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Abstract 

Stabilized Cu/Cu2O nanoparticles on reduced graphene oxide (Cu/Cu2O-NPs@rGO) 

was synthesized by one-step co-reduction and acted as a green and efficient non-noble 

metal heterogeneous catalyst for Glaser homo-coupling. Through the synergic 

catalytic effect of Cu/Cu2O nanoparticles and graphene, the heterogeneous hybrid 

nanoparticles catalyst showed excellent catalytic performance for Glaser 

homo-coupling with the yield up to 99% of 1,4-diphenyl buta-1,3-diyne. And 

excellent functional group tolerance was obtained with oxygen as a green oxidant. 

Furthermore, the catalyst can be easily separated and recycled seven times without 

significant decline in its catalytic performance.  

Keywords: Cu/Cu2O nanoparticles; graphene; Glaser homo-coupling; heterogeneous 

hybrid catalyst; oxygen 
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1. Introduction 

1,3-Diynes have both symmetric and unsymmetric structures with the properties 

of anti-inflammatory, anti-bacterial, and anti-cancer activities. These compounds 

widely exist in numerous pharmaceuticals and bioactive molecules[1-4]. They are 

also useful precursors in the synthesis of functional materials because the unsaturated 

alkynyl group could further involve in many kinds of reactions[5-7]. Therefore, it is 

of great significance to develop an excellent catalyst for the synthesis of 1,3-diynes. 

Glaser homo-coupling is one of the most classical reaction for the synthesis of 

symmetric 1,3-diynes[8]. The reaction was generally carried out on homogeneous 

systems, in which copper salts or palladium salts were frequently used as catalyst[9, 

10]. Typical disadvantages of homogeneous systems were the difficulties in the 

recyclability of catalyst and product contamination caused by heavy metal residue 

resulting in their difficulties in industrial application. To overcome these problems, 

some of efficient heterogeneous catalysts have been investigated, such as 

Au/CeO2[11], Au@NH2-SBA-15[12], Au/La2O3[13], AgNPs@g-C3N4[14]. Most of 

these catalysts used the noble metal with the high cost and multi-step synthesis 

processes. Thus, developing efficient no-noble metal heterogeneous catalyst with the 

simple synthetic process is of great value for practical applications in Glaser 

homo-coupling reaction. 

Among the transition metal nanomaterials, Cu-NPs (e.g., Cu, Cu2O, or CuO) 

materials have always attracted more attention as the catalyst than others because of 

copper’s low cost, abundant reserves, outstanding physical and chemical 

properties[15]. However, the inherent drawback of Cu
0
/Cu

+
-NPs was easily oxidized 

under atmospheric conditions, limiting their practical application[16]. Graphene, as a 

single layer of sp
2
 bonded carbon material[17], possesses many advantages such as 
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superior electroconductive performances[18, 19], large surface area, excellent thermal 

and chemical stability[20]. The unique properties facilitated its use in photoelectric 

devices[21, 22], energy storage[23, 24], chemical sensor[25, 26] as well as an ideal 

support for high performance catalysts[27, 28]. For the synthesis of highly active 

catalysts, we combined both the advantages of Cu-NPs and graphene. The formation 

of Cu/Cu2O-NPs@rGO made the Cu/Cu2O-NPs well dispersed and stabilized on the 

surface of rGO. By this method, Cu/Cu2O-NPs were endowed with great 

anti-aggregation and excellent stability, then further applied in the field of organic 

catalysis.  

In our previous work, we have developed a green and economical Cu NPs-based 

catalyst for the oxidation of alcohols to aldehydes with high conversion and 

selectivity[29]. Then we further developed a sustainable heterogeneous catalyst 

Cu/Cu2O-NPs@rGO for Glaser homo-coupling. By the π-π stacking interaction 

between phenylacetylene and rGO layers[30], the alkynyl groups were enriched 

around the rGO to further accelerate the reaction rate. As a result, our new designed 

hybrid Cu/Cu2O nanoparticles on reduced graphene oxide (Cu/Cu2O-NPs@rGO) 

shows excellent catalysis for Glaser homo-coupling. Meanwhile, Cu/Cu2O-NPs@rGO 

could be easily separated by centrifugation and reused seven times without significant 

decline in its catalytic performance. 

2. Experimental 

2.1. Graphene Oxide(GO) preparation 

Graphene oxide (GO) was prepared by modified Hummers method through the 

intense oxidation of natural graphite power and then ultrasonic stripping. The 

prepared details are given in the Supporting Information. 

