Synthesis and Characterization of η^2 -C₆₀ and $\mu_3 - \eta^2, \eta^2, \eta^2 - C_{60}$ Triosmium Cluster Complexes

Joon T. Park,*,[†] Hyunjoon Song,[†] Jeong-Ju Cho,[†] Mee-Kyung Chung,[†] Jin-Ho Lee,[‡] and Il-Hwan Suh[‡]

Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea, and Department of Physics, Chungnam National University, Taejon 305-701, Korea

Received August 7, 1997[®]

Various η^2 -C₆₀ and μ_3 - η^2 , η^2 , η^2 -C₆₀ triosmium carbonyl cluster complexes Os₃(CO)₁₁(η^2 -C₆₀) (1), $Os_3(CO)_{10}(NCMe)(\eta^2 - C_{60})$ (2), $Os_3(CO)_{10}(PPh_3)(\eta^2 - C_{60})$ (3), $Os_3(CO)_9(PR_3)_2(\eta^2 - C_{60})$ (4, R = Ph; 5, R = Me), $Os_3(CO)_9(\mu_3 - \eta^2, \eta^2, \eta^2 - C_{60})$ (6), and $Os_3(CO)_8(PMe_3)(\mu_3 - \eta^2, \eta^2, \eta^2 - C_{60})$ (7) have been isolated as crystalline solids and characterized by spectroscopic (IR, MS, and ¹H, ³¹P, and ¹³C NMR) and analytical data. The molecular structure of complex 1 has been determined by a single-crystal X-ray diffraction study. The structure of 1 is derived from that of Os₃(CO)₁₂ by replacing an equatorial carbonyl ligand with an η^2 -C₆₀ ligand coordinated through a 6-6 ring fusion. The structural assignment of 2-7 is made on the basis of spectroscopic results. Compound 2 exists as two isomers in solution in a ratio of 2:1 (2a: **2b**). VT ¹³C NMR spectra of **2a** and **5** indicate that both complexes undergo similar fluxional processes of restricted equilibration of in-plane equatorial C_{60} and carbonyl ligands via a triply bridged intermediate with identical values of $\Delta G_c^{\dagger} = 12.7 \pm 0.1$ kcal/mol. Thermolysis of **2** in refluxing chlorobenzene affords $Os_3(CO)_9(\mu_3-\eta^2,\eta^2,\eta^2-C_{60})$ (**6**) in 23% yield, which can be alternatively prepared in 32% yield from the reaction of $Os_3(CO)_{10}(NCMe)_2$ (2 equiv) and C_{60} (1 equiv). Decarbonylation of **6** with Me₃NO/MeCN reagent in the presence of excess PMe₃ gives Os₃(CO)₈(PMe₃)(μ_3 - η^2 , η^2 , η^2 -C₆₀) (7) in a quantitative yield. VT ¹³C NMR spectra of both 6 and 7 reveal a localized-3-fold rotation of carbonyl and phosphine ligands on each osmium center.

Introduction

The organometallic chemistry of C₆₀ has attracted much attention¹ concerning the effect of metal coordination on the properties of C_{60} since the discovery² and macroscopic synthesis³ of C₆₀. The first structurally characterized complex, $(C_{60})(OsO_4)(4^{-t}BuC_5H_4N)_2$, an osmate ester with C-O-Os bonds, was reported by Hawkins and co-workers.⁴ However, the first example with a direct metal- C_{60} bond, $(\eta^2 - C_{60})$ Pt(PPh₃)₂, was reported by Fagan et al.⁵ Numerous reports of other metal-coordinated C₆₀ complexes have included those of Ta, Mo, W, Fe, Ru, Co, Rh, Ir, Ni, and Pd, in which all the mononuclear metals are bound in an η^2 -fashion at the 6-6 ring fusion.⁶ The C₆₀ ligand in these complexes acts as an electronegative alkene.^{1a,6j} Sub-

- [®] Abstract published in Advance ACS Abstracts, December 15, 1997.
- (1) (a) Bowser, J. R. Adv. Organomet. Chem. 1994, 36, 57. (b) Fagan,
 P. J.; Calabrese, J. C.; Malone, B. Acc. Chem. Res. 1992, 25, 134. (c)
- (c) Hirsch, A. *The Chemistry of the Fullerenes*; Thieme: Stuttgart, 1994.
 (c) Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, D. F. Natur, 1997.
- (a) Moto, 1. W., Math, S. 18, O Dirin, S. C., Oth, R. 17, Smalley,
 (b) Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R.
- (d) First 1990, 347, 354.
 (e) Hawkins, J. M.; Meyer, A.; Lewis, T. A.; Loren, S.; Hollander, F. J. Science 1991, 252, 312.
 - (5) Fagan, P. J.; Calabrese, J. C.; Malone, B. *Science* **1991**, *252*, 1160.

sequent development in metal- $C_{60} \pi$ -complex chemistry has led to the synthesis of μ - η^2 , η^2 -C₆₀ complexes, (μ - $\eta^2, \eta^2 - C_{60}$ [Ir₂Cl₂(1,5-COD)₂]₂⁷ and ($\mu - \eta^2, \eta^2 - C_{60}$)Cp'₂Ru₂($\mu - \eta^2, \eta^2 - C_{60}$)Cp'₂Cp'₂Ru₂($\mu - \eta^2, \eta^2 - C_{60}$)Cp'₂Cp' Cl)₂ (Cp' = η^5 -C₅Me₅),⁸ in which the metal atoms occupy the adjacent π -bonds of a six-membered ring of C₆₀ like diene complexes. We set out to investigate complexes of C₆₀ with transition metal clusters with the expectation of seeing new bonding modes, physical properties, fluxionality, or reactivities of C₆₀ in these complexes by cooperative interactions of the metal centers. We have prepared various C₆₀-triosmium carbonyl cluster complexes, $Os_3(CO)_{11}(\eta^2-C_{60})$ (1), $Os_3(CO)_{10}(NCMe)(\eta^2-C_{60})$ (2), $Os_3(CO)_{10}(PPh_3)(\eta^2-C_{60})$ (3), $Os_3(CO)_9(PR_3)_2(\eta^2-C_{60})$ (4, R = Ph; 5, R = Me), $Os_3(CO)_9(\mu_3 - \eta^2, \eta^2, \eta^2 - C_{60})$ (6), and

^{*} To whom correspondence should be addressed. E-mail: jtpark@sorak.kaist.ac.kr. Fax: +82-42-869-2810.

Korea Advanced Institute of Science and Technology.

[‡] Chungnam National University.

^{(6) (}a) Balch, A. L.; Catalano, V. J.; Lee, J. W. Inorg, Chem. 1991, 30, 3980. (b) Koefod, R. S.; Hudgens, M. F.; Shapley, J. R. J. Am. Chem. Soc. 1991, 113, 8957. (c) Chase, B.; Fagan, P. J. J. Am. Chem. Soc. **1992**, *114*, 2252. (d) Balch, A. L.; Catalano, V. J.; Lee, J. W.; Olmstead, M. M. *J. Am. Chem. Soc.* **1992**, *114*, 5455. (e) Balch, A. L.; Lee, J. W.; Noll, B. C.; Olmstead, M. M. *Inorg. Chem.* **1993**, *32*, 3577. (f) Bashilov, V. V.; Petrovskii, P. V.; Sokolov, V. I.; Lindeman, S. V.; Guzey, I. A.; Struchkov, Y. T. Organometallics 1993, 12, 991. (g) Douthwaite, R. E.; Green, M. L. H.; Stephens, A. H. H.; Turner, J. F. C. *J. Chem. Soc., Chem. Commun.* **1993**, 1522. (h) Balch, A. L.; Lee, J. W.; Noll, B. C.; Olmstead, M. M. *Inorg. Chem.* **1994**, *33*, 5238. (i) Rasinkangas, M.; Jakkanen, T. T.; Pakkanen, T. A. J. Organomet. Chem. 1994, 476, C6.
 (j) Shapley, J. R.; Du, Y.; Hsu, H.-F; Way, J. J. Proc. Electrochem. Soc.
 1994, 94, 1255. (k) Green, M. L. H.; Stephens, A. H. H. J. Chem. Soc., Chem. Commun. 1997, 793.

⁽⁷⁾ Rasinkangas, M.; Pakkanen, T. T.; Pakkanen, T. A.; Ahlgrén,
M.; Rouvinen, J. J. Am. Chem. Soc. 1993, 115, 4901.
(8) Mavunkal, I. J.; Chi, Y.; Peng, S.-M.; Lee, G.-H. Organometallics

^{1995, 14, 4454.}

 $Os_3(CO)_8(PMe_3)(\mu_3-\eta^2,\eta^2,\eta^2-C_{60})$ (7), both η^2-C_{60} (1–5) and $\mu_3-\eta^2,\eta^2,\eta^2-C_{60}$ (6 and 7) triosmium complexes.

