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® Multi-step tandem reaction system for isatoic anhydrides : Evodiamine, 70%

® Novel and efficient strategy for the synthesis of Evodiamine !
® Readily available substrates and good functional tolerance .

Abstract: A novel and efficient synthesis of isatoic anhydride derivatives was
developed via palladium-catalyzed multi-step tandem
carbonylation/N-dealkylation/carbonylation reaction with alkyl as leaving group and
tertiary anilines as nitrogen nucleophiles. This approach features good functional
group compatibility and readily available starting materials. Furthermore, it provided
a convenient approach for the synthesis of biologically and medicinally useful
Evodiamine.

Carbonylation, the incorporation of CO into an organic molecule, is now widely
recognized as an attractive strategy in organic synthesis, which meets the

requirements of “atom economy” and “green chemistry”.! In recent decades, much
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progress has been made in C-H carbonylation.” In this area, palladium-catalyzed
oxidation carbonylation reactions using CO as simplest C-1 unit have proven to be
one of the most important methods for the synthesis of many carbonyl-containing
compounds. On the other hand, C-N bond activation has attracted more attention and
become a hot research topic in organic synthesis, in which most efforts were focused
on the amination transformation.’ Tertiary anilines are valuable commodity chemicals
and useful core structures for agrochemicals, pharmaceutical ingredients, and
functional materials.? As a typical example, tertiary anilines have also been utilized in
C-N bond cleavage transformations.” However, most C-N bond activation of tertiary
anilines has focused on the cross-coupling of the Csp?-N bond with organometallic
reagents.® Therefore, the development of a simple, efficient, and atom-economical
methods to access diverse functionalized tertiary anilines remains highly desirable.
Isatoic anhydride is an important scaffold found in many natural products and
valuable pharmaceuticals with various biological activities.” Consequently,
considerable efforts have been made to develop efficient methods for the synthesis of
isatoic anhydride derivatives. However, present methods for the synthesis of isatoic
anhydrides involve cyclization of anthranilic acid by highly toxic chloroformate or
triphosgene.® Based on our continuous interest in trasition-metal-catalyzed oxidative
carbonylation and C-N bond activition,” we designed a reasonable approach to
synthesize isatoic anhydrides utilizing palladium-catalyzed multi-step tandem
carbonylation/N-dealkylation/carbonylation reaction with alkyl as leaving group and

tertiary anilines as nitrogen nucleophiles (Scheme 1).
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Scheme 1. Strategies towards Syntheses of Isatoic Anhydrides.

We began our investigation by utilizing N, N-dimethylaniline(1a) as a model
substrate in the presence of 1 atm CO/O,, using PdCl, as catalyst and Cu(OAc), as
oxidant in a mixed solvent of toluene and DMF (10:1) at 100 °C, which afforded 2a in
only 27% (Table 1, entry 1). Gratifyingly, the experiment results showed that the
yield increased obviously when PdCl,(CH;CN), was used as a catalyst (Table 1, entry
4). Furthermore, O, was vital to the reaction, the corresponding yield was decreased
to 17% without the use of O, (Table 1, entry 7). By switching different oxidants, we
found that other common oxidants such as CuO, BQ, K,S,05, Ag,CO;3 and CuCl,
turned out to be unfavorable in the system (Table 1, entries 8-12). No product was
detected without the addition of Cu(OAc), (Table 1, entry 13). It is worth noting that
other solvents including toluene, DMF, DMSO, CH;CN and dioxane are less effective
in the system (Table 1, entries 14-18). Furthermore, the ratio variation of the mixed
solvent also led to lower yields (Table 1, entries 19 and 20). Decreasing and
increasing the reaction temperature slowed the reaction, affording 45% and 55%
yields of 2a (Table 1, entries 21 and 22).

Table 1. Optimization of the Reaction Conditions “
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Me

Me
' PACIy(CH3CN), (10 mol% N.z0
©/N‘Me Cu(OAc), (2: eqtaJiv.)?zF’(hMe/DMli (10:1) @(l/\or
CO/0, (1:1), 100 °C o
1a 2a
entry [Pd] oxidant solvent yield? (%)

1 PdCl, Cu(OAc), PhMe/DMF (10:1) 27
2 Pd(OAc), Cu(OAc), PhMe/DMF (10:1) 0

3 PdCl,(PPh;), Cu(OAc), PhMe/DMF (10:1) 49
4 PdCl,(CH3;CN), Cu(OAc), PhMe/DMF (10:1) 80
5 PdBr, Cu(OAc), PhMe/DMF (10:1) Trace
6 Pdl, Cu(OAc), PhMe/DMF (10:1) Trace
7¢ PdCl,(CH;CN), Cu(OAc), PhMe/DMF (10:1) 17
8 PdCl,(CH;CN), CuO PhMe/DMF (10:1) 0

9 PdCI,(CH;CN), BQ PhMe/DMF (10:1) 0
10 PdCl,(CH;CN), K,S,05 PhMe/DMF (10:1) 0
11 PdCl,(CH;CN), Ag,CO; PhMe/DMF (10:1) 0
12 PdCl1,(CH;CN), CuCl, PhMe/DMF (10:1) Trace
13 PdCI1,(CH3CN), - PhMe/DMF (10:1) 0
14 PdCl1,(CH3CN), Cu(OAc), PhMe 0
15 PdCl,(CH;CN), Cu(OAc), DMF 10
16 PdCl,(CH;CN), Cu(OAc), DMSO

