Accepted Manuscript

Asymmetric hydrolysis of styrene oxide by PvEH2, a novel Phaseolus vulgaris epoxide hydrolase with extremely high enantioselectivity and regioselectivity

Chuang Li, Die Hu, Xun-Cheng Zong, Chao Deng, Lei Feng, Min-Chen Wu, Jian-Fang Li

PII:	\$1566-7367(17)30366-7
DOI:	doi: 10.1016/j.catcom.2017.08.026
Reference:	CATCOM 5175
To appear in:	Catalysis Communications
Received date:	8 June 2017
Revised date:	19 August 2017
Accepted date:	21 August 2017

Please cite this article as: Chuang Li, Die Hu, Xun-Cheng Zong, Chao Deng, Lei Feng, Min-Chen Wu, Jian-Fang Li, Asymmetric hydrolysis of styrene oxide by PvEH2, a novel Phaseolus vulgaris epoxide hydrolase with extremely high enantioselectivity and regioselectivity. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Catcom(2017), doi: 10.1016/j.catcom.2017.08.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Asymmetric hydrolysis of styrene oxide by *Pv*EH2, a novel *Phaseolus vulgaris* epoxide hydrolase with extremely high enantioselectivity and regioselectivity Chuang Li^{a,1}, Die Hu^{a,1}, Xun-Cheng Zong^a, Chao Deng^b, Lei Feng^b, Min-Chen Wu^{b,*}, Jian-Fang Li^{c,*}

¹ Chuang Li and Die Hu, the two first authors, contributed equally to this work.

^a Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China

^b Wuxi Medical School, Jiangnan University, Wuxi 214122, PR China

^c School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China

* Corresponding authors.

E-mail addresses: biowmc@126.com (M.-C. Wu), lijf@163.com (J.-F. Li).

CCC CCC MAR

ABSTRACT

A novel EH from *Phaseolus vulgaris*, *Pv*EH2, was discovered based on the computer-aided analysis, and its encoding gene was cloned and expressed in *E. coli* Rossetta(DE3). The substrate spectrum of recombinant (re) *Pv*EH2 was assayed, among which the enantiomeric ratio of re*Pv*EH2 towards racemic styrene oxide (*rac-*1**a**) was more than 200, while its regioselectivity coefficients, α_s and β_R , towards (*S*)- and (*R*)-1**a** were 99.1 and 69.8%, respectively. The asymmetric hydrolysis of 20 mM *rac-*1**a** by re*Pv*EH2-expressing whole cells was performed at 25 °C, retaining (*R*)-1**a** with > 99.5% *ee*_s and 49.4% yield and producing (*R*)-phenyl-1,2-ethanediol (1**b**) with 96.2% *ee*_p and 49.7% yield in 40 min.

Keywords: Epoxide hydrolase; Phaseolus vulgaris; Styrene oxide; Enantioselectivity; Regioselectivity; Asymmetric hydrolysis

1. Introduction

Chiral epoxides and their corresponding vicinal diols are extensively used in the synthesis of fine chemicals, pharmaceuticals and agrochemicals [1]. Among these versatile building blocks, chiral 1a and its hydrolysate, (*R*)- or (*S*)-1b, are important synthons for producing anticancer agents, adrenergic receptor agonists and kinase inhibitors [2]. Recently, several chemical asymmetric syntheses of chiral 1a and 1b have been reported, such as Jacobsen epoxidation and Sharpless dihydroxylation [3]. However, catalysts having potential pollution were required in these methods, and the enantiomeric excess (*ee*) values and/or yields of products were unsatisfactory in some cases [4].

