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ABSTRACT
Taking natural product phenazine-1-carboxamide (PCN) as a lead 
compound, a series of novel phenazine-1-carboxylic acid diamide 
derivatives were designed and synthesised. Their structures were 
confirmed by 1H-NMR and HRMS. The bioassays showed that some of 
the target compounds exhibited promising in vitro fungicidal activities, 
and exhibited excellent and selective herbicidal activities. Particularly, 
compounds c, h, o and s displayed root length inhibition activities 
against barnyard grass with the rate of more than 80%. Compound c 
exhibited the best activity among all the target compounds against 
barnyard grass stalk length with the IC50 value of 0.158  mmol/L, 
and compound o exhibited the best and wide spectrum inhibition 
against barnyard grass root length and rape in both root length and 
stalk length herbicidal activities with its IC50 values of 0.067, 0.048 
and 0.059 mmol/L respectively. The analysis of preliminary Structure-
Activity Relationships provides the theoretical basis for further design 
of phenazine-1-carboxylic acid.
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1.  Introduction

Phenazine-1-carboxamide (PCN, Figure 1) is a very important natural analogue of Phenazine-
1-carboxylic acid (PCA, Figure 1), often isolated from the metabolites of Pseudomonas and 
Streptomycetes (Gao et al. 2012; Puopolo et al. 2013; Hu et al. 2005; Laursen and Nielsen 
2004), showed five to ten times in fungicidal activity against Rhizoctonia solani as much as 
PCA which registered as a biofungicide ‘Shenqinbactin’ against sheath blight on rice in China 
(Commare et al. 2002; Su et al. 2010; Zhou et al. 2010). In 2010, a series of structurally diverse 
phenazine-1-carboxylic acid amide and diamide derivatives were designed and synthesised 
by Ye Long et al., the biological evaluation against R. solani indicated that some compounds 
exhibited a significant level of activity with IC50 values 8 to 23-fold lower than that of PCA 
(Ye et al. 2010). Noteworthy, compound A and B (Figure 1) as the diamide analogues also 
exhibited excellent fungicidal activities against R. solani.

Diamides are significant organic compounds with various biological activities, such as 
antibacterial (Wang et al. 2017), anti-tumor (Ubaradka et al. 2015; Zabiulla et al. 2016), anti-
fungal (Sharma et al. 2008; Nayyab et al. 2017; Pejchalová et al. 2017), insecticidal (Clark et 
al. 2008; Zhang et al. 2012), antiviral and anti-inflammatory activities (Rajakumar et al. 2012; 
Saudi et al. 2016), etc. For example, both penicillin (Figure 2(C)) which first isolated by British 
bacteriologist Fleming (Gaynes 2017), and the synthesised compound amoxicillin (Figure 
2(D)), both have played important roles in protecting human health (Van et al. 2016). In 
recent years, diamides have been more and more important in agrochemicals, such as some 
commercialised pesticides, chlorantraniliprole (Figure 2(E)) and flubendiamide (Figure 2(F)), 
displaying high effective insecticidal activities at a lower concentration and safe for mam-
mals, and applied widely as effective insecticides for the control of lepidoptera pests 
(Kavallieratos et al. 2013; Cui et al. 2017). Because of the low toxicity and high efficiency, the 
research of diamides has become a hot topic in new pesticide creation.

Combination of active substructure and natural lead compounds is a very important 
method for novel pesticide creation (Prabhakar et al. 2003). In this study, to find higher 
bioactive lead compounds, a series of PCA-diamide derivatives (a–s, Figure 3) were designed 
and synthesised by using natural product phenazine-1-carboxamide (PCN) as a lead com-
pound. Considering the structural and chemical diversity and to discuss their possible 

Figure 1. Structures of PCN, PCA and PCA diamide analogues.
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Structure-Activity Relationships (SARs). Different active substructures, such as alkanoyl 
groups and aroyl groups, were introduced into the target compounds a-s. All target com-
pounds were evaluated for their fungicidal and herbicidal activities.

2.  Results and discussion

2.1.  Chemistry

The synthetic route of all target compounds a-s is described in Figure 3. Treatment of PCA 
with oxalyl chloride at reflux temperature in CH2Cl2 solution afforded intermediate 2 after 
the evaporation of CH2Cl2. And the methyl ester of PCA 3 was prepared by adding excessive 
methyl alcohol into intermediate 2, ammonolysis reaction of PCA methyl ester with ethyl-
enediamine in the solution of CH3OH afforded intermediate 4. Reacted corresponding acids 
5 with SOCl2 at reflux temperature afforded intermediate 6 after the evaporation of SOCl2. 
The target compounds a-s were then synthesised by reacting compound 4 to corresponding 
intermediate 6 in CH2Cl2, and utilising triethylamine as a base at 0 °C. The structures of 
derivatives a-s were characterised by 1H-NMR, and high resolution mass spectrum (HR-MS). 
(Analysis data of all the synthesised compounds are available in Supplementary Information).