Transition metal cluster-bound C₆₀ complexes were unknown prior to this work. The first arene-like complex of C_{60} , $Ru_3(CO)_9(\mu_3 - \eta^2, \eta^2, \eta^2 - C_{60})$, ⁹ however, has been recently prepared from the reaction of $Ru_3(CO)_{12}$ and C_{60} in hexane under reflux for 2 days in a very low (4%) yield by Shapley and co-workers during our investigation. In preliminary forms, we have reported the synthesis and characterization of complexes 1, 2, 3, and 4.10 Electrochemical studies of 1, 3, and 4 have revealed the first example of C₆₀-mediated electron transfer to the metal center.¹¹ Since then, we have completed the structural characterization of 1 and fluxional processes of 2 and 5. Furthermore, reactivity studies of **2** have resulted in high-yield syntheses of μ_3 - η^2, η^2, η^2 -C₆₀ triosmium complexes, **6** and **7**. Herein we report the preparation and characterization of triosmium cluster derivatives of C_{60} , **1**–**7**, as shown in Chart 1.

Experimental Section

General Comments. All reactions were carried out under a nitrogen atmosphere with the use of standard Schlenk techniques. Solvents were appropriately dried before use. C_{60} (99.8%, Gold grade, Hoechst AG) was used without further purification. Anhydrous trimethylamine *N*-oxide (mp 225– 230 °C) was obtained from Me₃NO·2H₂O (98%, Aldrich Chemical Ltd.) by sublimation (3 times) at 90–100 °C under vacuum. Os₃(CO)₁₁(NCMe),¹² Os₃(CO)₁₁(PR₃),¹² and Os₃(CO)₁₀(PR₃)₂ (R = Ph, Me)¹³ were prepared by literature methods. Carbon-13 (*C) CO-enriched complexes were prepared by using Os₃-(*CO)₁₂¹⁴ (*ca.* 50% enrichment). Preparative thin-layer plates were prepared from silica gel GF₂₅₄ (type 60, E. Merck).

Infrared spectra were obtained on a Bomem MB-100 FT-IR spectrometer. ¹H NMR (300 MHz), ¹³C NMR (75 or 151 MHz), and ³¹P NMR (122 MHz) spectra were recorded on either a Bruker AM-300 or DMX-600 spectrometer. FAB positive-ion mass spectra (FAB⁺) were obtained by the staff of the Korea Basic Science Center. All m/z values are referenced to ¹⁹²Os. Elemental analyses were provided by the staff of the Agency for Defense Development.

Preparation of Os₃(CO)₁₁(η^2 -C₆₀) (1). A toluene solution (30 mL) of Os₃(CO)₁₁(NCMe) (20.0 mg, 0.0217 mmol) and C₆₀ (20.0 mg, 0.0278 mmol) was heated at 80 °C for 5 min to give a dark brown solution. The solvent was evaporated and the residue was purified by preparative TLC (toluene:hexane, 1:2) at -15 °C to afford compound 1 (18.4 mg, 0.0115 mmol, 53%, $R_f = 0.7$) as a black microcrystalline solid. IR (CH₂Cl₂) ν (CO) 2122 (m), 2074 (s), 2059 (m), 2038 (vs), 2016 (m), 2006 (m), 1990 (w) cm⁻¹; ¹³C NMR (toluene- d_8 , 298 K) δ 183.3 (2 CO), 182.9 (2 CO), 181.7 (2 CO), 172.0 (1 CO), 171.9 (1 CO), 170.3 (1 CO), 168.8 (1 CO), 168.5 (1 CO); MS (FAB⁺) m/z 1604 (M⁺). Anal. Calcd for C₇₈H₈O₁₁Os₃ (1·toluene): C, 55.39; H, 0.48. Found: C, 55.33; H, 0.35.

Preparation of Os₃(CO)₁₀(NCMe)(η^2 -C₆₀) (2). A dichloromethane (20 mL)-acetonitrile (3 mL) solution of Os₃(CO)₁₁-(NCMe) (20.0 mg, 0.0217 mmol) was treated with an acetonitrile solution (3 mL) of anhydrous Me₃NO (1.7 mg, 0.023 mmol) at room temperature for 30 min. After evaporation of the solvent in vacuo, a toluene (30 mL) solution of C₆₀ (20.0 mg, 0.0278 mmol) was added to the residue. The resulting solution was heated at 80 °C for 30 min to give a dark green solution. The solvent was evaporated, and the residue was purified by preparative TLC (toluene:hexane, 1:1) at -15 °C to afford a mixture of two isomeric compounds 2 (27.3 mg, 0.0169 mmol, 78%, $R_f = 0.5$) as a black solid. IR (CH₂Cl₂) ν (CO) 2110 (m), 2101 (w), 2064 (s), 2055 (m), 2032 (s), 2018 (vs), 1988 (m), 1958 (w) cm⁻¹; ¹H NMR (CDCl₃, 298 K) δ 3.02 (s, 3H, CH₃CN, **2a**), 2.85 (s, 3H, CH_3CN , 2b), $[2a]:[2b] = 2:1; {}^{13}C$ NMR (CD_2Cl_2 , 193 K) & 187-183 (4 CO), 181.6, 176.9, 174.6, 173.3, 170.0, 169.2 (CO's of major isomer 2a from an isomeric mixture); MS (FAB⁺) m/z 1617 (M⁺). Anal. Calcd for C₇₂H₃O₁₀NOs₃: C, 53.63; H, 0.19. Found: C, 53.81; H, 0.18.

Interconversion of 1 and 2. 1 → 2: Compound 1 (10.0 mg, 0.0063 mmol) was dissolved in a mixture of toluene (20 mL) and acetonitrile (3 mL). The solution was cooled to -50 °C, and an acetonitrile solution (3 mL) of anhydrous Me₃NO (0.5 mg, 0.007 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature for 2 h. Evaporation of the solvent and purification by preparative TLC (toluene:hexane, 1:1) at -15 °C gave compound 2 (9.1 mg, 0.0056 mmol, 90%). 2 → 1: Carbon monoxide was bubbled with a gas dispersion tube through a toluene solution (20 mL) of compound 2 (10.0 mg, 0.0062 mmol) at room temperature for 2 h. The solvent was evaporated, and the residue was purified by preparative TLC (toluene:hexane, 1:2) at -15 °C to give compound 1 (9.4 mg, 0.0059 mmol, 95%).

Preparation of Os₃(CO)₁₀(**PPh**₃)(η^2 -**C**₆₀) (3). A dichloromethane (20 mL)–acetonitrile (3 mL) solution of Os₃(CO)₁₁-

 ⁽⁹⁾ Hsu, H.-F.; Shapley, J. R. J. Am. Chem. Soc. 1996, 118, 9192.
 (10) Park, J. T.; Cho, J.-J.; Song, H. J. Chem. Soc., Chem. Commun. 1995, 15.

⁽¹¹⁾ Park, J. T.; Cho, J.-J.; Song, H.; Jun, C.-S.; Son, Y.; Kwak, J. Inorg. Chem. 1997, 36, 2698.

⁽¹²⁾ Johnson, B. F. G.; Lewis, J.; Pippard, D. A. J. Chem. Soc., Dalton Trans. **1981**, 407.

⁽¹³⁾ Tachikawa, M.; Shapley, J. R. J. Organomet. Chem. 1977, 124, C19.

⁽¹⁴⁾ Clauss, A. D.; Tachikawa, M.; Shapley, J. R.; Pierpont, C. G. Inorg. Chem. 1981, 20, 1528.

(PPh₃) (20.0 mg, 0.0175 mmol) was treated with an acetonitrile solution (3 mL) of anhydrous Me₃NO (1.5 mg, 0.020 mmol) at room temperature for 30 min. After evaporation of the solvent *in vacuo*, a toluene solution (30 mL) of C₆₀ (16.4 mg, 0.0228 mmol) was added to the residue. The solution was stirred at room temperature for 4 h to give a green solution. The solvent was evaporated, and the residue was purified by preparative TLC (toluene:hexane, 1:1) at -15 °C to afford compound **3** (26.7 mg, 0.0146 mmol, 83%, $R_f = 0.8$) as a black microcrystalline solid. IR (CH₂Cl₂) ν (CO) 2099 (m), 2051 (m), 2034 (m), 2017 (vs), 1993 (m), 1975 (sh) cm⁻¹; MS (FAB⁺) m/z 1838 (M⁺). Anal. Calcd for C₈₈H₁₅O₁₀POs₃: C, 57.64; H, 0.82. Found: C, 56.77; H, 0.90.

Conversion of 2 to 3. Compound **2** (10.0 mg, 0.0062 mmol) was dissolved in toluene (20 mL), and then PPh₃ (3.3 mg, 0.013 mmol) was added. The reaction mixture was stirred for 1 h at room temperature, and the solvent was evaporated. Purification by preparative TLC (toluene:hexane, 1:1) at -15 °C afforded compound **3** (10.9 mg, 0.0059 mmol, 96%).