Epoxide hydrolases (EHs, EC 3.3.2.3) stereoselectively catalyze the addition of water to epoxide ring. With the green wave of global industries, the biotransformation by EHs, an environmental-friendly way, has received much attention [5]. To date, EHs from plants, microorganisms, mammals and invertebrates have been discovered and characterized, but few EHs exhibited desirable enantioselectivity and regioselectivity [6,7]. For example, AuEH2 from Aspergillus usamii displayed a modest preference for (R)-1a in the resolution of rac-1a, retaining (S)-1a with 99.2% ee_s , but only 38% yield, lower than its theoretical yield of 50% [8]. As to plant EHs, only one from Solanum tuberosum, StEH, had high enantiomeric ratio (E) value of 30. Thus, StEH highly preferentially hydrolyzed (S)-1a, retaining (R)-1a with nearly 100% ee_s . Additionally, owing to its high and complementary regioselectivity towards (S)- and (R)-1a, an ee_p of (R)-1b reached 93% in 90 min. However, its enantiopurity decreased to 89% ee_p when the reaction time was prolonged to 120 min [9,10].

In this work, using the *Phaseolus vulgaris* EH1 (*Pv*EH1, GenBank: AKJ75509) [11] as the template, a novel EH also from *P. vulgaris*, *Pv*EH2, was selected based on the homology sequence search and multiple sequence alignment. A *Pv*EH2-encoding gene *pveh2* was amplified by RT-PCR from *P. vulgaris* total RNA, and expressed in *Escherichia coli* Rosetta(DE3). The *E* values of re*Pv*EH2 towards ten *rac*-epoxides (Fig. 1) and its α_S and β_R values towards (*S*)- and (*R*)-epoxides were determined, respectively. Then, the asymmetric hydrolysis of *rac*-1a was conducted by the whole cells expressing re*Pv*EH2 to simultaneously prepare (*R*)-1a and (*R*)-1b.

2. Experimental

2.1. Materials

P. vulgaris was purchased from the local supermarket for total RNA extraction. All enzymes and kits used for gene cloning were from TaKaRa (Dalian, China), while pET-28a(+) and *E. coli* Rosetta(DE3) (Novagen, Madison, WI) were used for expression of *pveh2*. *E. coli* Rosetta(DE3) and its recombinants were cultured in the

LB medium and induced by IPTG *Rac-1a*, **7a**, (*S*)-**1a**, (*R*)-**1a**, (*S*)-**1b** and (*R*)-**1b** were products of TCI (Tokyo, Japan), while *rac-6a* was purchased from Energy (Shanghai, China). *Rac-2a–5a* and **8a–10a** were synthesized in our lab.

2.2. Database search and sequence analysis

Sequences of hypothetical proteins with unknown functions, sharing identities more than 75% with that of *Pv*EH1 (AKJ75509), were searched at NCBI (http://www.ncbi.nlm.nih.gov/) by BLAST server. Among them, a hypothetical one (XP_007147001) also from *P. vulgaris*, *Pv*EH2, was selected. Based on the multiple sequence alignment with five plant EHs by ClustalW2 program (http://www.ebi.ac.uk/Tools/msa/clustalw2/), *Pv*EH2 was confirmed as the study object in this work.

2.3. Cloning and expression of pveh2

The first-strand cDNA was obtained from *P. vulgaris* total RNA by reverse transcription using Oligo dT-Adaptor primer in an RNA PCR kit. Then, the *Pv*EH2-encoding gene (*pveh2*), flanked by *Nde* I and *Xho* I sites, was PCR-amplified using a pair of primers *Pv*2-F and *Pv*2-R (Table S1), and ligated with pET-28a(+), followed by DNA sequencing. The correct recombinant expression plasmid pET-28a-*pveh2* was transformed into *E. coli* Rosetta(DE3), forming a recombinant *E. coli* (*E. coli/pveh2*). *E. coli* Rosetta(DE3) transformed with pET-28a(+) (*E. coli/*pET-28a) was used as the negative control.

A single colony of *E. coli/pveh2* or *E. coli/*pET-28a was inoculated into LB medium containing 100 μ g/mL kanamycin, and cultured at 37 °C overnight as the seed culture. Then, fresh LB medium was inoculated with 2% (v/v) seed culture, and cultured until *OD*₆₀₀ reached 0.6–0.8. After induction by 0.2 mM IPTG at 20 °C for 9 h, the cells were collected and resuspended in Na₂HPO₄–NaH₂PO₄ buffer (50 mM, pH 7.2). The resulting cell suspension (100 mg wet cell/mL) was used as the catalyst.

