

WILEY-VCH

Brønsted Acid Mediated Nucleophilic Functionalization of Amides through Stable Amide C-N Bond Cleavage; One Step Synthesis of 2-Substituted Benzothiazoles

Srabani Maity,^{†[a]} Arnab Roy,^{†[a]} Surajit Duari,^[a] Subrata Biswas,^[a] Asma M. Elsharif,^[b] and Srijit Biswas^{*[a]}

Dedication ((optional))

[a]	Ms. S. Maity, Mr. A. Roy, Mr. S. Duari, Mr. S. Biswas, Dr. S. Biswas
	Department of Chemistry
	University of Calcutta
	92, A. P. C. Road, Kolkata 700009, W. B. INDIA
	E-mail: sbchem@caluniv.ac.in; srijit_biswas@yahoo
[b]	Dr. A. M. Elsharif
	Department of Chemistry, College of Science
	Imam Abdulrahman Bin Faisal University
	P.O. Box 1982, Dammam 31441, SAUDI ARABIA
+	Those authors contributed equally

Supporting information for this article is given via a link at the end of the document.

Abstract: We have developed a Brønsted acid mediated synthetic method to directly cleave stable amide C–N bonds by a variety of alcohol and amine nucleophiles. Reverse reactivity was observed and alcoholysis of amides by activated primary and secondary benzylic, and propargylic alcohols have been achieved instead of the expected nucleophilic substitution of alcohols. As an application, 2-substituted benzothiazole derivatives have been synthesized in one pot employing 2-aminothiophenol as nucleophile.

Amides are important class of organic compounds and key building block of proteins as well as several biologically active molecules.^[1] These moieties are reported as thermodynamically stable enough due to conjugation of nitrogen lone pair to the carbonyl group.^[2] Owing to its nucleophilic character, primary amides are widely employed as N-centered nucleophile to construct new C-N bonds during the last two decades[3,4] through catalytic direct nucleophilic substitution of the hydroxy group of activated alcohols.^[4] However, the opposite reactivity, i.e., functionalization of amides through nucleophilic substitution of the amide C-N bonds are rare although Nature can easily cleave amides through the action of enzymes, such as proteases.^[5] Among the chemical transformations of amide,^[6] alcoholysis has drawn much interest to the chemists, as the resulting esters become much more reactive than the amide which can farther undergo a range of useful transformations.^[7] In a ground breaking work, Hie and co-workers^[8] reported a method of conversion of amides to esters by nickel-catalyzed activation of amide C-N bonds (Scheme 1A).[8a] Their method was found to be successful employing tertiary amide as the electrophile. A handful the alcoholysis of tertiary amide has also been reported by other groups subsequently, but they too are limited to tertiary amides.^[9] Sun and co-workers reported an ironcatalyzed esterification of amides via C-N bond activation using excess HCI as additive.^[10a] Corma and co-workers have recently explored the catalytic

Scheme 1. Previous reports of alcoholysis of amides, nucleophilic substitution of alcohols and this work.

activity of Zr-MOF-808 for amide esterification.^[10b] Importantly, activated alcohols which are susceptible to nucleophilic substitution by the amides (Scheme 1B) has rarely been reported.^[11] To address these issues such as limited substrate scope, excess amounts of use of toxic additives, and use of transition metal catalysts, we herein report a simple and general protocol of Brønsted acid mediated alcoholysis and *trans*-amidation of amides through amide C–N bond functionalization. A wide range of primary as well as secondary, and tertiary

amides were successfully employed as electrophiles and primary, secondary, aromatic and activated alcohols and amines as nucleophiles. To the best of our knowledge, this is the first report of a general and single protocol under which alcoholysis of 1°, 2° and 3° amides by activated and unactivated primary, secondary, benzylic, propargylic, aliphatic and aromatic alcohols has been achieved; instead of the expected nucleophilic substitution products for activated alcohols (Scheme 1C). As an application, important heterocycles such as 2-substituted benzothiazole derivatives^[12] were synthesized in one pot using 2-aminothiophenol as nucleophile. This benzothiazole forms a part of firefly luciferin and aroma constituents of tea leaves.^[10] Also, the structural motif has drawn keen interest due to their wide range of biological application viz. anti-cancer,^[13] antimicrobial,^[14] anti-convulsant,^[15] anti-viral,^[16] analgesic,^[17] antidiabetic,^[18] anti-inflammatory,^[19] fungicidal activities.^[20] It is noteworthy that, a subtle strategy was taken to make the molecules water soluble by tagging amino acid with benzothiazole molecules. It is found that amino acid levelled water soluble prodrugs known as Phortress shows anti-tumour activity against human mammary carcinoma cell lines which is comparable to doxorubicin.[21]

Table 1. Optimization of reaction parameters.