2.2. Synthesis of Cu/Cu2O-NPs@rGO catalysts 
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The Cu/Cu2O-NPs@rGO catalysts were prepared as follow: The as-prepared GO 

was dispersed into deionized water getting GO solution of 2 mg·mL
-1

. 10 mL of 

Cu(OAc)2·H2O (0.2 mol·mL
-1

) was mixed with 50 mL of GO (2 mg·mL
-1

) under 

constant magnetic stirring to get an evenly mixture. Subsequently, 10 mL of ascorbic 

acid (VC) aqueous solution (0.4 mol/L) was added to the mixture slowly. Then, the 

mixture was stirred for 2 h at 60 
o
C. After the reaction was finished, the reaction 

solution was cooled to room temperature naturally. The Cu/Cu2O-NPs@rGO catalyst 

was centrifuged out from the reaction solution, washed with water and ethanol, and 

dried in a lyophilization step. The rGO was synthesized by the same way without 

Cu(OAc)2·H2O. 

2.3. Characterization 

The prepared Cu/Cu2O-NPs@rGO samples were characterized by XRD, XPS, 

N2-BET, ICP, SEM, TEM. More details about these characterizations are given in 

Supporting Information. 

2.4. Typical experimental process for Glaser homo-coupling 

Glaser homo-coupling reaction was evaluated in a 25 mL round bottomed flask 

under constant magnetic stirring. Typically, a mixture of phenylacetylene (1 mmol), 

catalyst, base and solvent (2 mL) were added into round the bottomed flask. 

Subsequently O2 was introduced into the reaction system instead of air. The mixture 

solution was stirred at 80 
o
C for 8 h. After the reaction was finished, the reaction 

solution was cooled down to room temperature naturally. The solid catalyst was 

centrifuged recovered and organic phase was extracted with ethyl acetate to get crude 

products. All crude products were purified by column chromatography to calculate the 

yields and identified by 
1
H NMR and 

13
C NMR spectra. 

3. Results and discussion 
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3.1. Characterization of Cu/Cu2O-NPs@rGO 

[Insert Fig. 1] 

The typical XRD diffraction pattern of Cu/Cu2O-NPs@rGO was presented in Fig. 

1 a. The diffraction peaks at 29.6, 36.5, 42.4, 61.5 can be assigned to the (110), (111), 

(200), (220) planes of cubic Cu2O crystal phase (JCPDS No. 65-3288). And strong 

diffraction peaks at 43.3, 50.4, 74.1 were well consistent with the (111), (200), (220) 

planes of cubic Cu crystal phase (JCPDS No. 04-0836) while no diffraction peaks of 

other impurities were observed. The results indicated that the Cu/Cu2O nanoparticles 

had the high crystallinity. XPS was conducted to analyze the oxidation state of Cu on 

the surface of graphene. The result was shown in Fig. 1 b. The binding energy located 

at approximately 932.5 eV and satellite peaks at 952.5 eV can be assigned to Cu
0
/Cu

+
 

because there is only a difference of 0.1-0.2 eV between the binding energies of Cu
0
 

and Cu
+
[30]. The much lower peak at 934.9 eV and satellite peaks at 943.2 eV were 

attributed to Cu(OH)2 (Cu
2+

) in Cu/Cu2O-NPs@rGO[31] because a small part of Cu
2+

 

was incomplete reduced[29]. And the XRD pattern clearly indicated that the 

formation of Cu/Cu2O crystals without the presence of CuO crystals. ICP-OES was 

used to detect total amount of Cu in the catalyst and the result was 26.24 w. t. %. The 

above characterization results indicated that Cu/Cu2O nanoparticles were successfully 

generated with highly crystalline.  

[Insert Fig. 2] 

The morphology and structure of Cu/Cu2O-NPs@rGO were characterized by 

TEM and SEM. From the TEM image of Fig. 2 a, oxygen-containing groups (such as 

hydroxyl, epoxy, and carboxyl group) on the surface of GO can act as anchoring sites 

for the formation of metal nanoparticles[32]. And we could see that a lot of dark 
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Cu/Cu2O nanoparticles were distributed evenly on the surface of transparent 

films-like rGO. Further, the typical wrinkle structures were still exhibited on the 

surface of Cu/Cu2O-NPs@rGO, which demonstrated that the layered structure of the 

catalyst was unchanged by one-step co-reduction. From the SEM image of Fig. 2 b, it 

could be seen that some bright nanoparticles supported well on the wrinkled surface 

of the rGO. The consistency of both TEM and SEM images suggested that Cu/Cu2O 

nanoparticles were successfully loaded on the rGO. Moreover, the N2-BET result was 

shown in Fig. S4. and Fig. S5. the SBET of the Cu/Cu2O-NPs@rGO was obtained as 

100 m
2
·g

-1
, and the average pore diameter of Cu/Cu2O-NPs@rGO was 11.9 nm. 