Preparation of $Os_3(CO)_9(PR_3)_2(\eta^2-C_{60})$ (R = Ph (4), Me (5)). A dichloromethane (20 mL)-acetonitrile (3 mL) solution of Os₃(CO)₁₀(PPh₃)₂ (20.0 mg, 0.0145 mmol) was treated with an acetonitrile solution (3 mL) of anhydrous Me₃NO (1.2 mg, 0.016 mmol) at room temperature for 30 min. After evaporation of the solvent in vacuo, the residue was dissolved in toluene (30 mL) containing C_{60} (13.6 mg, 0.0189 mmol). The resulting solution was stirred at room temperature for 4 h to give a blue-green solution. The solvent was evaporated and the residue was purified by preparative TLC (toluene:hexane, 1:1) at -15 °C to produce compound 4 (19.5 mg, 0.00945 mmol, 65%, $R_f = 0.5$) as a black solid. The reaction of Os₃(CO)₁₀-(PMe₃)₂ (20.0 mg, 0.0199 mmol) with anhydrous Me₃NO (1.6 mg, 0.022 mmol) followed by treatment with C_{60} (18.7 mg, 0.0259 mmol) was carried out following a procedure similar to that for 4. Evaporation of the solvent and purification by preparative TLC (toluene:hexane, 2:1) at -15 °C produced compound 5 (16.6 mg, 0.00979 mmol, 49%, $R_f = 0.6$) as a black solid. Compound 4: IR (CH₂Cl₂) v(CO) 2109 (w), 2083 (w), 2072 (w), 2051 (m), 2017 (s), 1999 (vs), 1964 (m), 1941 (sh) cm⁻¹; MS (FAB⁺) m/z 2072 (M⁺). Anal. Calcd for C105H30O9P2OS3: C, 60.99; H, 1.46. Found: C, 59.67; H, 1.46. Compound 5: IR (CH₂Cl₂) v(CO) 2069 (m), 2016 (sh), 2007 (s), 1990 (vs), 1966 (sh), 1954 (s) cm⁻¹; ¹H NMR (CD₂Cl₂, 298 K) δ 2.04 (d, ${}^{2}J_{PH} = 10.3$ Hz, 18H); ${}^{31}P{}^{1}H}$ NMR (CD₂Cl₂, 213 K) δ -49.29 (s), -50.87 (s); ¹³C{¹H} NMR (CD₂Cl₂, 213 K) δ 194.8 $({}^{2}J_{CP} = 7.2 \text{ Hz}, 2 \text{ CO}), 194.5 ({}^{2}J_{CP} = 8.1 \text{ Hz}, 2 \text{ CO}), 185.4 (2$ CO), 181.6 (1 CO), 180.6 (1 CO), 178.3 (1 CO); ¹³C{¹H} NMR (CD₂Cl₂, 298 K) & 161.3, 147.6, 146.9, 145.8, 145.7, 145.3, 145.2, 145.1, 144.8, 144.2, 144.1, 143.3, 142.9, 142.7, 142.3, 141.4 (16 C₆₀ signals), 56.5 (C₆₀ sp³ carbon), 22.6, 22.2 (br, $P(CH_3)_3$; MS (FAB⁺) m/z 1700 (M⁺). Anal. Calcd for C₇₅H₁₈O₉P₂Os₃:C, 53.13; H, 1.07. Found: C, 53.41; H, 1.33.

Conversion of 3 to 4. Compound **3** (10.0 mg, 0.0055 mmol) was dissolved in toluene (20 mL), and PPh₃ (2.9 mg, 0.011 mmol) was added. The solution was cooled to -50 °C, and a solution of anhydrous Me₃NO (0.5 mg, 0.007 mmol) in aceto-nitrile (3 mL) was added dropwise. The mixture was allowed to warm to room temperature for 2 h. The solvent was evaporated, and the residue was purified by preparative TLC (toluene:hexane, 1:1) at -15 °C to afford compound **4** (10.3 mg, 0.0050 mmol, 91%).

Preparation of Os₃(CO)₉(μ_3 - η^2 , η^2 , η^2 - C_{60}) (6). To a dichloromethane (30 mL) and acetonitrile (5 mL) solution of Os₃-(CO)₁₁(NCMe) (50.0 mg, 0.0544 mmol) was added an acetonitrile solution (3 mL) of anhydrous Me₃NO (4.5 mg, 0.060 mmol) dropwise at room temperature. After evaporation of the solvent *in vacuo*, the residue was dissolved in chlorobenzene (5 mL). The solution was added dropwise to a refluxing chlorobenzene solution of C₆₀ (20.0 mg, 0.0278 mmol, 0.5 equiv), and the reaction mixture was stirred for 90 min. The solvent was evaporated, and the residue was purified by

preparative TLC (CS₂) to give compound **6** (13.7 mg, 0.00888 mmol, 32%, $R_f = 0.8$) as a reddish-brown solid. IR (CS₂) ν -(CO) 2081 (s), 2046 (vs), 2016 (m), 2002 (m), 1983 (sh) cm⁻¹; ¹³C NMR (CS₂/ext. CD₂Cl₂, 298 K) δ 176.1 (s, 9 CO); MS (FAB⁺) m/z 1548 (M⁺). Anal. Calcd for C₆₉O₉Os₃:C, 53.70. Found: C, 53.94.

Thermolysis of 2. A chlorobenzene solution (20 mL) of compound **2** (10.0 mg, 0.0062 mmol) was heated at reflux for 1 h. After evaporation of the solvent *in vacuo*, the residue was purified by preparative TLC (CS₂) to afford compound **6** (2.2 mg, 0.0014 mmol, 23%).

Preparation of Os₃(CO)₈(PMe₃) $(\mu_3 - \eta^2, \eta^2, \eta^2 - C_{60})$ (7). Os₃-(CO)₁₁(PMe₃) (50.0 mg, 0.0524 mmol) was dissolved in a mixture of dichloromethane (30 mL) and acetonitrile (5 mL). An acetonitrile solution (3 mL) of anhydrous Me₃NO (4.3 mg, 0.057 mmol) was added dropwise at room temperature. After evaporation of the solvent in vacuo, the residue was dissolved in chlorobenzene (5 mL). The solution was added dropwise to a refluxing chlorobenzene solution of C₆₀ (20.0 mg, 0.0278 mmol, 0.5 equiv), and the reaction mixture was stirred for 90 min. The solvent was evaporated, and the residue was purified by preparative TLC (CS₂) to give compound 7 (6.2 mg, 0.00390 mmol, 14%, $R_f = 0.5$) as a black solid. IR (CS₂) ν (CO) 2064 (vs), 2032 (s), 2010 (s), 1998 (m), 1984 (m), 1960 (w), 1946(w) cm⁻¹; ¹H NMR (CS₂/C₆D₆, 298 K) δ 1.71 (d, ²J_{PH} = 10.0 Hz, 9H); $^{31}P\{^{1}H\}$ NMR (CS2/C6D6, 298 K) δ -47.4 (s); ^{13}C NMR $(C_6D_4Cl_2, 298 \text{ K}) \delta 185.4 \text{ (d, } {}^2J_{PC} = 5.9 \text{ Hz}, 2 \text{ CO}), 178.5 \text{ (s, 6)}$ CO); MS (FAB⁺) m/z 1596 (M⁺). Anal. Calcd for C₇₁H₉O₈-POs₃:C, 53.59; H, 0.57. Found: C, 53.14; H, 0.38.

Conversion of 6 to 7. Method 1: Compound **6** (20.0 mg, 0.0130 mmol) was dissolved in chlorobenzene (20 mL), and an excess amount (0.006 mL, 0.06 mmol) of PMe₃ was added. The resulting mixture was heated to reflux for 5 h. The solvent was evaporated, and the residue was purified by preparative TLC (CS₂) to afford compound **7** (8.8 mg, 0.0055 mmol, 43%). **Method 2:** Compound **6** (20.0 mg, 0.0130 mmol) was dissolved in chlorobenzene (20 mL), and an excess amount of PMe₃ was added. The solution was cooled to -20 °C, and an acetonitrile solution (3 mL) of anhydrous Me₃NO (1.0 mg, 0.013 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature for 1 h. The solvent was evaporated, and the residue was purified by preparative TLC (CS₂) to afford compound **7** (19.8 mg, 0.0124 mmol, 96%).