Entry	Deviation from <i>Reaction Condition A</i>	Yield (%) ^[a]
1	None	82
2	110 °C	50
3	<i>p</i> -TSA·H ₂ O instead of TFA	12
4	TfOH instead of TFA	10
5	Trizma hydrochloride instead of TFA	0
6	PhB(OH) ₂ instead of TFA	0
7	20 mol% TFA	16
8	1.0 mmol 2a	76
9	1.5 mmol 2a	80
10	1.0 mL PhMe	71
11	2.0 mL PhMe	68

[a] Yield refers to pure and isolated products.

To optimize the reaction parameters, a challenging combination of substrates 4-nitrobenzamide (**1a**) and 1-phenyl ethanol (**2a**) were chosen considering their susceptibility of direct nucleophilic substitution of **2a** (Scheme 1B). The temperature and the time were fixed at 130 °C and 18 h after an initial screening. As a continuation of our effort to develop transition metal-free Brønsted acid catalyzed protocol,^[22] a variety of Brønsted acids were tested (Table 1). 1 equivalent of

Table 2. Substrate scope of alcoholysis of amides and trans-amidation.^[a]

The optimized reaction conditions were applied to a variety of amides and alcohols the results of which are summarized in Table 2. The protocol was found to be general with respect to primary and secondary benzylic, propargylic, aliphatic, aromatic, and natural alcohols. Secondary benzylic alcohol such as 1phenyl ethanol (2a) which is susceptible to nucleophilic substitution of the hydroxyl group^[4] showed reverse reactivity when subjected to react with 4-nitro benzamide (1a) generating the corresponding ester 3a in 82% yields. 1a also reacted with propargylic alcohols 2b and 2c to furnish the esters 3b and 3c in 65% and 60% yields respectively. Benzyl alcohol 2d successfully reacted with 1a to generate the product 3d in 45% yield. Other types of primary and secondary alcohols, such as, 2-phenylethan-1-ol (2e), 3-phenylpropan-1-ol (2f), 2-propanol

WILEY-VCH

(2g), 3-methylbutan-1-ol (2h) and heptan-2-ol (2i) reacted smoothly with 1a to furnish the desired products 3e-3i in good to excellent yields. Aromatic alcohols such as phenol (2j) and pcresol (2k) also serve as O-centered nucleophile under the optimized reaction conditions to generate 3j and 3k in 60% and 55% yields respectively.^[23] Importantly, naturally occurring alcohols such as menthol (2I) and cholesterol (2m) generated the desired ester 3I and 3m in 60% and 52% yield respectively when subjected to react with 1a. The protocol was found to be general with respect to the amides. Presence of methoxy (1b) and chloro (1c) groups in the aromatic ring of the amide did not affect the outcome of the reaction. It is noteworthy to mention that secondary and tertiary amides such as benzanilide (1f) and Weinreb amide (1g) were found to be susceptible under the present reaction conditions. Along with benzamide (1e), 1f and 1g also reacted with alcohol 2e and 2i to generate the product in 85%, 92%, 90%; and 60%, 92%, 90% yields, respectively. Cinnamamide (1h) also showed excellent reactivity and generated the ester 3t in guantitative yield when subjected to react with 2e. The scope of the present protocol was further generalized when it was observed that benzvlamine (2n) was also acted as N-centered nucleophile and reacted with all types of amides to generate the products 3u-3z in good to excellent vields.

Table 3. One step synthesis of 2-substituted benzothiazole derivatives.^[a]

[a] Reaction conditions: 1 (0.5 mmol), 2 (1.25 mmol), TFA (0.5 mmol), in toluene solvent (1.5 mL) at 130 $^\circ C$ for 18 h.

As an important application, the present method was found to be useful for direct synthesis of 2-substituted benzothiazole derivatives (Table 3). 2-Aminothiophenol (20) reacted with amides 1c, 1e and 1d under the developed reaction conditions to generate 4a, 4b, 4c respectively in 82%, 60% and 64% yields respectively. The reaction proceeded *via* sequential nucleophilic substitution of aryl C–N bonds through S-center of 20 to generate intermediate 5 which upon intramolecular condensation produce the desired products. Amide 1h was also successfully employed to generate 2-vinyl substituted benzoxazole derivative 4d in 90% yields.