2.4. Protein and enzyme activity assay

The expression of re*Pv*EH2 was analyzed by SDS-PAGE. Its apparent molecular weight was estimated by Quantity One software based on the standard proteins. EH activity was measured by high-performance liquid chromatography (HPLC) as described previously [11] using an e2695 apparatus (Waters, Milford, MA) equipped with a C18 column. One unit (U) of EH activity was defined as the amount of re*Pv*EH2 generating 1 µmol **1b** per min under the assay conditions.

2.5. Stereoselectivity assay of rePvEH2

The hydrolytic reactions of rac-1a-10a, (S)- and (R)-1a were performed as follows: 1.0 mL cell suspension (100 mg/mL) was separately mixed with 1.0 mL rac-1a-10a (10 mM), (S)- and (R)-1a (5 mM) in 50 mM

Na₂HPO₄–NaH₂PO₄ buffer (pH 7.2), and then incubated at 25 °C. During the hydrolytic reaction, 50- μ L samples were withdrawn at different time points, extracted with 400 μ L ethyl acetate, and assayed by chiral gas chromatography (GC) using a GC-2010 apparatus (Shimadzu, Tokyo, Japan) or HPLC to calculate the *ee*_s of substrate, *ee*_p of product and conversion ratio (*c*).

The enantiomeric ratio (*E*) represents a degree of preferential hydrolysis of an enantiomer over the other one, that is, enantioselectivity [12]. The ee_s of retaining epoxide was calculated: $ee_s = [(R - S)/(R + S)] \times 100\%$, while *E* value: $E = \ln [(1 - c) \times (1 - ee_s)]/\ln [(1 - c) \times (1 + ee_s)]$. *R* and *S* are the concentrations of (*R*)- and (*S*)-epoxide, respectively. The regioselectivity coefficients, α_S and β_R , were related to attacks at C_α (a hindered benzylic carbon in an epoxide ring) of (*S*)-epoxide and at C_β (an unhindered terminal carbon) of (*R*)-epoxide, respectively [13]. In this work, the α_S and β_R of re*Pv*EH2 towards (*S*)- and (*R*)-1**a** were calculated based on the concentrations of (*R*)- and (*S*)-1**b**, using (*S*)- and (*R*)-1**a** as substrates, respectively [14], while the coefficients towards (*S*)- and (*R*)-2**a**-10**a** were derived from the equation: $ee_p = \alpha_S + \beta_R - 1 + [(\beta_R - \alpha_S) \times ee_s \times (1 - c)]/c$, using their racemic forms [15]. The absolute configurations of enantiomers of 2**a**-10**a** and 2**b**-10**b** were established by comparing their retention times with those reported previously [13,15,16].

2.6. Asymmetric hydrolysis of rac-la by whole cells

Both 5.0 mL cell suspension (100 mg/mL) and 4.0 mL Na₂HPO₄–NaH₂PO₄ buffer were preheated at 25 °C for 5 min, and then 1.0 mL *rac*-1a (200 mM) was added, giving the final cell and substrate concentrations of 50 mg/mL and 20 mM, respectively. The reaction was carried out, and aliquots of 100 µL sample were drawn out at different time points in 60 min. The ee_p of (*R*)-1b was calculated: $ee_p = [(R_p - S_p)/(R_p + S_p)] \times 100\%$, while yields of (*R*)-1a and (*R*)-1b: $Y_s = [R/(R_0 + S_0)] \times 100\%$ and $Y_p = [R_p/(R_0 + S_0)] \times 100\%$. R_p and S_p are the concentrations of (*R*)- and (*S*)-1b, while R_0 and S_0 are the initial concentrations of (*R*)- and (*S*)-1a [7].