X-ray Structure Determination for 1. CH2Cl2. Crystals of 1 suitable for an X-ray analysis were obtained by slow recrystallization from a mixed solvent of toluene, dichloromethane, and hexane at -20 °C. An opaque dark crystal with approximate dimensions of 0.26 \times 0.40 \times 0.03 mm was mounted and aligned on a CAD4 diffractometer. Details of the relevant crystallographic data are given in Table 1. The accurate cell parameters were refined from setting angles of 25 reflections with $11.39^\circ < \theta < 13.91^\circ$, and intensity data for 4054 independent reflections in the range $0 \le h \le 17$, $0 \le k \le 17$ 15, $0 \le l \le 32$ were collected using graphite-monochromated Mo K α radiation and the $\omega/2\theta$ scan mode, ω -scan width = (0.8 + 0.35 tan θ)°, $\theta_{max} = 25^{\circ}$. One orientation reflection was checked every 300 reflections, and three standard reflections were monitored every 3 h. The intensity variation was less than 1.4% during data collection, and thus, the decay correction was not applied to the data. All data were corrected for Lp and absorption factors: the maximum and minimum transmission factors were 1.00 and 0.65 with an average of 0.83. Data collection, cell refinement, and data reduction were performed by SDP.¹⁵ Consistent with the observed values of the cell parameters and observed symmetries in reflection intensities, the unit cell was determined to be orthorhombic. The observed extinctions (0*kl*, k + l = odd; and *hk*0, h = odd) permitted only two space groups; the noncentrosymmetric

⁽¹⁵⁾ Structure Determination Package; Enraf-Nonius: The Netherlands, 1985.

formula	$C_{71}O_{11}Os_3 \cdot CH_2Cl_2$
fw	1684.31
cryst syst	orthorhombic
space group	Pnma
a, Å	13.879(2)
<i>b</i> , Å	12.034(1)
<i>c</i> , Å	27.468(2)
V, Å ³	4587.7(8)
Ż	4
D_{calcd} , Mg m ⁻³	2.439
temp, K	294
λ (Mo Kα), Å	0.710 69
μ , mm ⁻¹	8.55
transmission factors	0.65 - 1.00
no. of rflns measd	5449
no. of unique rflns	4054
no. of rflns $(F_0 > 4\sigma(F_0))$	2885
$R_{\rm f}^a$	0.064
R_{w}^{b}	0.154

^a $R_f = \sum ||F_0| - |F_c|| / \sum |F_0|$. ^b $R_w = [\sum \omega (|F_0| - |F_c|)^2 / \sum \omega |F_0|^2]^{1/2}$.

group Pna2₁ (No. 33) and the centrosymmetric group Pnma (No. 62).¹⁶ Both possible assignments were tested. Whereas least-squares refinement was processed well in Pnma, no satisfactory refinement was obtained in Pna21 (indeed, unsatisfactory thermal parameters and geometric parameters and high *R* values were consistently observed in this case). Thus *Pnma* is strongly indicated as a space group for **1**. The structure was determined using the direct-method procedure of the SHELX86 program,¹⁷ which revealed one osmium atom occupied a special position (4c) of space group Pnma. The other two osmium atoms, which are at the general position, are disordered at two positions, related by a $(x, \frac{1}{4}, z)$ mirror plane, with half-occupancy (see Supporting Information). The rest of the atoms in 1 were located from difference Fourier maps. The crystallographic mirror plane passes through the molecule so that six atoms of the three carbonyl groups, four atoms of the C₆₀ ligand, and the carbon and one chlorine atom of the CH₂Cl₂ solvate molecule are located on the mirror plane. Six carbonyl groups of the Os₃(CO)₁₁ moiety are disordered at the opposite side of the mirror plane with half-occupancy. The chlorine atom located on the mirror plane is split into two positions with an occupancy factor of 0.25, while the other chlorine atom occupies two general positions related by the mirror plane with half-occupancy. The whole structure was refined by full-matrix least-squares techniques on F^2 . Of the 58 atoms present in the asymmetric unit, 46 were refined with anisotropic thermal parameters and the remaining 12 atoms were given isotropic thermal parameters (see Supporting Information). For all computations, the SHELX93 package¹⁸ was used and the function minimized was $\sum \omega (|F_0| - |F_c|)^2$, with $\omega = 1/[\sigma^2(F_0^2) + (0.1123P)^2]$, where $P = (F_0^2 + 2F_c^2)/3$. Neutral atomic scattering factors were used with Os (f' and f''), corrected for anomalous dispersion. The number of parameters refined was 431. Hydrogen atoms for the CH₂Cl₂ solvate molecule were not located. Final reliability factors for 2885 unique observed reflections $[F_0 > 4\sigma(F_0)]$ were $R_F = 0.064$, R_w = 0.154, with $(\Delta/\sigma)_{\text{max}}$ = 0.102, $\Delta\rho_{\text{max}}/\Delta\rho_{\text{min}}$ = 2.434/-1.301 e/Å³ in final $\Delta \rho$ map and S = 0.982.

Results and Discussion

Synthesis and Characterization of η^2 -C₆₀ Complexes 1-5. Details of the reaction conditions for the

Scheme 1. Synthesis of η^2 -C₆₀ Complexes^a

^a Reagents and conditions : (i) C_{60} , toluene, 80 °C, 5 min; (ii) C_{60} , toluene, 80 °C, 30 min; (iii) Me₃NO (1 equiv) / MeCN, CH₂Cl₂, then C₆₀, toluene, room temp., 4 h; (iv) CO (1 atm.), toluene, room temp., 2 h; (v) Me₃NO (1 equiv) / MeCN, toluene, -50 °C, 2 h; (vi) PPh₃ (1 equiv), toluene, room temp., 1 h; (vii) PPh3 (1 equiv), toluene, then Me₃NO (1 equiv), CH_2Cl_2 , -50 °C, 2 h.

synthesis of **1**-**5** are summarized in Scheme 1. Oxidative decarbonylation by Me₃NO in the presence of the weak-field ligand MeCN has been used extensively in the activation of Os₃(CO)₁₂ and affords the labile derivatives $Os_3(CO)_{12-n}(NCMe)_n$ (n = 1, 2), which are versatile starting materials for the synthesis of many triosmium cluster complexes.^{12,13} Complexes 1 and 2 have been prepared upon brief heating (5 min for 1, 30 min for 2) of $Os_3(CO)_{11}(NCMe)$ and $Os_3(CO)_{10}(NCMe)_2$ with C_{60} in toluene at 80 °C, respectively, by substitution of a weakly coordinated MeCN ligand with C₆₀. Longer periods of heating resulted in extensive decomposition and gave lower yields for both 1 and 2. The phosphinesubstituted complexes, 3-5, have been prepared after initial treatment of the corresponding starting material with Me₃NO/MeCN reagent and subsequent reaction with C_{60} at room temperature. Complexes 1 and 2 are interconvertible either by decarbonylation of 1 with Me₃-NO/MeCN reagent or by exposure of 2 to CO gas (1 atm). Complex 2 reacts with PPh₃ to afford 3, which undergoes further reaction with PPh₃ to produce 4 upon decarbonylation with Me₃NO. All these transformations $(1 \rightleftharpoons 2 \rightarrow 3 \rightarrow 4)$ proceed in quantitative yields.

Complexes 2–5 are soluble in dichloromethane and 1-5 in aromatic solvents to form either brown (1) or green (2-5) solutions, but they are insoluble in pentane and hexane. The formulations of 1-5 are supported by elemental analysis and by the molecular-ion (M⁺) multiplet in the FAB⁺ mass spectrum (MS) of each compound. The M^+ multiplet of 1-5 perfectly matches the calculated pattern (the highest peak in the M⁺ multiplet $(m/z, \text{ found, calcd}), \mathbf{1}$ (1600, 1600), $\mathbf{2}$ (1613, 1613), $\mathbf{3}$ (1834, 1834), 4 (2068, 2068), and 5 (1696, 1696)). The presence of MeCN ligand in 2 was confirmed by observation of the highest peak at 1616 (2 + 3) in the MS of the deuterated derivative of **2**, $Os_3(CO)_{10}(CD_3CN)(\eta^2 -$ C₆₀).

The definitive structural assignment of 1-5 (see Chart 1) is made on the basis of spectroscopic data (¹H and ¹³C NMR and IR). The IR spectrum of **1** is identical

⁽¹⁶⁾ International Tables for Crystallography, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; Vol. A.