3.2. Catalytic performance 

At the beginning of the experiment, the Glaser homo-coupling was carried out in 

EtOH with various catalysts under O2 at 80 
o
C for 8 h. And the catalytic performance 

is summarized in Table 1. In the absence of catalyst, the homo-coupling of 

phenylacetylene was inhibited (Table 1, entry 1). It was indicated that the reaction 

was very difficult to carry out without any catalyst. Several copper salts exhibited 

moderate catalytic activities. (Table 1, entries 2, 3). Cu-NPs, Cu2O-NPs and CuO-NPs 

were also investigated in the experiment. It could be seen that Cu-NPs showed 

relatively higher catalytic activity compared with Cu2O-NPs and CuO-NPs at the 

yield of 81% (Table 1, entries 5-7). The mixed catalyst of Cu-NPs and Cu2O-NPs of 

equal mass ratio only gave the yield of 80% (Table 1, entry 8). In addition, rGO 

exhibited little catalytic activity (Table 1, entry 9). With the extension of reaction time, 

the yield of 1,4-diphenyl buta-1,3-diyne was also increased (Table 1, entries 10-12, 

for details, see Fig. S2). Notably, when the reaction time reached 8 hours, 

Cu/Cu2O-NPs@rGO gave excellent catalytic activity for the homo-coupling of 

phenylacetylene with the yield up to 99% (Table 1, Entry 11). Besides, when the 
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dosage of phenylacetylene was increased to 10 mmol, the yield was 96% and no 

significant loss in the yield was observed (Table 1, Entry 13). It was proved that the 

Cu/Cu2O-NPs@rGO had outstanding potential in industrial application. The above 

results indicated that the synergic catalytic effect of Cu/Cu2O nanoparticles and rGO 

significantly improved the catalytic activity for the Glaser homo-coupling. 

[Insert Table 1] 

Then, various solvents were evaluated for the Glaser homo-coupling. And the 

results were shown in Table S1. When some polar solvents such as DMF, DMSO, 

CH3CN were utilized as solvents, low yields were observed (6-42%, Table S1, entries 

1-3). Then some non-polar solvents were investigated in the reaction such as CH2Cl2, 

THF and toluene, low yields were also obtained (0-32%, Table S1, entries 4-6). 

Through experiment and observation, we found that the Cu/Cu2O-NPs@rGO had 

poor dispersion in the solvents of CH2Cl2, THF and toluene. Because phenylacetylene 

and H2O were incompatible, the reaction was even almost inhibited in H2O (Table S1, 

entry 10). To our delight, when alcohols were used as solvent, the good to excellent 

yields of the homo-coupling of phenylacetylene were obtained (Table S1, entries 7-9). 

Especially in EtOH solvent, the yield was up to 99%. Based on the above results, 

alcohols solvents were propitious to the Glaser homo-coupling reaction. For the 

convenience of handing, EtOH (2 mL) was utilized as the solvent. 

Moreover, Fig. S1 indicated that the optimum reaction temperature on the 

homo-coupling of phenylacetylene over the Cu/Cu2O-NPs@rGO was 80 
o
C. Different 

bases were also optimized for the Glaser homo-coupling and Cs2CO3 is the best 

choice (for details, see Table. S2). Thus, the optimal reaction parameters were 

obtained as following: 1 mmol of phenylacetylene, 4 mg of Cu/Cu2O-NPs@rGO and 

1.2 mmol of Cs2CO3 in 2 mL EtOH at 80 
o
C under O2 for 8 h. 
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Under the optimum reaction conditions, we have investigated a series of 

functional groups on phenylacetylene including electron-donating groups and 

electron-withdrawing groups. All of them gave good to excellent yields. The 

phenylacetylene bearing withdrawing groups F-, Cl- and Br- offered higher yields of 

94%, 98%, 96% respectively(Table 2, entries 2-4). The phenylacetylene bearing 

donating groups offered the high yields (CH3CH2-: 92%, (CH3)3C-: 91%, 

CH3(CH2)3CH2-: 90%, CH3O-: 94%, NH2-: 85%) (Table 2, entries 5-9). The 

heterocyclic substrates were also examined in the reaction condition, giving good 

yields of 83% and 94% (Table 2, entries 10, 11). Hexadeca-7,9-diyne was also 

investigated in the reaction with a moderate yield of 53% (Table 2, entry 12). The 

above results revealed that the Cu/Cu2O-NPs@rGO exhibited excellent catalytic 

activity for Glaser homo-coupling of both aromatic and heterocyclic alkynes, and 

possessed excellent functional groups tolerance. 

[Insert Table 2] 

According to the previous reports[33-35] and our studies, a proposed mechanism 

was shown in Fig. 3. Due to the strong electric conduction of graphene, the value 

states of Cu/Cu2O-NPs were easily changed by electron transfer. Also, the presence of 

the huge surface of rGO and a number of exposed Cu/Cu2O nanoparticles facilitated 

the homo-coupling of the terminal alkynes. First, by the π-π stacking interaction 

between aromatic ring and rGO layers, the alkynyl groups were enriched around the 

rGO to coordinate with exposed Cu/Cu2O nanoparticles on the rGO and generated I. 