Based on the results and previous report,^[7c] a mechanism of alcoholysis of amide has been proposed where the amide (1) was first protonated by the acid to generate 1' which facilitated the nucleophilic addition of the alcohol (2) to generate intermediate 2'. Finally, elimination of amine from 2' generated the desired ester 3 (Scheme 2).^[24]

In conclusion, we have developed a Brønsted acid mediated general synthetic protocol to directly cleave amide C–N bonds by a variety of alcohol and amine nucleophiles. Reverse reactivity was observed when activated primary and secondary benzylic, and propargylic alcohols were used yielding the corresponding esters instead of the expected nucleophilic

substitution of alcohols. Natural alcohols such as menthol and cholesterol took

Scheme 2. Plausible mechanism of alcoholysis of amides.

part in the reaction under the present reaction conditions to generate the desired esters. Structurally important 2-substituted benzothiazole derivatives have been synthesized in one pot employing 2-aminothiophenol as nucleophile.

Experimental Section

General procedure for TFA mediated amide C–N bond activation to synthesize the products (3a–3z) (Table 2): Amide 1a–1h (0.5 mmol), nucleophile (alcohol or amine) 2a–2n (1.25 mmol) and freshly distilled toluene solvent (1.5 mL) were taken in a 5 mL VWR reaction vial containing a small magnet without using inert atmosphere, then TFA (40 μ L, 0.5 mmol) was added. The cap of the vial was closed and the reaction mixture was stirred at r. t. for 5 min then reaction mixture was stirred at 130 °C for 18 h in an aluminum dry heating block. After completion of the reaction (by TLC, ¹H NMR), the crude was directly purified by silica-gel (100–200 mess) column chromatography (flash) using ethyl acetate /hexane solution to afford the desired products 3a–3z.

Acknowledgements

SB acknowledge the University Grants Commission (UGC), Govt. of India for start-up grant through FRP program (F.4-5(80-FRP)(IV-Cycle)/2017(BSR)). SM thanks DST-INSPIRE program for her fellowship. AR, SD and SB thank CSIR, Govt. of India for their fellowships.

Keywords: Brønsted Acid • Amide • Functionalization • Benzothiazole • Amide C–N Bond Cleavage

- a) A. Radzicka, R. Wolfenden, J. Am. Chem. Soc. 1996, 118, 6105–6109; b) R. M. Smith, D. E. Hansen, J. Am. Chem. Soc. 1998, 120, 8910–8913.
- a) A. Greenberg, C. M. Breneman, J. F. Liebman, *Wiley-VCH*. 2002; b)
 L. Pauling, R. B. Corey, H. R. Branson, *Proc. Natl. Acad. Sci USA*. 1951, 37, 205–211.
- [3] U. Jana, S. Maiti, S. Biswas, *Tetrahedron Lett.* **2008**, *49*, 858–862.
- [4] a) S. Biswas, J. S. M. Samec, *Chem. Asian J.* 2013, *8*, 974–981; b) X.
 Dai, F. Shi, *Org. Biomol. Chem.* 2019, *17*, 2044–2054.