3. Results and discussion

3.1. Selection and analysis of PvEH2 sequence

Using *Pv*EH1 sequence as the template, those of six hypothetical proteins sharing over 75% identities were searched by BLAST, among which a hypothetical *Pv*EH2 shared 80.1% identity with *Pv*EH1. It was speculated that *Pv*EH2 may have EH activity owing to higher primary structure homology. Thus, this work selected *Pv*EH2 as the study object. The multiple sequence alignment of *Pv*EH2 with five plant EHs displayed that it has typical conserved motifs, identical to those of the α/β fold EH family [8,14]: HGXP, GXSmXS/T and SmXNuXSmSm, in which X, Sm and Nu represent any, small and nucleophilic residues, respectively (Fig. 2). The catalytic triad,

consisting of nucleophile Asp, general base His and charge-relay Asp or Glu, was predicted to be Asp^{101} -His²⁹⁵- Asp^{260} in *Pv*EH2. In addition, Tyr¹⁵⁰ and Tyr²³⁰ in *Pv*EH2 are also conserved. There is evidence that the Tyr residues play key roles in substrate binding and epoxide ring opening via formation of hydrogen bonds [17]. *3.2. Cloning and expression of pveh2*

An about 1.0-kb band of *pveh2* was cloned from *P. vulgaris* total RNA by RT-PCR. DNA sequencing result verified that *pveh2* is exactly 963 bp in length (containing *Nde* I and *Xho* I sites), encoding *Pv*EH2 of 316 amino acids. After *E. coli/pveh2* was induced by 0.2 mM IPTG at 20 °C for 9 h, the activity of re*Pv*EH2-expressing whole cells was assayed to be 8.0 U/g wet cell, while no EH activity was detected in *E. coli/p*ET-28a under the same conditions. Very low EH activity was detected when the temperature during induction exceeded 25 °C, resulting in that most re*Pv*EH2 molecules were transformed into insoluble inclusion body [8]. SDS-PAGE analysis displayed that the apparent molecular weight of re*Pv*EH2 was 38.1 kDa (Fig. 3), which well matched with its theoretical one (37,898 Da).

3.3. Enantioselectivity (Evalue) of rePvEH2

To assay the substrate spectrum of re*Pv*EH2, ten racemic epoxides were subjected to biotransformation by *E.* coli/pveh2 (Table 1). Except for rac-2a and 4a, re*Pv*EH2 preferentially hydrolyzed (*S*)-enantiomers and exhibited *E* values ranging from 1.6 to > 200, indicating that the type of epoxides and position of substituents obviously affected its activity and enantioselectivity. In detail, re*Pv*EH2 exhibited the moderate enantioselectivity towards **6a**-10a and poor enantioselectivity towards **3a** and **5a**. Unexpectedly, the *E* value of re*Pv*EH2 towards **1a** was determined to be > 200, displaying the extremely high preference for (*S*)-1a. That, to some extent, implied that the great majority of (*R*)-1a will be retained, and that the complete hydrolysis of *rac*-1a needs a quite long time [4]. To our knowledge, re*Pv*EH2 displayed the highest enantioselectivity (*E* value) towards *rac*-1a among all EHs hitherto reported, such as *St*EH1 (*E* = 30) [9], Kau2 (*E* = 65) [15] and *Cc*EH (*E* = 8.8) [18].

3.4. Regioselectivity (α_s and β_R) of rePvEH2

The carbon (C_{α} or C_{β}) that is mainly subjected to nucleophilic attack by Asp in a catalytic triad was highly dependent on the EH-substrate pair [9]. To make a better understanding of the catalytic mechanism of re*Pv*EH2, its regioselectivity coefficients were determined (Table 1). As a result, re*Pv*EH2 attacked (*S*)-1a, 3a and 5a mainly at C_{α} ($\alpha_S > 90\%$), giving (*R*)-diols via an inversion of configuration. Simultaneously, the C_{β} atoms of (*R*)-3a and 5a were primarily attacked ($\beta_R > 95\%$), also affording (*R*)-diols via a retention of configuration. The high and complementary regioselectivity as well as low enantioselectivity towards 3a (*E* = 1.6) and 5a (*E* = 1.9)

indicated that re*Pv*EH2 has a potential to catalyze their enantioconvergent hydrolysis [11,13]. In the cases of **6a–10a**, re*Pv*EH2 displays the poor regiocomplementarity. Considering the higher *E* values towards **7a** (E = 18.9) and **10a** (E = 23.0), re*Pv*EH2 can be used for the kinetic resolution of *rac*-**7a** and **10a**. 3.5. Preparation of both (R)-**1a** and (R)-**1b** from *rac*-**1a** by whole cells