17 PdCl,(CH;CN), Cu(OAc), CH;CN

18 PdCI,(CH3CN), Cu(OAc), dioxane

19 PdCl,(CH;CN), Cu(OAc), PhMe/DMF (5:1) 37
20 PdCl,(CH;CN), Cu(OAc), PhMe/DMF (1:1) 21
214 PdCI,(CH;CN), Cu(OAc), PhMe/DMF (10:1) 45
22¢ PdCl,(CH;CN), Cu(OAc), PhMe/DMF (10:1) 55
23/ PdCI,(CH;CN), Cu(OAc), PhMe/DMF (10:1) 12

“Reaction conditions: unless otherwise noted, all reactions were performed with 1a (0.2 mmol),

[Pd] (10 mol %), oxidant (1 equiv), CO/O; (1:1) 1 atm, 100 °C, 24 h. *Isolated yield. “‘Reactions

were carried out without O,. The reaction temperature is 90 °C. ¢The reaction temperature is 110

°C./The loading of Cu(OAc), is 10 mol %.

With the optimized conditions in hand, the carbonylation of a variety of N,
N-dialkylanilines were tested (Table 2). N, N-dimethylanilines substituted with

electron-donating (methyl, methoxy and tert-butyl) groups in different positions all
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gave the corresponding substituted isatoic anhydrides in good yields (2b-2g). N,
N-dimethylanilines bearing halogens and electron-withdrawing substituents reacted
satisfactorily to give the corresponding products in moderate yields (2h-20).
Interestingly, when N-ethyl-N-methylaniline was used as substrate, two types of
products 2p and 2a were obtained in 46% and 21% yields respectively, indicating that
the less sterically hindered alkyl group is much more facile for cleavage.’’ The isatoic
anhydride 2q from the carbonylation of N, N-dimethylnaphthalen-2-amine 1q was
observed as the only product in 66% yield. Moreover, the carbonylation of
I-methyl-1,2,3,4-tetrahydroquinoline 1r and 1,6-dimethyl-1,2,3,4-tetrahydroquinoline
1s proceeded smoothly to give the tricyclic isatoic anhydrides 2r and 2s in 68% and
74% yields respectively. To our surprise, N, N-dimethylnaphthalen-1-amine afforded
the corresponding isatoic anhydride 2t in 45% yield, in which
1-methylbenzo[cd]indol-2(1H)-one 3t was detected as a byproduct.’/

Table 2. Palladium-Catalyzed Multi-step Tandem

Carbonylation/N-dealkylation/Carbonylation Reaction of N, N-dimethyl

Anilines®
R2
« N 40 PdCI,(CH3CN), (10 mol%) \r
R P *Me Cu(OAc), (1 equiv.), PhMe/DMF (10:1)
CO0/0, (1:1), 100 °C
1
I\I/Ie Me l\llle
N\?O N N N\?O
[:[ Jo) /©£|/ e}
\ I {
0 0
2a, 80% 2b, 82% 2c 80% 2d, 79%
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'Yle OMe I\I/Ie I\I/Ie F I\I/Ie
“F° e 0 e
0 o] o) o]
MeO | ‘ t-Bu ‘ ‘
o) 0 o) 0
2e, ﬁ')e% 2f, 70% 2g, 75% 2h,57%
N\fo I\Ille I\I/Ie I\|/Ie
N._O FiC N0 -0
X li ° \or \or \0(
0 FsC | | NC |
2i, X =F, 55% o O ©
2j, X=Cl, 71% 21, 60% 2m, 62% 2n, 70%

2k, X = Br, 69%
Et/Me N_-.O

I\I/Ie | 'Yle o \r
N__.O N__O —
\or \o( \O( R? | °
MeO,C | ‘ \ 0
0 0 ©

2r,R®=H, 68%
20, 68% 2pl2a 67%(2.2:1) 2q, 66% 2s, R% = Me, 74%

M
Me., .Me O Vie 0\ Me
N -0 N
PdCl,(CH3CN), (10 mol%) O Y
+
OO Cu(OAc), (1 equiv.), PhMe/DMF (10:1) | © OO
o)

CO/0, (1:1), 100 °C
1t 2t, 45% 3t, 18%

Gram Scale Reaction

I\I/Ie

I N__O

N PdCI,(CH3CN), (10 mol%) \f

©/ Cu(OAc), (1 equiv.), PhMe/DMF (10:1) | 0
CO/0, (1:1), 100 °C o)

1a, 9 mmol 2a, 4 mmol, 45%

“Reaction conditions: 1 (0.2 mmol), PdCL(CH;CN), (10 mol %), Cu(OAc), (0.2 mmol),
PhMe/DMF (10: 1) (2.5 mL), CO/O, (1:1) 1 atm, 100 °C, 24 h. Yields referred to isolated yields.
Furthermore, this protocol could also be applied to N, N-dialkylanilines with
different N-alkyl substituents (Scheme 2). When N, N-diethylaniline and N,
N-diisopropylaniline were employed as a substrates, the reaction also took place
smoothly to furnish the desired isatoic anhydrides 2p and 2u in 55% and 37% yields
(Scheme 2, Eq. 1 and Eq. 2). The reaction of N, N-dibenzylaniline afforded the
desired product 2v in 41% yield as well as 38% yield of benzaldehyde, which
indicated that the benzyl group was converted into benzaldehyde by C-N bond

cleavage in our reaction system (Scheme 2, Eq. 3).7?
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4 Scheme 2. Palladium-Catalyzed Multi-step Tandem
5