 ⁽¹⁷⁾ Sheldrick, G. M. SHELX86, Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1985.
 (18) Sheldrick, G. M. SHELX93, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1993.

to that of Os₃(CO)₁₁(PPh₃),¹⁹ and the IR spectra of **3** and 4 (5) are similar to those of $Os_3(CO)_{10}(PPh_3)_2^{20}$ and Os_3 -(CO)₉(PPh₃)₃,²¹ except that the IR bands of C₆₀ complexes are shifted to higher energies by ca. 20 cm⁻¹ compared to those of the corresponding phosphine derivative, reflecting the electron-withdrawing nature of the C₆₀ ligand. Phosphine substitution for CO in Os₃-(CO)₁₂ invariably occurs at an equatorial site.²² These results indicate that compounds 1, 3, and 4 (5) are isostructural with the respective phosphine-substituted complex, $Os_3(CO)_{12-n}(PPh_3)_n$ (n = 1-3), and thus the C_{60} moiety occupies an equatorial site as shown in Chart 1. Furthermore, the limiting low-temperature ¹³C NMR (CO region) of 1* (ca. 50% ¹³CO-enriched) reveals eight resonances at δ 183.3, 182.9, 181.7, 172.0, 171.9, 170.3, 168.8, and 168.5 with an intensity ratio of 2:2:2:1:1:1: 1:1. The three lower-field resonances with higher intensities are considered to be due to three sets of the six axial carbonyl ligands, and the rest of the resonances are attributed to the five inequivalent equatorial carbonyl ligands.²³ These data are entirely consistent with the crystal structure of **1** (*vide infra*), with η^2 -C₆₀ occupying an equatorial position at an osmium center. The ¹³C signals for the C_{60} moiety are too weak to be detected. The ¹H NMR spectrum of **2** shows two singlets due to the coordinated MeCN at δ 3.02 (2a) and 2.85 (2b) in a ratio of 2:1, indicating that 2 exists as two isomers. Upon addition of CD₃CN, the two resonances for 2a and 2b slowly (2 h) lose intensity at room temperature and are replaced by a sharp singlet at δ 1.98 due to free MeCN, which is consistent with facile displacement of the coordinated MeCN by the deuterated solvent. In compound 2, the MeCN ligand may be coordinated at an axial site of an osmium atom, as shown in all known acetonitrile derivatives of triosmium clusters.²⁴ The limiting low-temperature ¹³C NMR (CO region) of 2* shows two sets of 10 resonances due to 2a and **2b** in an intensity ratio of 2:1. Major isomer **2a** is considered to have a structure with an axial MeCN and a bulky equatorial C₆₀ ligand coordinated at the same osmium atom, which is strongly supported by both the crystal structure of Os₃(CO)₁₀(NCMe)(dmfu) (8) (dmfu = MeO₂C(H)C=C(H)CO₂Me)²⁵ and the fluxional behavior of 2a (vide infra). The dimethylfumarate ligand is known to have a similar electron-withdrawing property to that of C₆₀.^{6j} The crystal structure of an isomer obtained from an isomeric mixture of 8 indicated that the axial MeCN and equatorial dmfu ligands were coordinated at the same metal center,²⁵ which was assumed to be isostructural with 2a. The only structural possibility of minor isomer 2b is a structure that axial MeCN and equatorial C₆₀ ligands are bonded to each adjacent osmium atom. This structure may produce two isomers due to two inequivalent equatorial sites for C₆₀. We, however, observed only one isomer

(24) Dawson, P. A.; Johnson, B. F. G.; Lewis, J.; Puga, J.; Raithby,
 P. R.; Rosales, M. J. *J. Chem. Soc., Dalton Trans.* **1982**, 233.

Figure 1. Molecular geometry and atomic-labeling scheme for **1**. Labels for primed atoms of C_{60} are omitted for clarity.

Table 2.	Selected Interatomic Distances (A	A) and
	Esd's for 1·CH ₂ Cl ₂	

(A) Metal-Metal Distances			
Os(1) - Os(2)	2.891(1)	Os(1) - Os(3)	2.897(1)
(1)Os(2) - Os(3)	2.851(2)		
(B) Mo	tal_Carbon (C	'arbonyl) Distancos	
$O_{c}(1) = C(100)$	1 80(2)	$O_{c}(1) = C(101)$	1.04(1)
$O_{S}(1) = C(100)$	1.09(2)	OS(1) = C(101)	1.94(1)
Os(1) - C(200)	1.97(3)	Os(2) - C(201)	1.86
Os(2) - C(202)	1.93(5)	Os(2) - C(203)	1.94(4)
Os(3) - C(300)	1.93(3)	Os(3)-C(301)	1.96(3)
Os(3)-C(302)	1.93(3)	Os(3)-C(303)	1.99(3)
(C) Car	bon–Oxygen (Carbonyl) Distances	5
C(100)-O(100)	1.12(3)	C(101)-O(101)	1.13(2)
C(100)-O(200)	1.14(3)	C(201)-O(201)	1.24(4)
C(202)-O(202)	1.16(6)	C(203)-O(203)	1.17(4)
C(300)-O(300)	1.11(3)	C(301)-O(301)	1.11(4)
C(302)-O(302)	1.13(4)	C(303)-O(303)	1.10(3)
(D) Metal-Carbon (C_{eo}) Distances			
Os(1)-C(1)	2.21(2)	Os(1)-C(2)	2.26(2)
(E) Distances within the C ₆₀ Ligand			
C(1) - C(2)	1.42(3)	C(1) - C(18)	1.45(2)
C(2) - C(3)	1.48(2)	C(10) - C(11)	1.36(3)
			- (-)

for **2b** in both the ¹H and ¹³C NMR spectra (down to 193 K), which may be explained by a fast exchange of the C₆₀ ligand between the two inequivalent equatorial sites in the temperature range. It seems that the electron-withdrawing nature of the C₆₀ ligand favors the structure of **2a**, which has C₆₀ and the donor MeCN ligands bonded to the same metal center, and also accounts for the observation that the methyl proton resonance of **2a** (δ 3.02) is more downfield than that of **2b** (δ 2.85).

Crystal Structure of 1·CH₂Cl₂. The crystal contains a disordered arrangement of discrete $Os_3(CO)_{11}(\eta^2 - C_{60})$ ·CH₂Cl₂ molecules, which are mutually separated by normal van der Waals distances. The CH₂Cl₂ solvate molecule does not enter into any significant interactions with molecule **1**. The overall molecular geometry and the atomic-labeling scheme are illustrated in Figure 1. Interatomic distances and angles are listed in Tables 2 and 3, respectively.

The molecular structure of **1** is derived from that of $Os_3(CO)_{12}$ by replacing an equatorial carbonyl group on the Os(1) atom with the C_{60} ligand. The two osmium atoms (2, 3) and six carbonyl ligands (201, 202, 203, 301, 302, 303), however, are disordered out of the crystallographic mirror plane, which includes the Os(1) atom, four C_{60} carbon (1, 2, 10, 11) atoms, and three equatorial carbonyl (100, 200, 300) groups, and bisects the C_{60} ligand and the Os(2)–Os(3) bond. The primed atoms

⁽¹⁹⁾ Bruce, M. I.; Liddell, M. J.; Hughes, C. A.; Skelton, B. W.; White, A. H. J. Organomet. Chem. **1988**, 347, 157.

⁽²⁰⁾ Bruce, M. I.; Liddell, M. J.; Hughes, C. A.; Patrick, J. M.; Skelton, B. W.; White, A. H. *J. Organomet. Chem.* **1988**, *347*, 181.

 ⁽²¹⁾ Bruce, M. I.; Liddell, M. J.; Shawkataly, O.; Hughes, C. A.;
 Skelton, B. W.; White, A. H. J. Organomet. Chem. 1988, 347, 207.
 (22) Deeming, A. J. Adv. Organomet. Chem. 1986, 26, 1.

⁽²³⁾ Johnson, B. F. G.; Lewis, J.; Reichert, B. E.; Schropp, K. T. J. Chem. Soc., Dalton Trans. 1976, 1403.

