Busacca, C. A.; Senanayake, C. H. In Comprehensive Chirality; Carreira, E. M., Yamamoto, H., Eds.; Elsevier: Amsterdam, 2012; pp 167-216. (c) Fernandez-Perez, H.; Etayo, P. A.; Panossian; Vidal-Ferran, A. Chem. Rev. 2011, 111, 2119-2176. (d) Staubitz, A.; Robertson, A. P.; Sloan, M. E.; Manners, I. Chem. Rev. 2010, 110, 4023-4078.
(e) Tang, W.-J.; Zhang, X.-M. Chem. Rev. 2003, 103, 3029-3070.
(f) Kollăr, L.; Keglevich, G. Chem. Rev. 2010, 110, 4257-4302.
(g) Dutartre, M.; Bayardon, J.; Juge, S. Chem. Soc. Rev. 2016, 45, 5771-5794. (h) Zhang, J.; Yu, P.; Li, S.-Y.; Sun, H.; Xiang, S.-H.; Wang, J.; Houk, K. N.; Tan, B. Science 2018, 361, eaas8707.
(2) (a) Imamoto, T.; Sugita, K.; Yoshida, K. J. Am. Chem. Soc. 2005, 127, 11934-11935. (b) Landert, H.; Spindler, F.; Wyss, A.; Blaser, H. U.; Pugin, B.; Ribourduoille, Y.; Gschwend, B.; Ramalingam, B.; Pfaltz, A. Angew. Chem., Int. Ed. 2010, 49, 6873-6876. (c) Knowles, W. S.; Sabacky, M. J.; Vineyard, B. D.; Weinkauff, D. J. J. Am. Chem. Soc. 1975, 97, 2567-2568. (d) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946-5952. (e) Knowles, W. S. Angew. Chem., Int. Ed. 2002, 41, 1998-2007.
(3) (a) Gao, W.; Lv, H.; Zhang, X.-M. Org. Lett. 2017, 19, 28772880. (b) Wang, X.; Buchwald, S. L. J. Org. Chem. 2013, 78, 34293433. (c) Geng, H.-L.; Huang, K.-X.; Sun, T.; Li, W.; Zhang, X.-W.; Zhou, L.; Wu, W.-J.; Zhang, X.-X. J. Org. Chem. 2011, 76, 332-334. (d) Zhou, M.; Liu, T.-L.; Cao, M.; Xue, Z.-J.; Lv, H.; Zhang, X.-X. Org. Lett. 2014, 16, 3484-3487. (e) Yang, H.-L.; Wang, E.-F.; Yang, P.; Lv, H.; Zhang, X.-M. Org. Lett. 2017, 19, 5062-5065. (f) Phan, D. H.; Kim, B.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 15608-15609. (g) Zhong, Y.; Zhao, X.-Y.; Gan, L.; Hong, S.-H.; Jiang, X.-X. Org. Lett. 2018, 20, 4250-4254. (h) Sun, J.-W.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 4568-4569. (i) Song, B.; Yu, C.-B.; Huang, W.-X.; Chen, M.-W.; Zhou, Y.-G. Org. Lett. 2015, 17, 190-193.
(4) Grabulosa, A. P-Stereogenic Ligands in Enantioselective Catalysis; Grabulosa, A., Ed.; Royal Society of Chemistry: Cambridge, U.K., 2011.
(5) (a) Kortmann, F. A.; Chang, M.-C.; Otten, E.; Couzijn, E. P. A.; Lutz, M.; Minnaard, A. J. Chem. Sci. 2014, 5, 1322-1327. (b) Wang, W.-M.; Liu, L.-J.; Zhao, C.-Q.; Han, L.-B. Eur. J. Org. Chem. 2015, 2015, 2342-2345. (c) Berger, O.; Montchamp, J. L. Angew. Chem., Int. Ed. 2013, 52, 11377-11380. (d) Xu, Q.; Zhao, C. Q.; Han, L. B. J. Am. Chem. Soc. 2008, 130, 12648-12655.