6

7 Carbonylation/N-dealkylation/Carbonylation Reaction of N, N-dialkyl Anilines®
8

9

10 (

N_O
1 Ne_ PdCl,(CH3CN), (10 mol%) ¥
12 (1) Cu(OAc), (1 equiv.), PhMe/DMF (10:1) 0

13 CO/0, (1:1), 100 °C 0
14 2p, 55%
15

16 NY PdCl,(CH3CN), (10 mol%) NYO
17 (2) .
Cu(OAc), (1 equiv.), PhMe/DMF (10:1) o)
COJ/0, (1:1), 100 °C o

20 2u, 37%
21 Ph

r

o
2 ©/N\/Ph PdCIy(CH3CN); (10 mol%) NYO e
5 +
2 (3) Cu(OAc), (1 equiv.), PhMe/DMF (10:1) CKI(O ©
o

25 CO/0, (1:1), 100 °C

26 2v, 41% 38%

29 “Reaction conditions: N, N-dialkylanilines (0.2 mmol), PdCl,(CH;CN), (10 mol %), Cu(OAc),
31 (0.2 mmol), toluene/DMF (10: 1) (2.5 mL), CO/O, (1:1) 1 atm, 100 °C, 24 h. Yields referred to
34 isolated yields.

Scheme 3. Subsequent Decarboxylative Transformations

40 HCI (15%), 100 °C
41 99%

45 o 100 °C, 89%

49 NH3'H20, CH3CN
50 rt, 97%
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/

To demonstrate the utility of this protocol, isatoic anhydride 2a was easily
56 transformed into N-methylanthranilic acid A, ethyl 2-(methylamino)benzoate B

59 and 2-(methylamino)benzamide C (Scheme 3). Through our protocol, we could
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achieve these products in high yields starting from isatoic anhydride 2a via a
series of decarboxylative transformations.

In order to highlight the synthetic application of the carbonylation product
isatoic anhydrides, we successfully converted our product 2a to the clinically
useful Evodiamine with 70% overall yield (Scheme 4).”3 Compared with
previously reported procedures for the synthesis of Evodiamine, our synthetic

protocol is much more facile and convenient.’#

PhMe, 120 °C
4a 95% Evodiamine, 70%

\f (%/\/ TsOH (30 mol%)
\/\EQ HC(OEt)3 (1.5 equiv.)

CH4CN, rt

Scheme 4. Synthesis of Evodiamine

To gain some preliminary understanding of the reaction mechanism, control
experiments were carried out. Firstly, no desired product was detected by utilizing
N-methylaniline as the substrate under the standard conditions, which indicated
that this transformation is different from Guan’s research for the synthesis of
isotoic anhydrides starting from N-methylaniline (Scheme 5, Eq. 1)./° Furthermore,
when 1a was used to react with MeOH (5 eq.) using 1.2 eq. of PdCl,(CH3;CN),
corresponding oxidative C-H alkyloxycarbonylation product 5a was detected,
indicating that the N, N-dimethylamino group could be directly used as the
directing group (Scheme 5, Eq. 2). Under the standard conditions,
2-(dimethylamino)benzoic acid 6a underwent carbonylation reaction smoothly to
afford 2a in 75% yield, indicating that 6a was the intermediate in the catalytic

system (Scheme 5, Eq. 3). Additionally, no product was detected starting from 6a
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without the use of CO, which implied that the carbonyl source is not from the
methyl group of DMF (Scheme 5, Eq. 4). To our delight, no reaction occured
starting from 1-methylindoline-2,3-dione 7a, a possible precursor of 2a, indicating
that 7a was not the intermediate in this catalytic system (Scheme 5, Eq. 5).

Scheme S. Preliminary Mechanistic Studies

| N._-O
NH PdCI(CH3CN), (10 mol%) @El/\or
1
) ©/ Cu(OAc), (1 equiv.), PhMe/DMF (10:1) I

0.2 mmol CO/O; (1:1), 100 °C 2and
I
I . N
N PdCl,(CH3CN), (1.2 equiv.) ©/\r
2) - OMe
©/ PhMe/DMF (10:1), CO, MeOH (5 equiv.) 0|
1a, 0.2 mmol 100°C 5a, 45%
I IL o
N PdCl,(CH3CN), (10 mol%) @Er\?
(3) @[ Cu(OAc), (1 equiv.), PhMe/DMF (10:1) o
COOH CO0/0, (1:1), 100 °C OI
6a, 0.2 mmol 2a, 75%
I IL o
N PdCI,(CH3CN), (10 mol%) @Er\?
4) @E Cu(OAc), (1 equiv.), PhMe/DMF (10:1) e}
COOH 0, (1:1), 100 °C o‘
6a, 0.2 mmol without CO 2a,n.d

/ |
N PdCly(CH3CN), (10 mol%) N\?O
() @E‘gzo Cu(OAc), (1 equiv.), PhMe/DMF (10:1) ©/\|/o
o 0, (1:1), 100 °C OI
7a, 0.2 mmol without CO 2a,n.d

Huang et al. proposed that C-N bond activation was promoted by copper and
oxygen. The above experimental results induced us to propose a mechanism for this
novel palladium-catalyzed multi-step tandem
carbonylation/N-dealkylation/carbonylation reaction (Scheme 6)./9-/¢ Taking N,
N-dimethylaniline 1a as an example, the electrophilic palladation of 1a afforded the

intermediate II, followed by CO insertion and reductive elimination produced

intermediate 6a. Then, 6a underwent C-N bond cleavage in the presence of copper
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salts and O,, giving the intermediate IV, which further underwent transmetalation
with palladium catalyst and sencondary CO insertion to form the intermediate VI. The
subsequent nucleophilic reaction and reductive elimination afforded the annulation
product 2a and released Pd(0) species, which was oxidized by copper salts and
oxygen to regenerate Pd(II).
Scheme 6. Proposed mechanism