WILEY-VCH

- [5] B. W. Matthews, Acc. Chem. Res. 1988, 21, 333-340.
- [6] a) G. Li, M. Szostak, Chem. Rec. 2020, 20, 649–659; b) G. Li, M. Szostak, Synthesis 2020, 52, 2579–2599; c) D. Kaiser, A. Bauer, M. Lemmerer, N. Maulide, Chem. Soc. Rev. 2018, 47, 7899–7925.
- a) T. Takarada, M. Yashiro, M. Komiyama, *Chem. Eur. J.* 2000, *6*, 3906–3913; b) M. Yashiro, Y. Sonobe, A. Yamamura, T. Takarada, M. Komiyama, *Org. Biomol. Chem.* 2003, *1*, 629–632; c) G. Li, P. Lei, M. Szostak, *Org. Lett.* 2018, *20*, 5622–5625.
- [8] a) L. Hie, N. L. Nathel, T. K. Shah, E. L. Baker, X. Hong, Y. F. Yang, P. Liu, K. N. Houk, N. K. Garg, *Nature* 2015, *524*, 79–83; b) L. Hie, E. L. Baker, S. M. Anthony, J. N. Desrosiers, C. Senanayake, N. K. Garg, *Angew. Chem. Int. Ed.* 2016, *55*, 15129–15132; c) J. E. Dander, N. A. Weires, N. K. Garg, *Org. Lett.* 2016, *18*, 3934–3936; d) N. A. Weires, D. D. Caspi, N. K. Garg, *ACS Catal.* 2017, *7*, 4381–4385.
- [9] a) T. Toyao, Md. N. Rashed, Y. Morita, T. Kamachi, S. M. A. H. Siddiki, Md. A. Ali, A. S. Touchy, K. Kon, Z. Maeno, K. Yoshizawa, K. Shimizu, *ChemCatChem.* **2019**, *11*, 449–456; b) H. Chen, D. H. Chen, P. Q. Huang, *Sci China Chem.* **2020**, *63*, 370–376; c) H. Wu, W. Guo, S. Daniel, Y. Li, C. Liu, Z. Zeng, *Chem. Eur. J.* **2018**, *24*, 3444–3447.
- a) X. Chen, S. Hu, R. Chen, J. Wang, M. Wu, H. Guo, S. Sun, *RSC Adv.* **2018**, *8*, 4571–4576; b) B. Villoria-del-Álamo, S. Rojas-Buzo, P. García-García, A. Corma, *Chem. Eur. J.* **2021**, *27*, 4588–4598.
- a) S. M. A. H. Siddiki, A. S. Touchy, M. Tamurac, K. Shimizu, *RSC Adv.* **2014**, *4*, 35803–35807; b) B. N. Atkinson, J. M. J. Williams, *Tetrahedron Lett.* **2014**, *55*, 6935.
- [12] R. S. Keri, M. R. Patil, S. A. Patil, S. Budagumpi, *Eur. J. Med. Chem.* 2015, 89, 207–251.
- [13] S. T. Huang, I. J. Hsei, C. Chen, *Bioorg. Med. Chem.* 2006, 14, 6106– 6119.
- [14] M. Singh, S. K. Singh, M. Gangwar, G. Nath, RSC Adv. 2014, 4, 19013–19023.
- [15] N. Siddiqui, S. N. Pandeya, S. A. Khau, J. Stables, A. Rana, M. Alam, F. Md. Arshad, M. A. Bhat, *Bioorg. Med. Chem.* 2007, *17*, 255–259.
- [16] T. Akhtar, S. Hameed, N. Al-Masoudi, R. Loddo, P. Colla, Acta Pharm. 2008, 58, 135–149.
- [17] N. Siddiqui, M. Alam, A. Siddiqui, Asian J. Chem. 2004, 16, 1005–1008.
- [18] S. R. Pattan, Ch. Suresh, V. D. Pujar, V. V. K. Reddy, V. P. Rasal, B. C. Koti, *Ind.J. Chem.* 2005, 44B, 2404–2408.
- [19] B. M. Gurupadayya, M. Gopal, B. Padmashali, V. P. Vaidya, Ind. J. Het. Chem. 2005, 15, 169–172.
- [20] S. P. Singh, S. Segal, Ind. J. Chem. 1988, 27B, 941–943.
- [21] T. D. Bradshaw, A. D. Westwell, Current Med. Chem. 2004, 11, 1009– 1021.
- [22] a) A. Bunrit, P. Srifa, T. Rukkijakan, C. Dahlstrand, G. Huang, S. Biswas, R. A. Watile, J. S. M. Samec, ACS Catal. 2020, 10, 1344–1352; b) A. K. Mishra, N. H. Morgon, S. Sanyal, A. R. de Souza, S. Biswas, Adv. Synth. Catal. 2018, 360, 3930–3939; c) A. K. Mishra, A. Verma, S. Biswas, J. Org. Chem. 2017, 82, 3403–3410; d) A. K. Mishra, S. Biswas, J. Org. Chem. 2016, 81, 2355–2363; e) A. Bunrit, C. Dahlstrand, S. K. Olsson, P. Srifa, G. Huang, A. Orthaber, P. Sjörberg, S. Biswas, F. Himo, J. S. M. Samec, J. Am. Chem. Soc. 2015, 137, 4646–4649.
- [23] Md. N. Rashed, S. M. A. H. Siddiki, A. S. Touchy, Md. A. R. Jamil, S. Sultana Poly, T. Toyao, Z. Maeno, K. Shimizu, *Chem. Eur. J.* **2019**, *25*, 10594–10605.
- [24] The possibility of hydrolysis of the amide to the corresponding acid followed by *in situ* esterification of the acid was ruled out when the reaction was found to be reproducible using flame dried glass apparatus under inert atmosphere.

4

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents

Insert graphic for Table of Contents here. ((Please ensure your graphic is in one of following formats))

A TFA mediated general and simple synthetic protocol to directly cleave stable amide C–N bonds by a variety of alcohol and amine nucleophiles has been developed. Natural alcohols such as menthol and cholesterol took part in the reaction under the present reaction conditions to generate the desired esters. Structurally important 2-substituted benzothiazole derivatives have been synthesized in one pot employing 2-aminothiophenol as nucleophile.

Institute and/or researcher Twitter usernames: SrijitDr