(6) (a) Katagiri, K.; Danjo, H.; Yamaguchi, K.; Imamoto, T. Tetrahedron 2005, 61, 4701-4707. (b) Haynes, R. K.; Lam, W. W. L.; Yeung, L.-L. Tetrahedron Lett. 1996, 37, 4729-4732. (c) Sun, Y.-M.; Xin, N.-N.; Xu, Z.-Y.; Liu, L.-J.; Meng, F.-J.; Zhang, H.; Fu, B.-C.; Liang, Q.-J.; Zheng, H.-X.; Sun, L.-J.; Zhao, C.-Q.; Han, L.-B. Org. Biomol. Chem. 2014, 12, 9457-9465. (d) Henderson, W. A.; Streuli, C. A. J. Am. Chem. Soc. 1960, 82, 5791-5794. (e) Ikuta, S.; Kebarle, P.; Bancroft, G. M.; Chan, T.; Puddephatt, R. J. J. Am. Chem. Soc. 1982, 104, 5899-5902. (f) Ikuta, S.; Kebarle, P. Can. J. Chem. 1983, 61, 97-102. (g) Imamoto, T.; Saitoh, Y.; Koide, A.; Ogura, T.; Yoshida, K. Angew. Chem., Int. Ed. 2007, 46, 8636-8639.
(7) (a) Ma, Y.-N.; Yang, S.-D. Chem. Rec. 2016, 16, 977-986. (b) Imamoto, T.; Yashio, K.; Crépy, K. V. L.; Katagiri, K.; Takahashi, H.; Kouchi, M.; Gridnev, I. D. Organometallics 2006, 25, 908-914.
(8) Shimizu, H.; Saito, T.; Kumobayashi, H. Adv. Synth. Catal. 2003, 345, 185-189.
(9) (a) Tang, W.-J.; Zhang, X.-M. Angew. Chem., Int. Ed. 2002, 41, 1612-1614. (b) Tang, W.-J.; Wang, W.-M.; Zhang, X.-M. Angew. Chem., Int. Ed. 2003, 42, 943-946.
(10) (a) Tang, W.-J.; Qu, B.; Capacci, A. G.; Rodriguez, S.; Wei, X.D.; Haddad, N.; Narayanan, B.; Ma, S.-L.; Grinberg, N.; Yee, N. K.; Krishnamurthy, D.; Senanayake, C. H. Org. Lett. 2010, 12, 176-179. (b) Tang, W.-J.; Capacci, A. G.; White, A.; Ma, S.-L.; Rodriguez, S.; Qu, B.; Savoie, J.; Patel, N. D.; Wei, X.-D.; Haddad, N.; Grinberg, N.; Yee, N. K.; Krishnamurthy, D.; Senanayake, C. H. Org. Lett. 2010, 12, 1104-1107.
(11) Tang, W.; Wang, W.; Chi, Y.; Zhang, X. Angew. Chem., Int. Ed. 2003, 42, 3509.
(12) Xue, Q.-Q.; Huo, S.-F.; Wang, T.-Y.; Wang, Z.-M.; Li, J.-L.; Zhu, M.-F.; Zuo, W.-W. Angew. Chem., Int. Ed. 2020, 59, 8153-8159.
(13) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, 5th ed.; Springer, 2008.
(14) (a) Sedaghat-Herati, M. R.; McManus, S. P.; Harris, J. M. J. Org. Chem. 1988, 53, 2539-2543. (b) Gallardo, I.; Guirado, G.; Marquet, J. J. Org. Chem. 2002, 67, 2548-2555. (c) Egris, R.; Villacampa, M.; Menéndez, J. C. Chem. - Eur. J. 2009, 15, 1093010939.
(15) (a) Cornella, J.; Zarate, C.; Martin, R. Chem. Soc. Rev. 2014, 43, 8081-8097. (b) Mishra, A. K.; Verma, A.; Biswas, S. J. Org. Chem.

2017, 82, 3403-3410. (c) Liu, W.; Li, J.; Huang, C.-Y.; Li, C.-J. Angew. Chem., Int. Ed. 2020, 59, 1786-1796. (d) Tay, N. E. S.; Nicewicz, D. A. J. Am. Chem. Soc. 2017, 139, 16100-16104. (e) Wang, X.; Li, C.; Wang, X.; Wang, Q.; Dong, X.-Q.; Duan, A.; Zhao, W. Org. Lett. 2018, 20, 4267-4272.