@[ ~

1] CO
1a+CO
ACZO
Pd(OAC)z Cg( Pd—OH
o

n
u(OAc),

Pd(0)

\
N
Cu cu', 0, ~ 6a
OH OH
O o
/ Pd(OAC) U(OAC)2 02

d(0

“PdOAc “
[I J \/‘

\ o
v
P
o
co Cg(copdom

(0]

N

a

o

In conclusion, we have developed a novel palladium-catalyzed multi-step tandem
carbonylation/N-dealkylation/carbonylation reaction of tertiary aniline to form isotoic
anhydrides. Moderate to good yields were obtained and a variety of functional groups

were tolerated. This transformation provides an effective and straightforward method
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towards the synthesis of biologically and medicinally useful Evodiamine from
commercial and simple substrate N, N-dimethylaniline. Preliminary mechanism
studies revealed that the N, N-dimethylamino group could be directly used as the
directing group. A detailed mechanistic investigation and further application in
C-N bond cleavage transformations are currently underway in our laboratory.
EXPERIMENTAL SECTION

General Information. All purchased reagents and solvents were used without further
purification unless otherwise noted. Melting points were measured with a melting
point instrument and were uncorrected. 'H and 3C NMR spectra were recorded using
a Bruker DRX-400 or Bruker DRX-600 spectrometer using CDCl; or DMSO-d; as
solvent. The chemical shifts are referenced to signals at 7.26 and 77.0 ppm,
respectively. TLC was performed by using commercially prepared 100-400 mesh

silica gel plates and visualization was effected at 254 nm.

General Procedure for the Synthesis of N-methyl isatoic anhydrides.”” The
mixture of 1 (0.2 mmol, 1.0 equiv), Cu(OAc), (0.2 mmol , 1.0 equiv) and
PdCl,(CH;CN), (0.02 mmol, 0.1 equiv) was stirred in PhMe/DMF(10:1) (2.5
mL/mmol) in an oil bath at 100 °C, in a 20 mL tube with a balloon CO/O, (1:1).
When the reaction was completed (detected by TLC), the mixture was cooled to room
temperature. The reaction was quenched with HO (10 mL) and extracted with EtOAc
(3x10 mL) or CH,Cl, (3 x 10 mL). The combined organic layers were dried over
anhydrous Na,SO, and then evaporated in vacuo. The residue was purified by column

chromatography on silica gel to afford the corresponding isatoic anhydrides 2 with
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CH,Cl, /ethyl acetate as the eluent (the synthesis of other compound 2 was previously
reported).’’

Experimental  Procedure for Evodiamine. (a) The mixture of
1-Methyl-2H-benzo[d][1,3]oxazine-2,4(1 H)-dione (2a) (1.0 mmol) and
2-(1H-indol-3-y/)ethan-1-amine (1.0 mmol) were stirred in CH3CN in an oil bath at
room temperature for 8 h. The desired products 4a were obtained in 95% yield; (b)
The mixture of 4a (1.0 mmol), TsOH (0.3 mmlol) and triethoxy methane (1.5 mmol)
were stirred and refluxed in toluene in an oil bath at 120 °C. The desired products
Evodiamine were obtained in 74% yield after purified by column chromatography on
silica gel with mixture of petroleum ether and ethyl acetate.

Experimental Procedure for Gram Scale Reaction

The mixture of 1a (1089.0 mg, 9.0 mmol, 1.0 equiv), Cu(OAc), (1620.0 mg, 9.0
mmol, 1.0 equiv) and PdCI,(CH;CN), (232.2 mg, 0.9 mmol, 0.1 equiv) was stirred
in PhMe/DMF(10:1) (25 mL/mmol) in an oil bath at 100 °C, in a 100 mL
round-bottom flask with a balloon CO/O, (1:1). When the reaction was completed
(detected by TLC), the mixture was cooled to room temperature. The reaction was
quenched with H,O (50 mL) and extracted with EtOAc (3%x50 mL) or CH,Cl, (3 x 50
mL). The combined organic layers were dried over anhydrous Na,SO, and then
evaporated in vacuo. The residue was purified by column chromatography on silica
gel to afford the corresponding isatoic anhydrides 2a (716.6 mg, 45%) with CH,Cl,
/ethyl acetate as the eluent.

1-Methyl-2H-benzo[d][1,3]oxazine-2,4(1H)-dione (2a)

ACS Paragon Plus Environment
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Yield 28.3 mg (80%, white solid); mp 176-178 °C. '"H NMR (400 MHz, CDCl;) &
7.97 (d,J=7.9 Hz, 1H), 7.42 (t, J= 7.6 Hz, 1H), 6.68 (d, J = 8.4 Hz, 1H), 6.62 (t, J =
7.4 Hz, 1H), 2.93 (s, 3H); 1*C{'H} NMR (100 MHz, CDCl;) & 174.0, 152.7, 135.7,
132.6, 114.6, 110.9, 108.6, 29.6. HRMS Calcd (ESI-TOF) m/z for CoH;NNaO;
[M+Na]*, 200.0318; Found 200.0326.
1,6-Dimethyl-2H-benzo|d][1,3]oxazine-2,4(1H)-dione (2b)

Yield 31.3 mg (82%, white solid); mp 166-169 °C. '"H NMR (400 MHz, CDCl;) &
7.92 (s, 1H), 7.59 (d, J = 8.3 Hz, 1H), 7.10 (d, J = 8.3 Hz, 1H), 3.56 (s, 3H), 2.42 (s,
3H); BC{'H} NMR (100 MHz, CDCl;) § 158.6, 148.0, 139.9, 138.4, 134.2, 130.3,
113.9, 111.4, 31.8, 20.4. HRMS Calcd (ESI-TOF) m/z for C;(HyNNaO; [M+Na]",
214.0475; Found 214.0482.