2.2.  Fungicidal activities

Firstly, the fungicidal activities of all target compounds a-s were screened by using the 
mycelium growth rate method against six phytopathogenic fungi (Chen 1991), Rhizoctonia 
solani, Fusaium graminearum, Altemaria solani, Fusarium oxysporum, Sclerotinia sclerotiorum 
and Pyricularia oryzae, at a concentration of 0.2 mmol/L. The phenazine-1carboxylic acid 
(PCA) was used as the positive control. Their fungicidal activities are showed in Table 1. 
Results indicated that all target compounds a-s showed some in vitro fungicidal activities 
against six phytopathogenic fungi, but most lower than PCA. Among the tested fungi, 

Figure 2. Structures of some diamides.
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compounds a-s have the best fungicidal activities against R. solani and A. solani, with some 
compounds showing the inhibitory rates of more than 50% (f, g, k, q). Particularly, compound 
k showed the most potent fungicidal activities against R. solani and compound f showed 
the best fungicidal activities against P. oryzae with the inhibitory rates of 72.7 and 82.0% 
respectively. On the whole, through the discussion of Structure-Activity Relationships, we 
can get a conclusion that the structures of R as aroyl groups are more active than as alkanoyl 
groups. And the substituents of the aroyl groups in the para-position displayed higher fun-
gicidal activities than in other position.

2.3.  Herbicidal activities

The herbicidal activities of all target compounds a-s were tested by using a plate method 
against barnyard grass (gramineae) and rape (dicotyledones) (Chen 1991), at a dosage of 
0.5 mmol/L, and a commercial herbicide Fenoxaprop-P-ethyl was used as positive control 

Figure 3. Synthetic route of the target compounds a-s. (A) Oxalyl chloride, CH2Cl2, DMF, reflux, 8 h; (B) 
methyl alcohol, room temperature, 1 h; (C) ethylenediamine, CH3OH, room temperature, 0 °C to reflux, 
2 h; (D) SOCl2, reflux, 6 h; (E) intermediate 6, 0 °C, 1 h.
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at the same concentration. Their herbicidal activities are listed in Table 2. The results indicated 
that, most target compounds showed herbicidal activities against barnyard grass and rape, 
and compounds c, o and s exhibited potent herbicidal activities against barnyard grass root 

Table 1. Inhibitory rates of target compounds against six pathogenic fungi in vitro.

Notes: Each treatment had three replicates (Mean ± SD). The phenazine-1carboxylic acid (PCA) was used as the positive 
control.

Compd.

Inhibitory ratio under 0.2 mmol/L (%)