The asymmetric hydrolysis of 20 mM *rac*-1a was conducted by *E. coli/pveh2* whole cells at 25 °C in 60 min, and monitored at given time intervals (Fig. 4). During the reaction, the concentration of (*S*)-1a decreased rapidly while that of (*R*)-1a was nearly invariable, which resulted in the rapid increase of *ee*s of (*R*)-1a with high yield. Additionally, owing to the high and complementary regioselectivity of re*Pv*EH2 towards two enantiomers of 1a, the *ee*_p of (*R*)-1b kept more than 95%. As the reaction proceeded to 40 min (c = 51.0%) (Fig. S1), (*R*)-1a with > 99.5% *ee*s and 49.4% *Y*s as well as (*R*)-1b with 96.2% *ee*_p and 49.7% *Y*_p was obtained, simultaneously. However, (*S*)-1a could not be completely hydrolyzed in 6 h (c < 25%) when the concentration of *rac*-1a was increased to 50 mM. The reasons may be instability of EHs under the operating conditions, inhibition of substrate or product on EHs and low solubility of epoxides in water [19]. Several methods were used to overcome these problems. For examples, the directed evolution has been adopted to create new enzymes with enhanced stability and tolerance. Another approach was to reduce the inhibition via a biphasic system [20].

4. Conclusions

In this work, PvEH2 was selected based on the computer-aided analysis, and its encoding gene pveh2 was cloned and expressed in *E. coli* Rossetta(DE3). The substrate spectrum assay indicated that rePvEH2 exhibited the different catalytic modes towards various epoxides. Owing to the extremely high enantioselectivity (E > 200) and regioselectivity ($\alpha_s = 99.1\%$) of rePvEH2, both (R)-1a and (R)-1b with high ee_s and ee_p were simultaneously prepared from the asymmetric hydrolysis of rac-1a by it. More surprisingly, the Y_s of (R)-1a was quite close to its theoretical value. The obtained PvEH2 not only increased the number of EHs with high enantioselectivity and regioselectivity, but also established a foundation for the study of its catalytic mechanism.

Acknowledgment

This work was financially supported by the National Nature Science Foundation of China (No. 21676117) and the Postgraduate Innovation Training Project of Jiangsu, China (No. KYLX16_0804). We are grateful to Prof. Xianzhang Wu (School of Biotechnology, Jiangnan University) for providing technical assistance.