1,7-Dimethyl-2 H-benzo|d][1,3]oxazine-2,4(1H)-dione (2¢)

Yield 30.6 mg (80%, brown solid); mp 162-164 °C. 'H NMR (600 MHz, CDCls) &
7.89 (d, J = 8.1 Hz, 1H), 6.51 (s, 1H), 6.48 (d, J = 8.1 Hz, 1H), 2.95 (s, 3H), 2.37 (s,
3H); BC{'H} NMR (150 MHz, CDCl3) & 174.1, 174.1, 152.7, 146.7, 132.6, 116.1,
111.1, 106.3, 29.6, 22.3. HRMS Calcd (ESI-TOF) m/z for C;(HyNNaO; [M+Na]",
214.0475; Found 214.0480.

1,8-Dimethyl-2H-benzo|d][1,3]oxazine-2,4(1H)-dione (2d)

Yield 30.2 mg (79%, brown solid); mp 187-188 °C. 'H NMR (400 MHz, DMSO-ds) &
7.84(dd, J=17.7, 1.7 Hz, 1H), 7.65 (d, J = 7.5 Hz, 1H), 7.24 (t, ] = 7.6 Hz, 1H), 3.56
(s, 3H), 2.57 (s, 3H); *C{'H} NMR (100 MHz, DMSO-ds) & 160.0, 149.6, 143.0,

141.4, 127.8, 126.7, 124.6, 114.5, 38.5, 22.2. HRMS Calcd (ESI-TOF) m/z for
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C10HoNNaO; [M+Na]*, 214.0475; Found 214.0480.
6-Methoxy-1-methyl-2H-benzo[d][1,3]oxazine-2,4(1 H)-dione (2e)

Yield 31.1 mg (75%, brown solid); mp 238-239 °C. 'H NMR (400 MHz, DMSO-ds) &
7.43 (m, 3H), 3.84 (s, 3H), 3.45 (s, 3H); BC{'H} NMR (100 MHz, DMSO-dy) &
159.4, 155.7, 148.1, 136.8, 125.5, 117.1, 112.7, 111.3, 56.3, 32.2. HRMS Calcd
(ESI-TOF) m/z for CoH;(NO4 [M+H], 208.0604; Found 208.0606.
8-Methoxy-1-methyl-2H-benzo[d][1,3]oxazine-2,4(1H)-dione (2f)

Yield 28.9 mg (70%, white solid); mp 162-164 °C. '"H NMR (400 MHz, DMSO-ds) &
7.59 (dd, J=17.8, 1.4 Hz, 1H), 7.53 (dd, J = 8.2, 1.5 Hz, 1H), 7.30 (t, /= 8.0 Hz, 1H),
3.89 (s, 3H), 3.63 (s, 3H); BC{'H} NMR (100 MHz, DMSO-d;) & 159.6, 149.1, 148.6,
132.9, 125.3, 121.5, 121.4, 114.7, 57.5, 37.4. HRMS Calcd (ESI-TOF) m/z for
CioHioNO4 [M+H]", 208.0604; Found 208.0606.

6-(tert-Butyl)-1-methyl-2 H-benzo|d][1,3]oxazine-2,4(1H)-dione (2g)

Yield 34.9 mg (75%, white solid); mp 165-166 °C. '"H NMR (400 MHz, CDCl;) &
8.14 (s, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.14 (d, J = 8.7 Hz, 1H), 3.58 (s, 3H), 1.36 (s,
9H); C{'H} NMR (100 MHz, CDCl;) 6 158.9, 148.1, 147.6, 139.8, 135.0, 127.0,
113.7, 111.2, 34.6, 31.8, 31.1. HRMS Calcd (ESI-TOF) m/z for C,3H;sNO; [M+H]",
234.1125; Found 234.1127.
8-Fluoro-1-methyl-2H-benzo|d][1,3]oxazine-2,4(1H)-dione (2h)

Yield 22. mg (57%, white solid); mp 205-206 °C. 'H NMR (600 MHz, DMSO-dc) &
7.49 (dd, J=9.8, 3.2 Hz, 1H), 7.29 (ddd, J = 9.2, 8.0, 3.2 Hz, 1H), 6.68 (dd, J = 9.2,

4.5 Hz, 1H), 2.82 (s, 3H); 3C{'H} NMR (150 MHz, DMSO-ds) 6 169.6, 152.5 (d, J =
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228.0 Hz), 149.2, 130.1, 122.3 (d, J = 22.5 Hz), 112.6 (d, J = 6.0 Hz), 116.9 (d, J =
22.5 Hz), 110.6, 30.0. HRMS Calcd (ESI-TOF) m/z for CoH¢FNOs;Na [M+Na]",
218.0224; Found 218.0226.