Table 3. Selected Interatomic Angles (deg) and
Esd's for 1·CH2Cl2

(A) Intermetallic Angles				
Os(1)-Os(2)-Os(3)	59.03(4)	Os(1) - Os(2) - Os(3)	60.59(4)	
(CO Angles		
$O_{2}(2) = O_{2}(1) = O_{1}(100)$	D = W = W = V	$O_{2}(2) O_{2}(1) O_{1}(1) O_{2}(1)$	120.0(0)	
$O_{S}(2) = O_{S}(1) = C(100)$	123.8(8)	$O_{S}(3) = O_{S}(1) = C(100)$	139.0(6)	
Os(2) = Os(1) = C(101)	89.8(5)	Os(3) - Os(1) - C(101)	//./(4)	
Os(1) - Os(2) - C(200)	149.7(6)	Os(3) - Os(2) - C(200)	92.9(8)	
Os(1) - Os(2) - C(201)	78(1)	Os(3) - Os(2) - C(201)	94(1)	
Os(1) - Os(2) - C(202)	103(1)	Os(3) - Os(2) - C(202)	161(1)	
Os(1) - Os(2) - C(203)	95(1)	Os(3) - Os(2) - C(203)	81(1)	
Os(1) - Os(3) - C(300)	152.4(5)	Os(2) - Os(3) - C(300)	97.5(9)	
Os(1) - Os(3) - C(301)	79.4(9)	Os(2) - Os(3) - C(301)	96(1)	
Os(1) - Os(3) - C(302)	3(9)	Os(2) - Os(3) - C(302)	160.5(9)	
Os(1)-Os(3)-C(303)	96.0(9)	Os(2)-Os(3)-C(303)	81(1)	
(C) Os-	-C - 0 and	C-Os-C Angles		
$(C) US^{-}$	171(9)	C = OS = C Aligies) 176(1)	
$O_{S}(1) = C(100) = O(100)$	1/1(2) 105(1)	$O_{2}(2) = C(101) = O(101)$	170(1)	
$O_{S}(2) = C(200) = O(200)$	103(1)	$O_{2}(2) = C(201) = O(201)$	109(4)	
$O_{S}(2) = C(202) = O(202)$	1/(3)	$O_{2}(2) = C(203) = O(203)$	173(3)	
Os(3) - C(300) - O(300)	166(1)	Os(3) - C(301) - O(301)	177(3)	
$O_{S}(3) - C(302) - O(302)$	171(3)	$O_{S}(3) = C(303) = O(303)$	i) 175(3)	
C(100) - Os(1) - C(101)	92.7(4)	C(200) - Os(2) - C(201)) 91(1)	
C(200) - Os(2) - C(202)	105(1)	C(200) - Os(2) - C(203)) 95(1)	
C(201) - Os(2) - C(202)	91(1)	C(201) - Os(2) - C(203)	172(2)	
C(202) - Os(2) - C(203)	92(1)	C(300) - Os(3) - C(301)) 88(1)	
C(300) - Os(3) - C(302)	102(1)	C(300) - Os(3) - C(303)	b) 97(1)	
C(301) - Os(3) - C(302)	89(1)	C(301)-Os(3)-C(303) 175(1)	
C(302)-Os(3)-C(303)	93(1)			
(D) Angles Involving C(1) and C(2)				
C(1) = Os(1) = C(2)	37 1(7)	$O_{S}(1) - C(1) - C(2)$	73(1)	
$O_{S}(2) - O_{S}(1) - C(1)$	166 6(3)	$O_{S}(2) - O_{S}(1) - C(2)$	1512(4)	
$O_{S}(3) - O_{S}(1) - C(1)$	1327(4)	$O_{s}(3) - O_{s}(1) - C(2)$	96.3(5)	
$O_{c}(1) = C(1) = C(18)$	102.7(4) 191 1(0)	$O_{s}(1) - C(2) - C(3)$	01(1)	
C(18) - C(1) - C(18)	121.1(9) 110(1)	C(3) = C(2) = C(3)	199(1)	
C(10) = C(1) = C(2) C(10) = C(1) = C(10)'	102(2)	C(3) = C(2) = C(1)	166(1) 104(9)	
U(10) = U(1) = U(10)	103(2)	U(3) = U(2) = U(3)	104(2)	

are the symmetry mates of the unprimed atoms, and each mate occupies the opposite side of the mirror plane with half-occupancy. The Os(2)-Os(3) bond in the Os_3 triangle is slightly shorter (ca. 0.05 Å) than the other two Os-Os bonds. The average Os-Os distance for 1 (2.879(1) Å) is similar to that for $Os_3(CO)_{12}$ (2.877(3))Å).²⁶ The C₆₀ moiety is bound to the Os(1) atom in an η^2 fashion through a 6–6 ring fusion, as found in other η^2 -C₆₀ transition metal complexes.⁶ The dihedral angle between Os(1)-C(1)-C(2) and Os_3 triangles is $19(1)^\circ$, and the carbonyl ligands on each osmium atom also reveal significant distortion. Both distortions are, presumably, due to a steric conjection between the C_{60} and the adjacent equatorial carbonyl (302) ligand. The $Os-C(C_{60})$ bond distances are Os(1)-C(1) = 2.21(2) Å and Os(1)-C(2) = 2.26(2) Å, which are comparable to the values (2.15(3), 2.22(3) Å) of Os-C(alkene) bonds found in $Os_3(CO)_{10}(PEt_3)[CF_3(H)C=C(H)CF_3]$.²⁷ The C(1)-C(2) bond length is 1.42(2) Å, and this bond is elongated due to the metal-to- $C_{60} \pi$ -back-donation compared with 1.38(2) Å for an unperturbed (6, 6)-bond. We note here that the following C-C distances of C_{60} directly bonded to the metal center have been observed in η^2 -C₆₀ complexes: 1.45(3) Å in Pd(PPh_3)₂(η^2 -C₆₀),^{6f} 1.48(1) Å in RhH(CO)(PPh₃)₂(η^2 -C₆₀),^{6e} 1.49(2) Å in {Ir- $(CO)Cl(PEt_3)_2\}_2C_{60}$, ^{6h} 1.50(1) Å in W(CO)₃(diphos)(η^2 - C_{60}),^{6j} 1.50(3) Å in Pt(PPh₃)₂(η^2 - C_{60}),⁵ 1.51(2) Å in {Ir(CO)Cl(PMe₃)₂}₂C₆₀,^{6h} and 1.53(3) Å in Ir(CO)Cl- $(PPh_3)_2(\eta^2-C_{60})^{.6a}$ The C(1)–C(2) bond of **1**, therefore, is the shortest value observed in these complexes,

Figure 2. VT ¹³C NMR spectra (75 MHz, CO region, CD₂-Cl₂) of **2**^{*}. Resonances marked with \bullet are from **2a** and those with \triangle are from **2b**.

implying that the π -back-donation in **1** may be significantly suppressed by strong π -acid carbonyl ligands on the osmium atoms. The C₆₀ moiety shows the same distortion of pulling the C(1) and C(2) atoms away from the C₆₀ surface as that seen in other complexes: the angles between the C(1) and C(2) axis and the planes described by C(2)–C(3)–C(3)' and C(1)–C(18)–C(18)' are 40(2)° and 39(2)°, respectively, but such angles in free C₆₀ are known to be 31°.^{1b}

All other features of the molecular geometry are within the expected range. The average C–C bond length at the junction of the 5,6 ring is 1.45(2) Å and that at the junction of the 6,6 ring is 1.38(2) Å. Individual Os–CO distances range from 1.86(3) to 1.99-(3) Å, C–O bond lengths range from 1.10(3) to 1.24(4) Å, and Os–C–O angles are in the range $165(1)-177-(3)^{\circ}$.

Fluxional Processes of 2 and 5. The molecular dynamics of **2** and **5** have been examined by variabletemperature (VT) ¹³C NMR spectroscopy using *COenriched samples, **2*** and **5***. The limiting low-temperature ¹³C NMR spectrum of **2*** at 193 K (Figure 2, CO region) reveals two sets of 10 resonances attributed to unsymmetrical structures of **2a** (denoted as •) and **2b** (\triangle) in an intensity ratio of 2:1. Superimposed [AB] patterns for the eight inequivalent *trans* axial carbonyls for **2a** and **2b** are observed in the range of *ca*. 187–183 ppm, which is consistent with earlier observations that the resonances of axial carbonyls appear at lower field than those of equatorial carbonyls.²⁸ The carbonyl

 ⁽²⁶⁾ Churchill, M. R.; DeBore, B. G. Inorg. Chem. 1977, 16, 878.
 (27) Dawoodi, Z.; Mays, M. J.; Raithby, P. R. J. Chem. Soc., Chem. Commun. 1980, 641.

^{(28) (}a) Gladfelter, W. L.; Geoffroy, G. L. *Inorg. Chem.* **1980**, *19*, 2579. (b) Park, J. T.; Cho, J.-J.; Chun, K.-M.; Yun, S.-S.; Kim, S. *Bull. Korean Chem. Soc.* **1993**, *14*, 137.

Scheme 2

 $I(C_s)$

equilibration in **2a** is clearly observable between 193 and 298 K. As shown in the spectrum at 298 K, the four complex axial carbonyl resonances become two resonances, the two pairs (δ 176.9, 174.6 and 173.3, 170.0) of equatorial carbonyls are averaged and the two carbonyl signals (δ 181.6, 169.2) are unaffected.

These spectral changes can be interpreted in terms of restricted in-plane cyclic motions of equatorial C₆₀ and carbonyl ligands, as shown in Scheme 2. Three equatorial carbonyls (d, f, and h) swing into bridging positions and move on to new osmium atoms and reform the allterminal carbonyl structure, while the C_{60} ligand swings to the adjacent equatorial site on the same metal atom. This process generates a triply bridged C_s -symmetric intermediate (see I in Scheme 2) and thus leads to pairwise equilibration of the four axial carbonyls a/a' and b/b' and the four equatorial carbonyls d/h and e/g. However, axial carbonyl c and equatorial carbonyl f on the mirror plane of the intermediate are not affected by this rearrangement. Equatorial carbonyl f retains its trans relationship through the Os-Os bond to the equatorial C₆₀ ligand even after the rearrangement. Therefore, the unique axial carbonyl c is assigned to the next lowest signal at δ 181.6, and the equatorial carbonyl f is assigned to the unaffected higher field resonance at δ 169.2. The free energy of activation $(\Delta G_{\rm c}^{\,\ddagger} = 12.7 \pm 0.1 \text{ kcal/mol})$ has been obtained²⁹ from a coalescence of the two carbonyl resonances (δ 176.9 and 174.6) at 273 K for the fluxional process of 2a. A similar fluxional process has been previously observed for the norbonadiene complex $Os_3(CO)_{10}(\eta^2, \eta^2-C_7H_8)$ with an axial–equatorial-substituted structure ($\Delta G^{\dagger} =$ 9.7 kcal/mol).³⁰ The solution dynamics of minor isomer 2b could not be interpreted because of relatively lowintensity signals and overlap of the 2b resonances with 2a resonances.