References

- [1] H.X. Jin, X.K. Ouyang, RSC Adv. 5 (2015) 92988-92994.
- [2] K. Wu, H.L. Wang, L.F. Chen, H.Y. Fan, Z.Q. Zhao, D.Z. Wei, Appl. Microbiol. Biotechnol. 100 (2016) 8757–8767.
- [3] Y. Genzel, A. Archelas, Q.B. Broxterman, B. Schulze, R. Furstoss, J. Org. Chem. 66 (2001) 538-543.
- [4] M. Kotik, A. Archelas, R. Wohlgemuth, Curr. Org. Chem. 16 (2012) 451-482.
- [5] P. Saini, D. Sareen, Mol. Biotechnol. 59 (2017) 98-116.
- [6] W.J. Choi, Appl. Microbiol. Biotechnol. 84 (2009) 239-247.
- [7] J.H. Woo, K.M. Kang, T.H. Kwon, N.H. Park, E.Y. Lee, J. Ind. Eng. Chem. 28 (2015) 225-228.
- [8] D. Hu, C.D. Tang, B. Yang, J.C. Liu, T. Yu, C. Deng, M.C. Wu, J. Ind. Microbiol. Biotechnol. 42 (2015) 671–680.
- [9] M.I. Monterde, M. Lombard, A. Archelas, A. Cronin, M. Arand, R. Furstoss, Tetrahedron: Asymmetry 15 (2004) 2801–2805.
- [10] C. Mateo, R. Fernandez-Lafuente, A. Archelas, J.M. Guisan, R. Furstoss, Tetrahedron: Asymmetry 18 (2007) 1233–1238.
- [11] H.H. Ye, D. Hu, X.L. Shi, M.C. Wu, C. Deng, J.F. Li, Catal. Commun. 87 (2016) 32-35.
- [12] M. Kotik, P. Kyslík, Biochim. Biophys. Acta 1760 (2006) 245-252.
- [13] W. Xu, J.H. Xu, J. Pan, Q. Gu, X.Y. Wu, Org. Lett. 8 (2006) 1737-1740.
- [14] Q.Q. Zhu, W.H. He, X.D. Kong, L.Q. Fan, J. Zhao, S.X. Li, J.H. Xu, Appl. Microbiol. Biotechnol. 98 (2014) 207–218.
- [15] M. Kotik, V. Štěpánek, M. Grulich, P. Kyslík, A. Archelas, J. Mol. Catal. B: enzym. 65 (2010) 41-48.
- [16] N. Bala, S.S. Chimni, H.S. Saini, B.S. Chadha, J. Mol. Catal. B: enzym. 63 (2010) 128-134.
- [17] A. Archelas, W. Zhao, B. Faure, G Iacazio, M. Kotik, Arch. Biochem. Biophys. 591 (2016) 66-75.
- [18] S. Hwang, H. Hyun, B. Lee, Y. Park, C. Choi, J. Han, H. Joo, J. Microbiol. Biotechnol. 16 (2006) 32-36.
- [19] S.S. Yoo, S. Park, E.Y. Lee, Biotechnol. Lett. 30 (2008) 1807-1810.
- [20] P.F. Gao, A.T. Li, H.H. Lee, D.I.C. Wang, Z. Li, ACS Catal. 4 (2014) 3763-3771.

Figure captions

Fig. 1. Ten epoxides used for substrate spectrumassay. 1a, styrene oxide; 2a, *para*-nitrostyrene oxide; 3a, *meta*-nitrostyrene oxide; 4a, *para*-chlorostyrene oxide; 5a, *meta*-chlorostyrene oxide; 6a, benzyl glycidyl ether;
7a, phenyl glycidyl ether; 8a, *para*-methylphenyl glycidyl ether; 9a, *meta*-methylphenyl glycidyl ether; 10a, *ortho*-methylphenyl glycidyl ether.

Fig. 2. The multiple sequence alignment of six plant EHs. *Pv*EH2 (ASS33914, in this work); *Pv*EH1 (AKJ75509, 80.1% identity with *Pv*EH2); *Vr*EH1 (ADP68585, 75.5%); *Gm*EH (CAA55294, 75.3%); *Nb*EH (ACE82566, 67.8%); *St*EH (AAA81891, 57.6%). The conserved motifs of HGXP, GXSmXS/T and SmXNuXSmSm are boxed, while NC, cap and core loops are underlined. A catalytic triad (Asp¹⁰¹-His²⁹⁵-Asp²⁶⁰) and both Tyr¹⁵⁰ and Tyr²³⁰ in *Pv*EH2 are marked with stars.

Fig. 3. SDS-PAGE analysis of the expressed re*Pv*EH2. Lane M, standard proteins; lane 1, *E. coli*/pET-28a; lane 2, *E. coli/pveh2* without induction; lane 3, *E. coli/pveh2* induced by 0.2 mM IPTG

Fig. 4. (a) The process curve of hydrolytic reaction of 20 mM *rac*-1a by re*Pv*EH2-expressing *E. coli/pveh2* whole cells at 25 °C. Symbols: *triangle*, *c* of *rac*-1a; *solid square*, (*S*)-1a concentration; *hollow square*, (*R*)-1a concentration; *solid circle*, ee_p of (*R*)-1b; *hollow circle*, ee_s of (*R*)-1a. (b) A schematic diagram of asymmetric hydrolysis of *rac*-1a by re*Pv*EH2 into both (*R*)-1a and (*R*)-1b.