6-Fluoro-1-methyl-2H-benzo[d][1,3]oxazine-2,4(1 H)-dione (2i)

Yield 21.5 mg (55%, yellow solid); mp 137-138 °C. '"H NMR (400 MHz, DMSO-ds)
5 7.74 (t, J= 8.2 Hz, 2H), 7.50 (dd, J = 8.7, 4.0 Hz, 1H), 3.47 (s, 3H); *C{'H} NMR
(100 MHz, DMSO-dq) 6 158.6 (d, J = 3.0 Hz), 158.1 (d, J = 158.0 Hz), 147.9, 139.4
(d, J=1.0 Hz), 125.0 (d, J = 23.0 Hz), 117.8 (d, J = 8.0 Hz), 115.0 (d, J = 25.0 Hz),
113.3 (d, /= 9.0 Hz), 32.4. HRMS Calcd (ESI-TOF) m/z for CqH¢FNOs;Na [M+Na]*,
218.0224; Found 218.0225.
6-Chloro-1-methyl-2H-benzo|d][1,3]oxazine-2,4(1H)-dione (2j)

Yield 29.9 mg (71%, white solid); mp 118-119 °C. 'H NMR (500 MHz, DMSO-ds) &
7.94 (d, J=2.5 Hz, 1H), 7.89 (dd, J=9.0, 2.6 Hz, 1H), 7.48 (d, J = 8.9 Hz, 1H), 3.46
(s, 3H); BC{'H} NMR (125 MHz, DMSO-d;) 6 158.5, 147.9, 141.6, 137.1, 128.4,
128.1, 117.6, 113.7, 32.4. HRMS Calcd (ESI-TOF) m/z for CoH¢CINNaO; [M+Na]",
233.9928, Found: 233.9936.
6-Bromo-1-methyl-2H-benzo|d][1,3]oxazine-2,4(1H)-dione (2k)

Yield 35.1 mg (69%, white solid); mp 202-203 °C. 'H NMR (500 MHz, DMSO-ds) &
8.05 (d, J=2.4 Hz, 1H), 8.00 (dd, /= 8.9, 2.4 Hz, 1H), 7.41 (d, J= 8.9 Hz, 1H), 3.45
(s, 3H); BC{'H} NMR (125 MHz, DMSO-d;) 6 158.4, 147.9, 141.9, 139.9, 131.3,
117.8, 115.6, 114.1, 32.4. HRMS Calcd (ESI-TOF) m/z for CyH¢BrNNaO; [M+Na]*,

277.9423; Found 277.9424.
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1-Methyl-6-(trifluoromethyl)-2 H-benzo|d][1,3]oxazine-2,4(1H)-dione (21)

Yield 29.4 mg (60%, brown solid); mp 188-189 °C. 'H NMR (400 MHz, DMSO-ds) &
8.43-8.05 (m, 2H), 7.65 (d, J = 8.8 Hz, 1H), 3.52 (s, 3H); *C{'H} NMR (100 MHz,
DMSO-dg) 0 158.6, 147.9, 145.5, 133.7 (q, J = 3.0 Hz), 126.6 (q, J = 4.0 Hz), 124.3
(q,J=33.0 Hz), 124.0 (d, /= 270.0 Hz), 116.7, 112.8, 32.5. HRMS Calcd (ESI-TOF)
m/z for C,oH;F;NO5; [M+H]", 246.0373; Found 246.0373.
1-Methyl-7-(trifluoromethyl)-2 H-benzo|d][1,3]oxazine-2,4(1H)-dione (2m)

Yield 30.4 mg (62%, white solid); mp 136-137 °C. 'H NMR (400 MHz, DMSO-ds) &
8.20 (d, J=8.1 Hz, 1H), 7.73 (s, 1H), 7.65 (d, J = 8.1 Hz, 1H), 3.53 (s, 3H); *C{'H}
NMR (100 MHz, DMSO-dy) ¢ 158.7, 147.9, 143.3, 136.5 (q, J = 32.0 Hz), 131.1,
123.7 (q, J = 272.0 Hz), 120.1 (q, J = 3.0 Hz), 115.6, 112.5 (q, J = 4.0 Hz), 32.5.
HRMS Calcd (ESI-TOF) m/z for C,oH;F;NO; [M+H]*, 246.0373; Found 246.0373.
1-Methyl-2,4-dioxo-1,4-dihydro-2H-benzo[d][1,3]oxazine-6-carbonitrile (2n)
Yield 28.3 mg (70%, white solid); mp 235-236 °C. 'H NMR (400 MHz, DMSO-ds) &
8.43 (s, 1H), 8.25 (d, J = 8.8 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 3.50 (s, 3H); *C{'H}
NMR (100 MHz, DMSO-d;) 6 158.1, 147.8, 145.7, 140.2, 134.2, 118.0, 116.7, 113.2,
106.4, 32.6. HRMS Calcd (ESI-TOF) m/z for C;oH;N,O; [M+H]", 203.0451; Found
203.0453.