R. solani F. graminearum A. solani F. oxysporum S. sclerotiorum P. oryzae 
a 48.6 ± 1.2 26.3 ± 0.9 35.4 ± 0.9 12.5 ± 0.3 14.2 ± 0.3 24.7 ± 0.0
b 46.9 ± 0.9 28.8 ± 0.6 36.7 ± 0.6 10.0 ± 0.6 28.2 ± 1.2 29.3 ± 0.0
c 14.9 ± 0.9 27.1 ± 0.6 33.0 ± 0.0 15.0 ± 1.5 18.3 ± 0.9 24.7 ± 0.6
d 39.4 ± 0.6 28.8 ± 0.6 32.0 ± 0.9 11.9 ± 1.5 30.8 ± 2.0 26.2 ± 0.3
e 34.8 ± 1.5 24.9 ± 0.3 36.0 ± 0.9 37.7 ± 0.3 23.5 ± 3.2 38.6 ± 0.0
f 55.4 ± 0.2 43.7 ± 0.6 56.1 ± 0.3 18.2 ± 0.3 46.5 ± 4.7 82.0 ± 1.2
g 59.3 ± 1.9 47.0 ± 2.1 54.0 ± 0.9 17.5 ± 0.0 47.5 ± 3.6 71.2 ± 0.6
h 36.5 ± 0.3 29.3 ± 0.3 39.8 ± 1.2 17.5 ± 0.0 16.8 ± 2.2 43.3 ± 0.6
i 44.6 ± 1.2 33.2 ± 1.3 39.8 ± 4.2 23.8 ± 3.3 36.0 ± 4.4 27.8 ± 1.5
j 13.9 ± 0.8 21.0 ± 0.3 31.7 ± 0.3 12.5 ± 0.3 12.6 ± 0.3 24.7 ± 0.6
k 72.7 ± 2.3 27.7 ± 1.3 65.1 ± 0.3 16.9 ± 0.3 36.0 ± 1.7 38.6 ± 0.0
l 37.1 ± 1.6 22.1 ± 2.1 41.0 ± 0.9 15.7 ± 0.6 15.2 ± 1.7 51.0 ± 4.8
m 49.9 ± 0.3 59.7 ± 0.3 47.2 ± 0.3 35.2 ± 1.2 47.5 ± 5.0 35.5 ± 3.2
n 52.8 ± 0.2 21.6 ± 1.5 31.7 ± 0.3 19.4 ± 0.0 51.7 ± 9.3 31.6 ± 0.6
o 50.7 ± 2.2 28.2 ± 0.3 40.4 ± 1.5 11.9 ± 0.0 19.4 ± 1.0 27.0 ± 0.0
p 13.9 ± 1.0 23.8 ± 0.6 33.6 ± 1.5 14.4 ± 0.3 11.6 ± 0.0 54.9 ± 0.0
q 59.0 ± 0.3 28.8 ± 0.6 63.8 ± 0.7 18.2 ± 0.3 35.5 ± 7.8 58.0 ± 1.3
r 35.5 ± 1.5 26.0 ± 2.4 36.0 ± 0.9 17.5 ± 0.0 26.7 ± 3.2 41.7 ± 0.3
s 33.5 ± 1.2 26.0 ± 0.3 38.5 ± 1.0 19.4 ± 0.0 31.9 ± 8.1 46.4 ± 0.3
PCA 89.5 ± 1.5 92.8 ± 1.5 82.1 ± 0.3 73.6 ± 0.6 87.5 ± 2.1 86.0 ± 0.0

Table 2. Herbicidal activity of target compounds against barnyard grass and rape. (Inhibition rate/%).

Notes: Each treatment had three replicates (Mean ± SD). The Fenoxaprop-P-ethyl was used as the positive control. All com-
pounds were tested at the concentration of 0.5 mmol/L.

Compd.

Barnyard grass Rape

Root Stalk Root Stalk
a 0.0 ± 0.0 41.4 ± 4.8 41.9 ± 7.8 47.5 ± 3.6
b 59.4 ± 10.4 45.3 ± 6.2 36.9 ± 12.3 48.3 ± 6.1
c 95.6 ± 1.7 73.8 ± 1.7 89.5 ± 4.1 68.3 ± 6.1
d 25.5 ± 4.7 33.8 ± 5.2 66.0 ± 9.6 60.1 ± 6.1
e 0.0 ± 0.0 20.1 ± 3.2 39.7 ± 6.7 38.7 ± 4.7
f 0.0 ± 0.0 8.2 ± 4.3 53.9 ± 8.8 53.7 ± 2.4
g 19.1 ± 9.1 42.2 ± 4.0 37.5 ± 10.4 56.4 ± 7.2
h 81.3 ± 4.8 47.7 ± 3.1 49.5 ± 8.2 51.2 ± 2.9
i 0.0 ± 0.0 2.7 ± 3.3 42.3 ± 7.9 59.9 ± 3.7
j 43.1 ± 10.8 60.4 ± 6.0 36.5 ± 9.8 54.4 ± 5.3
k 7.6 ± 11.3 21.0 ± 3.6 40.7 ± 8.4 45.8 ± 4.5
l 22.5 ± 8.0 33.8 ± 3.3 51.5 ± 8.5 51.3 ± 4.6
m 49.3 ± 7.6 50.5 ± 4.7 69.1 ± 8.9 59.8 ± 8.1
n 81.5 ± 3.9 69.2 ± 3.5 32.7 ± 11.9 45.4 ± 4.4
o 97.7 ± 1.1 56.6 ± 4.7 100.0 ± 0.0 100.0 ± 0.0
p 74.3 ± 5.4 60.0 ± 5.0 37.3 ± 13.0 36.1 ± 7.9
q 50.2 ± 4.6 22.6 ± 6.3 54.1 ± 9.1 49.4 ± 10.2
r 22.5 ± 7.0 22.8 ± 4.4 38.9 ± 4.9 44.1 ± 4.2
s 88.2 ± 4.3 41.0 ± 4.9 49.6 ± 7.1 45.5 ± 5.4
PCA 63.4 ± 6.5 26.2 ± 3.9 40.3 ± 11.5 50.5 ± 7.7
Fenoxaprop-P-ethyl 84.7 ± 1.6 70.9 ± 0.9 62.5 ± 6.2 36.3 ± 4.6
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length, with the inhibition rates of 95.6, 97.7, 88.2%, respectively, which were higher than 
those of the positive control herbicide Fenoxaprop-P-ethyl (84.7%). Moreover, compound 
c also exhibited better herbicidal activities (73.8%) against barnyard grass stalk length than 
positive control herbicide Fenoxaprop-P-ethyl (70.9%). Especially, compound o exhibited 
100% inhibition against the rape in both root length and stalk length, and showed excellent 
and wide spectrum herbicidal activities against both gramineae and dicotyledones plants. 
Three compounds (e, f, and i) had selective activities against dicotyledones and no toxic 
harm to gramineae.