(16) (a) Holmberg-Douglas, N.; Nicewicz, D. A. Org. Lett. 2019, 21, 7114-7118. (b) Wenkert, E.; Michelotti, E. L.; Swindell, C. S. J. Am. Chem. Soc. 1979, 101, 2246-2247. (c) Mohar, B.; Čusak, A.; Modec, B.; Stephan, M. J. Org. Chem. 2013, 78, 4665-4673.
(17) (a) Nie, S.-Z.; Zhou, Z.-Y.; Wang, J.-P.; Yan, H.; Wen, J.-H.; Ye, J.-J.; Cui, Y.-Y.; Zhao, C.-Q. J. Org. Chem. 2017, 82, 9425-9434. (b) Liu, L.-J.; Wang, W.-M.; Yao, L.; Meng, F.-J.; Sun, Y.-M.; Xu, H.; Xu, Z.-Y.; Li, Q.; Zhao, C.-Q.; Han, L.-B. J. Org. Chem. 2017, 82, 11990-12002. (c) Qiu, M.-R.; Zheng, H.-X.; Ye, J.-J.; Yan, B.-X.; Zhao, C.-Q.; Li, Q. Org. Biomol. Chem. 2020, 18, 3017-3021. (d) Yan, B.-X.; Zheng, H.-X.; Ye, J.-J.; Qiu, M.-R.; Zhang, Y.; Zhao, C.-Q.; Li, Q. Asian J. Org. Chem. 2020, 9, 566-570. (e) Wang, J.-P.; Nie, S.-Z.; Zhou, Z.-Y.; Ye, J.-J.; Wen, J.-H.; Zhao, C.-Q. J. Org. Chem. 2016, 81, 7644-7653. (f) Zhou, Z.-Y.; Zhang, H.; Yao, L.; Wen, J.-H.; Nie, S.-Z.; Zhao, C.-Q. Chirality 2016, 28, 132-135. (g) Zhang, H.; Sun, Y.-M.; Zhao, Y.-L.; Zhou, Z.-Y.; Wang, J.-P.; Xin, N.-N.; Nie, S.Z.; Zhao, C.-Q.; Han, L.-B. Org. Lett. 2015, 17, 142-145. (h) Zhang, H.; Sun, Y.-M.; Yao, L.; Ji, S.-Y.; Zhao, C.-Q.; Han, L.-B. Chem. - Asian J. 2014, 9, 1329-1333. (i) Ye, J.-J.; Yan, B.-X.; Wang, J.-P.; Wen, J.H.; Zhang, Y.; Qiu, M.-R.; Li, Q.; Zhao, C.-Q. Org. Chem. Front. 2020, 7, 2063-2068.
(18) When 2 obtained in situ from 2-phenylphenol and phosphorus trichloride was used, and menthyl Grignard reagent was used in excess, the reaction gave similar results. The preparation of 2 could be found in the literature. See: (a) Kadyrov, R.; Heinicke, J.; Kindermann, M. K.; Heller, D.; Fischer, C.; Selke, R.; Fischer, A. K.; Jones, P. G. Chem. Ber. 1997, 130, 1663-1670. (b) Pastor, S. D.; Spivack, J. D.; Steinhuebel, L. P. Phosphorus Sulfur Silicon Relat. Phosphorus Sulfur Relat. Elem. 1987, 31, 71-76.
(19) Zhang, Y.; Nie, S.-Z.; Ye, J.-J.; Wang, J.-P.; Zhou, M.-M.; Zhao, C.-Q.; Li, Q. J. Org. Chem. 2019, 84, 8423-8439.
(20) Ye, J.-J.; Nie, S.-Z.; Wang, J.-P.; Wen, J.-H.; Zhang, Y.; Qiu, M.R.; Zhao, C.-Q. Org. Lett. 2017, 19, 5384-5387.
(21) The simultaneously formed α-chlorinated 13a was confirmed by the peak at 16.03 ppm in ${ }^{31} \mathrm{P}$ NMR and the multiplet peak of $\alpha-\mathrm{H}$ at 3.81 ppm in the proton NMR spectrum.

[^0]: Received: August 27, 2020