The restricted equilibration of in-plane equatorial C_{60} and carbonyl ligands via a triply bridged intermediate for **2a** is further supported by the solution-dynamics studies on **5**. The VT ¹³C NMR spectra of **5*** are illustrated in Figure 3. The limiting low-temperature spectrum at 213 K reveals six carbonyl resonances at δ 194.8 ($^{2}J_{CP} = 7.2$ Hz), 194.5 ($^{2}J_{CP} = 8.1$ Hz), 185.4, 181.6, 180.6, and 178.3 with relative intensities of 2:2:2:1:1:1, which is consistent with the structure of a pseudo-C₃symmetry shown in Scheme 3. The two lowest field resonances with C–P couplings and an intensity of 2

Figure 3. VT ¹³C NMR spectra (75 MHz, CO region, CD₂-Cl₂) of **5**^{*}.

are assigned to the two pairs of axial carbonyls, a and b, on the two osmium atoms coordinated with phosphine ligands.²³ The resonance at δ 185.4 with an intensity of 2 is assigned to the two equivalent axial carbonyls, c, on the osmium atom coordinated with the C_{60} ligand. The remaining three resonances with intensities of 1 are due to three inequivalent carbonyls, d, e, and f. As the temperature increases, the two low-field doublets at δ 194.8 and 194.5 broaden and merge into a single peak and the two high-field resonances at δ 181.6 and 178.3 broaden and coalesce at 298 K while the two resonances at δ 185.4 and 180.6 are virtually unaffected. These observations can also be rationalized by the same fluxional process as that for **2a**. The process, via a C_{2v} intermediate shown in Scheme 3, leads to pairwise equilibration among the four axial carbonyls a/b and between the equatorial carbonyls d/f. However, the two axial carbonyls c and the equatorial carbonyl e are not affected by the process. Note that the two inequivalent PMe₃ ligands become equivalent by the rearrangement. The ³¹P{¹H} NMR spectrum of 5 shows two resonances

⁽²⁹⁾ Sandström, J. *Dynamic NMR Spectroscopy*; Academic Press: London, 1982, p.96.

⁽³⁰⁾ Tachikawa, M.; Richter, S. I.; Shapley, J. R. J. Organomet. Chem. 1977, 128. C9.

at δ –49.3 and –50.9 at 213 K, which coalesce at 273 K. The line shape analysis²⁹ of the ³¹P resonances gives $\Delta G_{\rm c}^{\pm} = 12.7 \pm 0.1$ kcal/mol for the fluxional process of **5**. It is interesting to observe identical $\Delta G_{\rm c}^{\pm}$ values for the similar fluxional processes of **2a** and **5**, strongly suggesting that similar mechanisms operate in both complexes.

We were able to obtain ¹³C NMR spectrum of the C₆₀ moiety with the most soluble complex, 5, among the C_{60} triosmium cluster complexes (see Experimental Section). The spectrum at room temperature shows a 17line C_{2v} symmetry pattern, which can be explained either by the intermediate of C_{2v} symmetry (see II in Scheme 3) for the fluxional process of 5 or by free rotation about the metal $-C_{60}$ bond. Previous studies on fluxional processes of the C₆₀ moiety revealed C₆₀metal bond axis rotation for $M(CO)_4(\eta^2-C_{60})$ (M = Fe, Ru)^{6g} and migration of the metal fragment over the surface of C_{60} for $Pd(PR_3)_2(\eta^2-C_{60})$ ($R_3 = Me_2Ph$, $MePh_2$, (OMe)₃)³¹ by VT ¹³C NMR spectroscopy. A recent report by Green and co-workers on $M(NO)(PPh_3)_2(\eta^2-C_{60})$ (M = Co, Rh)^{6k} showed the presence of a C₆₀-metal moiety rotation at low temperatures and a migration process at high temperatures.

Synthesis and Characterization of μ_3 - η^2 , η^2 , η^2 - C_{60} **Complexes, 6 and 7.** We are interested in reversible interconversions of η^2 - C_{60} , μ - η^2 , η^2 - C_{60} , and μ_3 - η^2 , η^2 , η^2 - C_{60} ligands on a triosmium cluster framework (see Scheme 4). Successive loss of a carbonyl ligand from η^2 - C_{60} complex will give μ - η^2 , η^2 - C_{60} and μ_3 - η^2 , η^2 , η^2 - C_{60} complexes in turn, and the corresponding reverse pathways may render reversibility to these reactions.

Thermolysis of **2** in refluxing toluene (110 °C) has been attempted to prepare a μ - η^2 , η^2 -C₆₀ complex by

Scheme 5. Synthesis of μ_3 - η^2 , η^2 , η^2 -C₆₀ Complexes^a

$$Os_{3}(CO)_{10}(NCMe)_{2} \xrightarrow{(ii)} Os_{3}(CO)_{9}(\mu_{3}-\eta^{2},\eta^{2},\eta^{2}-C_{60})6 \xrightarrow{(i)} 2$$

$$(iii) \downarrow \qquad \downarrow (iv)$$

$$Os_{3}(CO)_{11}(PMe_{3}) \xrightarrow{(v)} Os_{3}(CO)_{8}(PMe_{3})(\mu_{3}-\eta^{2},\eta^{2},\eta^{2}-C_{60})7$$

^a Reagents and conditions : (i) CB reflux, 23%; (ii) C₆₀ (0.5 equiv), chlorobenzene (CB) reflux (134 °C), 32% yield; (iii) PMe₃, CB reflux, 43%; (iv) CB, PMe₃, Me₃NO (1 equiv) / MeCN at -20 °C, room temp., quantitative. (v) Me₃NO(1 equiv) / MeCN, C₆₀ (0.5 equiv), CB reflux, 14%.

removing the weak-field MeCN ligand. The reaction resulted in extensive decomposition of 2 and did not produce any isolable products. However, thermolysis of **2** at a higher temperature in refluxing chlorobenzene (134 °C) unexpectedly affords $Os_3(CO)_9(\mu_3-\eta^2,\eta^2,\eta^2-C_{60})$ (6) in 23% yield by loss of both the acetonitrile and a carbonyl ligand (see Scheme 5). A better yield (32%) has been obtained from an alternative reaction of Os₃- $(CO)_{10}(NCMe)_2$ (2 equiv) and C_{60} (1 equiv). The reaction of 6 with either CO (1 atm) or PMe₃ has been carried out in refluxing chlorobenzene to prepare a μ - η^2 , η^2 -C₆₀ complex by addition of a 2-electron-donor ligand to 6. The former reaction gives only the starting material back, but the latter reaction produces Os₃(CO)₈(PMe₃)- $(\mu_3 - \eta^2, \eta^2, \eta^2 - C_{60})$ (7) in 43% yield by substitution of a carbonyl ligand with PMe₃ instead of the expected addition of PMe_3 to **6**. Complex **7** can be prepared either in a quantitative yield by initial decarbonylation of 6 with Me₃NO/MeCN reagent under mild conditions (-20 °C to room temperature) or in 14% yield by a similar decarbonylation of Os₃(CO)₁₁(PMe₃) (2 equiv) and subsequent thermolysis with C_{60} (1 equiv) in refluxing chlorobenzene. We have not been successful in the preparation of the μ - η^2 , η^2 -C₆₀ complex as of yet.

^{(31) (}a) Nagashima, H.; Yamaguchi, H.; Kato, Y.; Saito, Y.; Haga, M.; Itoh, K. *Chem. Lett.* **1993**, 2153. (b) Nagashima, H.; Kato, Y.; Yamaguchi, H.; Kimura, E.; Kawanishi, T.; Kato, M.; Saito, Y.; Haga, M.; Itoh, K. *Chem. Lett.* **1994**, 1207.

⁽³²⁾ Johnson, B. F. G.; Lewis, J.; Martinelli, M.; Wright, A. H.; Braga, D.; Grepioni, F. J. Chem. Soc., Chem. Commun. **1990**, 364.