Compounds c, o, and s were chosen as the typical compounds to determine IC50 values 
against barnyard grass and rape, which exhibited more than 85% inhibitory activity against 
barnyard grass and rape stalk length or root length. The IC50 values of the chosen compounds 
are presented in Table 3. The most effective compound against barnyard grass root length 
was o with an IC50 = 0.067 mmol, and compound c exhibited the best activity against barn-
yard grass stalk length with the IC50 value of 0.158 mmol/L, which is comparable to the 
positive control herbicide Fenoxaprop-P-ethyl with its IC50 values of 0.176 and 0.184 mmol/L 
against barnyard grass stalk length and root length respectively. Compound o exhibited the 
most potent activity against rape both in root length and stalk length with IC50 values of 
0.048 mmol/L and 0.059 mmol/L respectively, 6 to 8 folds lower than the IC50 values of pos-
itive control herbicide Fenoxaprop-P-ethyl.

To analysis the preliminary structure-activity relationships, the herbicidal activities of 
compounds a-m with R = aroyl groups were compared to the compounds o-s with 
R = alkanoyl groups. It is shown that the structures of R as alkanoyl groups help to improve 
their herbicidal activities. Particularly, compounds o with R = 1-naphthalene acetyl exhibited 
best herbicidal activities against gramineae and dicotyledones among all of target com-
pounds. We speculate that it may due to the 1-naphthylacetic acid, which is regarded as an 
important plant growth regulator. Further comparison of the compounds a-m with R = aroyl 
groups, showed that, the compounds of aromatic ring substituted at the same position with 
CH3, C(CH3)3 (d, g) generally exhibited better herbicidal activities than the componds sub-
stituted with F, CF3 (l, i). It implied that introducing electron-donating group substituents in 
aromatic ring was beneficial to herbicidal activities. Additionally, compound e showed worse 
herbicidal activities than b and c, which revealed the substituents of the aroyl groups in the 
para-position indicated lower herbicidal activities than other position. And the introduction 
of halogen atoms, such as fluorine atom or helium atom, had no obvious effect on herbicidal 
activities.

Table 3. IC50 values (mmol/L) of phenazine-1-carboxylic acid diamide derivatives.

Notes: Each treatment had three replicates (Mean ± SD). The Fenoxaprop-P-ethyl was used as the positive control.

Compd.

Barnyard grass Rape

Root Stalk Root Stalk
c 0.073 ± 0.006 0.158 ± 0.004 0.100 ± 0.007 0.226 ± 0.006
o 0.067 ± 0.003 0.399 ± 0.008 0.048 ± 0.003 0.059 ± 0.005
s 0.122 ± 0.005 >0.5 0.463 ± 0.011 >0.5
Fenoxaprop-P-ethyl 0.176 ± 0.005 0.184 ± 0.004 0.322 ± 0.006 >0.5
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3.  Conclusion

In summary, we have successfully synthesised a series of novel phenazine-1-carboxylic acid 
diamide derivatives a-s, and their structures were confirmed by 1H-NMR and HRMS. The 
bioassays showed that some of compounds exhibited promising in vitro fungicidal activities 
against six phytopathogenic fungi. Surprisingly, most target compounds displayed herbicidal 
activities against barnyard grass and rape, and some of them showed potent herbicidal 
activities, such as compounds c, o and s. Especially, compound o exhibited the most potent 
activity among all the target compounds against rape both in root length and stalk length 
with its IC50 values of 0.048 and 0.059 mmol/L respectively. The analysis of preliminary 
Structure-Activity Relationships indicated that, the structures of R as alkanoyl groups and 
electron-donating group substituents of the aroyl groups were beneficial to herbicidal activ-
ities. The substituents of the aroyl groups in the para-position indicated lower herbicidal 
activities than other position. The synthesis, fungicidal activities and herbicidal activities 
study of phenazine-1-carboxylic acid diamide derivatives provides the theoretical basis for 
further design of phenazine-1-carboxylic acid.
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