Methyl 1-methyl-2,4-dioxo-1,4-dihydro-2H-benzo[d][1,3]oxazine-6-carboxylate
(20)

Yield 31.9 mg (68%, yellow solid); mp 163-164 °C. '"H NMR (400 MHz, DMSO-ds)

58 8.40 (d, J= 1.8 Hz, 1H), 8.28 (dd, J = 8.7, 2.2 Hz, 1H), 7.54 (d, J = 8.7 Hz, 1H),
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3.89 (s, 3H), 3.50 (s, 3H); BC{'H} NMR (100 MHz, DMSO-d;) & 165.1, 158.8, 147.9,
145.9, 137.4, 130.7, 124.9, 116.0, 115.9, 112.3, 52.9, 32.5. HRMS Calcd (ESI-TOF)
m/z for C;;H;(NOs [M+H]*, 236.0553; Found 236.0557.
1-Ethyl-2H-benzo|d][1,3]oxazine-2,4(1H)-dione (2p)

Yield 17.6 mg (46%, white solid); mp 123-125 °C. 'H NMR (400 MHz, DMSO-ds) &
7.93(dd,J=7.9, 1.6 Hz, 1H), 7.77 (ddd, /= 8.7, 7.4, 1.6 Hz, 1H), 7.42 (d, J = 8.5 Hz,
1H), 7.25 (t, J = 7.5 Hz, 1H), 3.98 (q, J = 7.1 Hz, 2H), 1.15 (t, J = 7.1 Hz, 3H),
BC{'H} NMR (100 MHz, DMSO-dy) & 159.5, 147.8, 141.6, 137.7, 130.1, 124.0,
115.1, 112.3, 40.00, 12.4. HRMS Calcd (ESI-TOF) m/z for C;HyNOs;Na [M+Na]*,
214.0475; Found 214.0478.

1-Methyl-2 H-naphtho|2,3-d][1,3]oxazine-2,4(1H)-dione (2q)

Yield 29.9 mg (66%, brown solid); mp 222-224 °C. 'H NMR (400 MHz, DMSO-dy) &
8.74 (s, 1H), 8.14 (d, J= 8.3 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.79 (s, 1H), 7.70 (t, J
= 7.7 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 3.54 (s, 3H); BC{'H} NMR (100 MHz,
DMSO-dg) 6 159.5, 148.0, 137.6, 137.4, 132.4, 130.8, 129.9, 128.9, 127.9, 126.4,
112.3, 111.3, 32.4. HRMS Calcd (ESI-TOF) m/z for C;3H;(NO; [M+H]", 228.0655;
Found 228.0658.

6,7-Dihydro-1H,3H,5H-[1,3]oxazino|5,4,3-ij]quinoline-1,3-dione (2r)

Yield 27.6 mg (68%, white solid); mp 184-186 °C. 'H NMR (400 MHz, DMSO-ds) &
7.82(d, J="7.8 Hz, 1H), 7.62 (dd, J= 7.4, 1.4 Hz, 1H), 7.22 (td, J= 7.7, 1.5 Hz, 1H),
3.88 (td, J = 5.6, 1.4 Hz, 2H), 2.86 (t, J = 6.2 Hz, 2H), 2.18-1.82 (hept, J = 4.3 Hz,

2H); BC{'H} NMR (100 MHz, DMSO-d¢) 6 159.6, 147.6, 139.0, 137.0, 127.7, 125.9,
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123.6, 111.5, 44.2, 26.3, 20.1. HRMS Calcd (ESI-TOF) m/z for C,;H;(NO; [M+H]",
204.0655; Found 204.0658.
9-Methyl-6,7-dihydro-1H,3H,5H-[1,3]oxazino|5,4,3-ij|quinoline-1,3-dione (2s)
Yield 32.1 mg (74%, white solid); mp 220-221 °C. '"H NMR (400 MHz, DMSO-ds) &
7.62 (s, 1H), 7.45 (s, 1H), 4.07-3.60 (m, 2H), 2.81 (t, J = 6.2 Hz, 2H), 2.31 (s, 3H),
1.97 (p, J = 6.0 Hz, 2H); *C{'H} NMR (100 MHz, DMSO-dj) 8 159.6, 147.6, 137.9,
136.9, 133.0, 127.2, 125.9, 111.2, 44.1, 26.2, 20.4, 20.2. HRMS Calcd (ESI-TOF) m/z
for C1,H;,NO; [M+H]*, 218.0812; Found 218.0820.
1-Methyl-2H-naphtho|[1,2-d][1,3]oxazine-2,4(1H)-dione (2t)

Yield 20.4 mg (45%, brown solid); mp 69-70 °C. 'H NMR (400 MHz, DMSO-dy) &
8.45 (d, J=8.7 Hz, 1H), 8.07 (d, /= 8.2 Hz, 1H), 7.85 (q, /= 8.5 Hz, 2H), 7.77 (t, J =
7.0 Hz, 1H), 7.67 (t, J = 7.1 Hz, 1H), 3.77 (s, 3H); *C{'H} NMR (100 MHz,
DMSO-dg) 6 159.9, 150.2, 143.9, 138.6, 130.2, 129.4, 127.0, 126.6, 125.5, 123.0,
122.9, 110.4, 41.5. HRMS Calcd (ESI-TOF) m/z for C3H;(NO; [M+H]", 228.0655;
Found 228.0659.

1-Methylbenzo|cd]indol-2(1H)-one (3t)

Yield 13.1 mg (18%, white solid); mp 77-79 °C. '"H NMR (600 MHz, CDCls) § 8.02
(d,J=7.0Hz, 1H), 7.97 (d, /= 8.2 Hz, 1H), 7.67 (dd, J = 8.1, 6.9 Hz, 1H), 7.50 (d, J
= 8.4 Hz, 1H), 7.44 (dd, J = 8.4, 7.0 Hz, 1H), 6.86 (d, J = 6.9 Hz, 1H), 3.42 (s, 3H);
BC{'H} NMR (150 MHz, CDCl;) é 168.30, 140.17, 130.78, 129.07, 128.72, 128.57,
126.87, 125.20, 124.28, 120.39, 104.75, 26.40. HRMS Calcd (ESI-TOF) m/z for

C1,H;oNO [M+H]*, 184.0757; Found 184.0759.
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1-Isopropyl-2H-benzo[d][1,3]oxazine-2,4(1 H)-dione (2u)