Table 4. Comparison of IR Spectra between μ_3 - η^2 , η^2 , η^2 - C_{60} and Arene Complexes

complex	$\nu_{\rm CO}~({\rm cm^{-1}})$	solvent	ref
Ru ₃ (CO) ₉ (μ_3 - η^2 , η^2 , η^2 -C ₆₀)	2078s, 2045vs, 2012m, 1985sh	CS_2	9
$\operatorname{Ku}_{3}(\operatorname{CO})_{9}(\mu_{3},\eta^{2},\eta^{2},\eta^{2}-\operatorname{C}_{6}\operatorname{H}_{6})$ $\operatorname{Os}_{3}(\operatorname{CO})_{9}(\mu_{3},\eta^{2},\eta^{2},\eta^{2}-\operatorname{C}_{60}), 6$	2071m, 2027vs, 1996s, 1976sh 2081s, 2046vs, 2016m, 2002m, 1983sh	CH_2CI_2 CS_2	32 this work
$Os_3(CO)_9(\mu_3-\eta^2,\eta^2,\eta^2-C_6H_6)$	2076m, 2030vs, 1999m, 1978m, 1951sh	$\widetilde{CH_2Cl_2}$	33
$Os_3(CO)_8(PMe_3)(\mu_3-\eta^2,\eta^2,\eta^2-C_{60}), 7$ $Os_3(CO)_8(PPh_3)(\mu_3-\eta^2,\eta^2,\eta^2-C_6H_6)$	2064vs, 2032s, 2010s, 1998m, 1984m, 1960w, 1946w 2057s, 2018vs, 1991s, 1975m, 1962sh, 1943w, 1920w	CS_2 CH_2Cl_2	this work 33

Complexes 6 and 7 are sparingly soluble in toluene and more soluble in carbon disulfide and 1,2-dichlorobenzene to form either a brown (6) or greenish-brown (7) solution. Formulations of both complexes are established by elemental analysis and by FAB⁺ MS spectroscopy. The M⁺ multiplet of **6** and **7** completely matches the calculated pattern: the highest peaks in the M⁺ multiplet (m/z, found, calcd) for **6** are 1544, 1544 and 7 are 1592, 1592. The carbonyl regions of the IR spectra for 6 and 7 are similar in pattern to those reported for face-capping arene complexes, ³³ Os₃(CO)₉- $(\mu_3 - \eta^2, \eta^2, \eta^2 - C_6H_6)$ and $Os_3(CO)_8(PPh_3)(\mu_3 - \eta^2, \eta^2, \eta^2 - C_6H_6)$ (see Table 4), whose structures are derived from replacement of three axial carbonyls at a triosmium face and the capping of μ_3 - η^2 , η^2 , η^2 -C₆H₆ ligand. Shapley and co-workers recently reported the structural characterization of $\text{Ru}_3(\text{CO})_9(\mu_3-\eta^2,\eta^2,\eta^2-C_{60})^9$ and $\{\text{Ru}_3(\text{CO})_9\}_x(\mu_3-\eta^2,\eta^2,\eta^2-C_{60})^9$ $\eta^2, \eta^2, \eta^2-C_{70}$ (x = 1, 2),³⁴ which verify arene-like coordination of the C_{60} ligand to the open face of a triruthenium cluster. An extra band is observed for C₆₀ and arene triosmium complexes compared to the corresponding triruthenium complexes, as shown in Table 4. The shift of the IR bands for C_{60} complexes to higher energies is consistently revealed in these complexes due to the electron-withdrawing nature of the C_{60} ligand. The structural correspondence between C₆₀ and arene complexes are indicated by the close similarities of the IR spectra.

The ¹³C NMR spectrum of **6*** at 298 K (Figure 4a) reveals a single resonance at δ 176.1 for the nine carbonyls, which implies the presence of a fast localized 3-fold rotation of three carbonyl groups on each atom. The arene analogue $Os_3(CO)_9(\mu_3-\eta^2,\eta^2,\eta^2-C_6H_6)$,³³ however, has two resonances at δ 175.86 (6 CO) and 175.82 (3 CO) for the six equatorial and three axial carbonyl ligands, although they are very close in chemical shifts. The single carbonyl resonance of 6* became slightly broad at 188 K but was not resolved. A single-crystal X-ray diffraction study has previously revealed equatorial coordination of triphenylphosphine in Os₃(CO)₈- $(PPh_3)(\mu_3-\eta^2,\eta^2,\eta^2-C_6H_6)$,³³ which appears to be isostructural with compound **7**. The ¹³C NMR spectrum of **7** at 298 K (Figure 4b) shows two resonances at δ 185.4 (d, ${}^{2}J_{PC} = 5.9$ Hz) and 178.5 in a 1:3 ratio, whose general features are very similar to that of the arene analogue with two peaks at δ 183.96 (d, $^{2}J_{PC}$ = 8.0 Hz, 2 CO) and 177.39 (s, 6 CO). The P–C coupling in 7 was verified by obtaining a ${}^{13}C{}^{31}P$ NMR spectrum (see the inset of Figure 4). A fast localized 3-fold rotation of three ligands at each osmium center seems to occur in 7 also. The phosphine-substituted osmium center in 7 may undergo a restricted 3-fold rotation proposed by Pomer-

Figure 4. (a) ¹³C NMR spectrum (151 MHz, CO region, 298 K, $CS_2/ext.CD_2Cl_2$) of **6***. (b) ¹³C NMR spectrum (151 MHz, CO region, CS_2/C_6D_6) of **7***. The inset is from the ¹³C-{³¹P} NMR spectrum.

oy and co-workers,³⁵ without requiring the bulky phosphine ligand to enter an axial site. In any case, the resonance at δ 185.4 with a P–C coupling and that at δ 178.5 can be assigned to the two carbonyl ligands on the osmium atom coordinated with PMe₃ and the six carbonyl groups on the other two osmium atoms, respectively. The two resonances only become broad at a low temperature of 188 K.

Concluding Remarks

The present work provides the first examples of transition metal cluster-bound C_{60} complexes, 1-7, although the only C₆₀-metal cluster complex, Ru₃(CO)₉- $(\mu_3 - \eta^2, \eta^2, \eta^2 - C_{60})$,⁹ has appeared in the literature after our preliminary communication.¹⁰ As expected, the C₆₀ ligand in 1-5 invariably occupies an equatorial position similar to bulky ligands, such as phosphines and alkenes, and acts as an electron-withdrawing entity evidenced by high-energy ν (CO) bands in **1**–**7**. The shortest C–C bond length (1.42 Å in **1**) of C_{60} directly bonded to the metal center among all known η^2 -C₆₀ complexes, however, implies that the metal-to- $C_{60} \pi$ -backdonation is significantly suppressed by the strong π -acid carbonyl ligands on the osmium atoms. This fact is further supported by our previous observation¹¹ that C₆₀-mediated electron transfer to the metal center

⁽³³⁾ Gallop, M. A.; Gomez-Sal, M. P.; Housecroft, C. E.; Johnson, B. F. G.; Lewis, J.; Owen, S. M.; Raithby, P. R.; Wright, A. H. *J. Am. Chem. Soc.* **1992**, *114*, 2502.

⁽³⁴⁾ Hsu, H.-F.; Wilson, S. R.; Shapley, J. R. J. Chem. Soc., Chem. Commun. 1997, 1125.

⁽³⁵⁾ Alex, R. F.; Pomeroy, R. K. Organometallics 1987, 6, 2437.

occurs in the electrochemical pathways of 1, 3, and 4. A η^6 -C₆₀ ligand has only been observed in trimetallic ruthenium and osmium (6 and 7) cluster complexes. These results suggest that a metal triangle provides for effective overlap of metal d orbitals with $C_{60} p_{\pi}$ -orbitals, which is known to be oriented at angle of *ca.* $10^{\circ 36}$ away from the perpendicular face of the six-membered ring of C₆₀. Nevertheless formation of μ - η^2 , η^2 -C₆₀ complexes eluded our observation. There are three possible fluxional processes proposed for Os₃(CO)₁₂ and its derivatives: (1) axial-equatorial ligand exchange between two metal centers through an intermediate like the solid structure of $Fe_3(CO)_{12}$, (2) equatorial ligand exchange among three metal centers via a triply bridged intermediate, and (3) axial-equatorial ligand exchange through a localized 3-fold rotation of ligands on each

metal center. Both complexes **2a** and **5** have shown a fluxional process ($\Delta G_c^{\pm} = 12.7 \pm 0.1$ kcal/mol) of the restricted pathway of (2) due to the presence of MeCN and C₆₀ ligands, which cannot commonly bridge. Complexes **6** and **7** appear to undergo the fluxional pathway (3) of a facile 3-fold rotation on each osmium atom, even down to a very low temperature (188 K).

Acknowledgment. We are grateful to the Korea Advanced Institute of Science and Technology for financial support of this research.

Supporting Information Available: Figures of disordered molecular geometry and the packing diagram and tables of atomic coordinates and equivalent isotropic displacement parameters, anisotropic displacement parameters, and complete bond lengths and angles for complex **1** (11 pages). Ordering information is given on any current masthead page.

OM970689P

^{(36) (}a) Haddon, R. C. Acc. Chem. Res. **1988**, 21, 243. (b) Haddon, R. C. Science **1993**, 261, 1545.