The inactive C-H bond was activated for active C-H bond. Under the alkaline 

condition of Cs2CO3, I was deprotonated, C-Cu/Cu2O-NPs@rGO bond was formed 

obtaining II. II were dimerized affording III. Subsequently, III taken part in the 

electron transfer promoted by good conductive Cu/Cu2O-NPs@rGO and C-C bond 
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was then formed to obtain the final product 1,3-diyne with realizing the 

Cu/Cu2O-NPs@rGO for the next catalysis cycle. Along with the catalysis process, the 

transformation of Cu(0) and Cu (I) on the rGO was realized by the oxidation of O2. 

[Insert Fig. 3] 

Recyclability is an imperative aspect of heterogeneous catalytic performance. 

The recyclability of the Cu/Cu2O-NPs@rGO was investigated with the 

phenylacetylene as standard substrate under optimal conditions. Cu/Cu2O-NPs@rGO 

was recycled seven times after easily separated by centrifugation and washed with 

ethanol and water. And the result was shown in Fig. S3. There was no evident decline 

in its catalytic activities after seven times with the yield of 92%. Moreover, the XRD 

pattern of the recycled Cu/Cu2O-NPs@rGO was shown in Fig. S6. The diffraction 

peaks of cubic Cu and Cu2O were highly consistent with Fig. 1 a. It indicated that the 

catalyst had no obvious change after recycled for seven consecutive times. 

4. Conclusions 

In summary, we have developed an efficient heterogeneous catalyst 

Cu/Cu2O-NPs@rGO for Glaser homo-coupling. The Cu/Cu2O-NPs@rGO was 

prepared by simple chemical co-reduction and had some advantages such as green 

catalytic system, high catalytic activity, easy separation and excellent recyclability. 

After a series of characterizations of XRD, XPS, N2-BET, ICP, SEM, TEM, Cu/Cu2O 

nanoparticles were proved to firmly support on the rGO. Cu/Cu2O-NPs@rGO 

successfully catalyzed the homo-coupling of various terminal alkynes with good to 

excellent yields. Our results provide a reliable method for configuring copper-based 

carbon catalysts and more opportunities for heterogeneous catalytic applications in 

organic reaction. 
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Fig. 1 Characterization of Cu/Cu2O-NPs@rGO (a) XRD pattern; (b) XPS survey 

spectra 

 

 

Fig. 2 Characterization of Cu/Cu2O-NPs@rGO (a) TEM image; (b) SEM image  
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Fig. 3. Proposed mechanism for Cu/Cu2O-NPs@rGO catalyzed Glaser 

homo-coupling 

 

Table 1 The catalytic performance of different catalysts for the Glaser 

homo-coupling
a 

 

Entry Catalyst t(h) Yield
b
(%) 

1
c
 blank 8 trace 

2 CuBr 8 74 

3 CuBr2 8 10 

5 Cu-NPs
e
 8 81 

6 Cu2O-NPs
e
 8 70 

7 CuO-NPs
e
 8 68 

8
d
 Cu-NPs/Cu2O-NPs 8 80 

9 rGO 8 trace 

10 Cu2O-rGO 6 83 

11 Cu2O-rGO 8 99 

12 Cu2O-rGO 10 99 

13
f
 Cu2O-rGO 8 96 
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a
Reaction conditions: phenylacetylene (1mmol), catalyst (4 mg), Cs2CO3 (1.2 mmol), 

EtOH (2 mL), 80 
o
C, O2, 8 hours. 

b
Isolated yields. 

c
Catalyst-free. 

d
m(Cu-NPs) : 

m(Cu2O-NPs)=1 : 1. 
e
Commercial. 

f
Phenylacetylene (10 mmol). 

 

Table 2 Cu/Cu2O-NPs@rGO catalysed homo-coupling of various terminal alkynes
a 

 

Entry Substrate Product Yield
b
(%) 

1 
  

99 

2 
  

94 

3 

 
 

98 

4 
  

96 

5 
  

92 

6 
  

91 

7 

  

90 
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8 
  

94 

9 

 
 

85 

10 
  

83 

11 

  

94 

12  

 

53 

a
Reaction conditions: 1 (1 mmol), Cu/Cu2O-NPs@rGO (4 mg), Cs2CO3 (1.2 mmol), 

EtOH (2 mL), 80 
o
C, O2, 8 hours. 

b
Isolated yields. 
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Highlights 

 Non-noble Cu/Cu2O-NPs@rGO catalyzed Glaser homo-coupling. 

 Great functional group tolerance. 

 The synergic catalysis of Cu/Cu2O-NPs and graphene. 

 Great recyclability. 
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