Table 1

The enantioselectivity of rePvEH2 towards rac-1a–10a and its regioselectivity towards (S)- and (R)-1a–10a.

Substrate	Activity	E value	α_S	β_R			
	(U/g wet cell)		(%)	(%)			
1a	8.0	> 200	99.1	69.8			
2a	ND ^a	b	_	-			
3a	1.3	1.6	90.3	96.4	Ó		
4a	ND	_	-	-	0		
5a	1.5	1.9	93.0	95.8	S		
6a	2.2	8.7	23.3	87.5	S		
7a	3.0	18.9	12.9	93.7			
8a	2.4	6.2	10.7	91.1			
9a	6.6	9.1	1.6	98.7			
10a	4.1	23.0	4.5	96.2			
^a No detectable activity.							
^b No determination.							

0

6a

1a: R= -H 2a: R= -pNO₂ 3a: R= -mNO₂ 4a: R= -pCl 5a: R= -mCl 7a: R= -H 8a: R= -pCH₃ 9a: R= -mCH₃ 10a: R= -oCH₃

Figure 1

PvEH2	1 10 MEYIVHRTVEVNG	20 IKMHVAEKGE	30 GP AV LFLHGFP	40 ELWY T WRHQ I I	50 LDLSSRGYHAV	60 APDLRGYGDTI	70 EAPASMSSYS
PvEH1 VrEH GmEH	MEGVEHRTVEVNG MEGVEHRTVEVNG MEOIKHRTVEVNG	IKMHVAEKGE IKMHVAEKGE IKMHVAEKGE	GP <mark>VV</mark> LFLHGFP GP VV LFLHGFP GP VV LFLHGFP	ELWY <mark>S</mark> WRHQ <mark>I</mark> ELWY <mark>S</mark> WRHQ <mark>I</mark> ELWYSWRHOI	LALSALGY R AV LALSSRGY R AV LSLSSLGY R AV	APDLRGYGDTI APDLRGYGDTI APDLRGYGDTI	DAPASVSSYT EAPVSISSYT EAPPSISSYN
NbEH StEH	MESIEH RT VNVNG MEKIEH <u>KM</u> VAVNG	INMHVAEKGK LNMHIAELGQ	GP VV LFLHGFP GPT I LFLHGFP	ELWY T WRHQ <mark>L</mark> ELWY <mark>S</mark> WRHQM	VAFADLGY R AV VY L AERGY R AV	AP <mark>D</mark> LRGYGDT AP <mark>V</mark> LRGYGDT	DAPADVASYT IGAPLNDPSKFS
			HGXP			GXSmXS/	Γ
	8 <u>0</u>	90	100	110	120 1	301	10 150
PvEH2 PvEH1 VrEH	CFDIVGDLVALID ILHLVADVVALID GFHIVGDLIALID	LLGVDQVF SLGVDQVF LLGVDOVF	'LVAHDWGA <mark>IIG</mark> 'LVAHDWGA <mark>LVG</mark> 'LVAHDWGA IIG	WYLCMFRPDR WYTCLFRPDR WYLCTFHPDR	VKAYVCLSVPF IKAYVCLSVPF VKAYVCLSVPL	WPRNPKVKPVI MPRNPKVKPVI LHRDPNIRTVI	DAMRALYGDDYY DAMRALYGDDYY DAMRAMYGDDYY
GmEH NbEH	CFHIVGDLVALID CFHVVGDLVALIE	SLGVQQVF SLGVESVF	'LVAHDWGAIIG 'LVAHDWGAMIG	WYLCMFRPDK WYLCLFRPDL	VKAYVCLSVPL VKAYVCLSVPF	LRRDPNIRTVI RPRHPKMKPI	GMRALYGDDYY TMRAFFGDDYY
StEH	ILQ LVGDVVALLE	AIAPNEEKVF	VVAHDWGALI A	WHLCLFRPDK	VKALVNSSVHF	LPRNPK M NT VI	EGLKAVYGEDHY
	SmXNuXSmSm					NC lo	op
	160	170	180	190	200	210	220