Yield 15.2 mg (37%, white solid); mp 115-116 °C. '"H NMR (600 MHz, CDCl;) &
8.12(dd, J=7.8, 1.7 Hz, 1H), 7.73 (ddd, J = 8.8, 7.3, 1.7 Hz, 1H), 7.32 (d, /= 8.6 Hz,
1H), 7.29 — 7.21 (m, 1H), 4.77 (d, J= 8.3 Hz, 1H), 1.59 (d, J = 6.9 Hz, 6H); 3C{'H}
NMR (150 MHz, CDCl;) & 159.06, 146.34, 141.87, 137.09, 131.10, 123.84, 114.32,
112.39, 50.09, 19.34. HRMS Calcd (ESI-TOF) m/z for C;;H;;NOs;Na [M+Na]*,
228.0631; Found 228.0637.

1-Benzyl-2H-benzo[d][1,3]oxazine-2,4(1 H)-dione (2v)

Yield 20.7 mg (41%, white solid); mp 136-138 °C. 'H NMR (400 MHz, DMSO-ds) &
8.04 (dd, J=17.9, 1.6 Hz, 1H), 7.83-7.61 (m, 1H), 7.43 (d, J = 7.4 Hz, 2H), 7.39-7.21
(m, 5H), 5.30 (s, 2H); BC{'H} NMR (100 MHz, DMSO-dg) & 159.3, 148.8, 141.8,
137.5, 135.8, 130.0, 129.1, 127.9, 127.1, 124.2, 115.6, 112.5, 48.1. HRMS Calcd
(ESI-TOF) m/z for CsH;,NO; [M+H], 254.0812; Found 254.0819.
2-(Methylamino)benzoic acid (A)

Yield 29.9 mg (99%, brown solid); mp 170-172 °C. 'H NMR (400 MHz, CDCls)
7.77 (s, 1H), 7.39-7.33 (m, 2H), 6.69 (d, J = 8.0 Hz, 1H), 6.60-6.56 (m, 1H), 2.87 (s,
3H); BC{'H} NMR (100 MHz, CDCl3) & 172.2, 151.2, 133.6, 128.2, 114.4, 113.0,
111.4,29.7.

Ethyl 2-(methylamino)benzoate (B)

Yield 31.8 mg (89%, white solid); mp 38-39 °C. '"H NMR (400 MHz, CDCl;) & 7.83

(d, J = 8.0 Hz, 1H), 7.26 (t, J = 8.4 Hz, 1H), 6.54- 6.45 (m, 2H), 4.20 (q, J = 7.0 Hz,
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2H), 1.26 (t, J = 7.2 Hz, 3H); BC{'H} NMR (100 MHz, CDCl;) & 168. 7, 151.9,
134.5,131.5,114.4, 110.8, 110.4, 60.2, 14.4.

2-(Methylamino)benzamide (C)

Yield 29.1 mg (97%, white solid); mp 161-162 °C. '"H NMR (400 MHz, CDCl;) &
8.00 (d, J=8.0 Hz, 1H), 7.43 (t, ] = 7.6 Hz, 1H), 6.71, 6.69-6.62 (m, 2H), 2.94 (s, 3H);
BC{'H} NMR (100 MHz, CDCl3) § 173.9, 152.5, 135.7, 132.6, 114.7, 111.1, 108.8,
29.7.

N-(2-(1H-indol-3-yl)ethyl)-2-(methylamino)benzamide (4a)

Yield 55.7 mg (95%, yellow solid); mp 207-209 °C. 'H NMR (400 MHz, CDCls)
8.19 (s, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.26 (t, J = 7.8 Hz,
1H), 7.18 (t, J= 7.4 Hz, 1H), 7.12-7.08 (m, 2H), 6.95 (s, 1H), 6.63 (d, J = 8.4 Hz, 1H),
6.48 (t,J=7.6 Hz, 1H), 6.13 (s, 1H), 3.70 (q, J = 6.4 Hz, 2H), 3.03 (t, /= 6.8 Hz, 2H),
2.81 (s, 3H); *C{'H} NMR (100 MHz, CDCl;) & 169.9, 150.5, 136.5, 132.8, 127.3,
127.2, 122.2, 122.2, 119.5, 118.8, 115.5, 114.6, 113.0, 111.4, 111.2,40.0, 30.0, 254.
HRMS Calcd (ESI-TOF) m/z for CgH»oN;0 [M+H]*, 294.1601; Found 294.1600.
Evodiamine

Yield 42.2 mg (70%, yellow solid); mp 277-278 °C. '"H NMR (400 MHz, DMSO-ds)
0 11.05 (s, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.48-7.47 (m, 2H), 7.37 (d, J = 8.0 Hz, 1H ),
7.13-6.95 (m, 4H), 6.12 (s, 1H), 4.66- 4.62 (m, 1H), 3.23-3.17 (m, 1H), 2.94-2.78 (m,
5H); BC{'H} NMR (100 MHz, DMSO-d) 6 164.7, 149.3, 137.0, 133.9, 131.1, 128.5,
126.5, 122.3, 120.8, 119.8, 119.4, 118.7, 118.0, 112.1, 112.0, 70.2, 41.3, 36.9, 20.0.

HRMS Calcd (ESI-TOF) m/z for C,9H sN3O [M+H], 304.1444; Found 304.1444.
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Supporting Information

'H and '*C NMR spectra of all synthesized compounds. This material is available free
of charge via the Internet at http://pubs.acs.org.
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