PvEH2 PvEH1	ICRFQEAGKAEGE ICRFQEPGKME.T	LAKNSTEEVI LYDNNIEEAI	KKLLTNRTPGP KNMLTSRRPGP	PILQKEGMGS PIL PK EGAGS	N.LNTSM NPLASGSLPSR	PLPSWLSLQD] PLPSWLSQED]	L K Y Y A S K F E K T G L T Y Y A S K F G K T G
VrEH GmEH	ICRFQKPGEMEAQ	MAEVGTEYVI MAEVGTEYVI	KNILTTRKPGP	PIFPKGEYGT PIIPKGPF	GFNPDMPN OFNDE MPN	SLPSWLTQDD	AYY VSKYEKT G
NbEH StEH	MCRFQDP.RMEDE ISRFQVPGEIEAE	IAKNGSEAVI FAPIGAKSVI	KKILTDRKPGP KKILTFRDPAP	PCLPKENP.F FYF P KGKG.L	GISPDS EALPDAPV	KLPSWLSQDD ALSSWLSEEE	LKYYSTKFDQKG LDYY AN KFEQTG
				ca	p loop	,	
	230	240	250	260	270	280	290
PvEH2	FTGGLNYYRNINL	NWELTAPWTG	AQ VKVPVKFI T	GDLDSVYTSL	GMKNYIESGAF	KKDVPNL.E E V	/IVQEGVAHFNN
PvEH1 VrEH	LTGGLNYYRNLNL FTGPLNYYRNMNL	NWELTAAWIG NWELTAPWSG	GKIQVPVKFIT	GDLDIVHTSL GELDMVYTSL	GTKDYIESGAF NMKEYIHGGGF	KRDVPFL.EE KODVPNL.EE	VVQE GV AHFNN V I VQKN V AHFNN
GmEH NbEH StEH	FTGPLNYYRNFNL FTGGLNYYRALDL FTGGVNYYRALSI	NWELTA <mark>PWT</mark> G NWELTAAWTG NWELTA <mark>PWT</mark> G	GQ IK VP V K YI T AK AK VP V K FM V AQ VK VPTK FI V	GELDIVYTTP GEFDIVYTTP GEFDIVYHIP	N L K E Y I H G G G F G M K E Y V H G G G F G A K E Y I H N G G F	KQDVPNL.EQ KKDVPMLDE D KKDVPLL.E E	/ I V Q K G V A H F N N / V V M E G A A H F I N / V V L E G A A H F V N
					re loon		
				u	ne loop		
3	300 310			c.	ne 100p		

PvEH2 PvEH1 VrEH GmEH NbEH StEH	QEAA QEAA QEAA QEAA QEAA QERAQ QERAQ	EDVSNI EDVSNI EINNI EINNI EISKI	310 HIYDFI HIYDFI YIYDFI HIHNFI HIYDFI	NKF NKF KKF NKF QKF			
Figure	e 2				X		
		5		5			

Figure 2

12

kDa	Μ	1	2	3	kDa
97.2- 66.4-					
44.3-					-38.1
29.0-					
20.1-					
14.3-					
Figure 3	A COR				

Graphical abstract

MANS Str Ki

Highlights

- The newly discovered rePvEH2 shows a very high E value (> 200) towards racemic styrene oxide (SO).
- The α_S and β_R of re*Pv*EH2 towards (*S*)- and (*R*)-SO are 99.1 and 69.8%, respectively.
- (*R*)-SO with > 99.5% ee_s and (*R*)-phenyl-1,2-ethanediol with 96.2% ee_p were co-produced.
- Besides SO, rePvEH2 also exhibits good catalytic properties towards other epoxides.

Service Servic