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a b s t r a c t 

New quinoxaline derivative, N -(4-methyl-2-nitrophenyl)-2-(3-methyl-2-oxoquinoxalin-1(2H)-yl)acetamide 

(NPOQA) has been synthesized and characterized by IR, 1 H & 

13 C NMR, ESI-MS and single crystal X- 

ray diffraction analysis using experimental and theoretical methods. The thermodynamic quantities and 

quantum chemical parameters were predicted by using B3LYP/6–311G 

∗∗ level to investigate the physical 

and electronic properties of the compound. Frontier Molecular Orbital “FMO ” and Natural Bond Orbital 

“NBO ” analyses of the compound were performed to enligten the possible rectivity trend and intramolec- 

ular interactions contibuted to the decreasing of the stabilization. In addition, the newly synthesized com- 

pound was evaluated for its in vitro antidiabetic activity against α-glucosidase and α-amylase enzymes 

and for antioxidant activity by utilizing several tests as DPPH (1, 1-diphenyl-2-picryl hydrazyl), ABTS (2, 

2 ′ -azino-bis(3-ethyl benzthiazoline-6-sulfonicacid), reducing power test (FRAP) and Hydrogen Peroxide 

Activity H 2 O 2 . Finally, Molecular docking studies were performed to investigate the binding mode be- 

tween the quinoxaline derivative NPOQA and α-glucosidase and α-amylase. Docking calculations showed 

an important binding affinity as compared to standard drug acarbose, -6.5 and -6.9 kcal/mol successively 

for α-glucosidase and α-amylase, which are in agreement with the results of in vitro studies. 

© 2021 Published by Elsevier B.V. 
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. Introduction 

The study of nitrogen heterocycles compounds consists in one 

f the main branches of organic chemistry due to their role in 

ll kinds of biological processes [1] . The presence of nitrogen- 

ased heterocyclic nuclei has proven to be key for developing ther- 

otropic liquid crystals, notably as a rigid core, and important 

caffold f or this application is quinoxaline [2–5] . Thus, quinoxaline 

nd its derivatives have been extensively studied play an interest- 

ng role as basic skeleton for the synthesis of many other phar- 

acologically and biologically active agents [6 , 7] . Notably, these 

 -heterocycles have been reported to exhibit antidiabetic [7] and 

ntioxidant activities [8 , 9] . Similarly, a wide variety of molecules 

ncluding N -aryl acetamides have been reported in last few years 

o act as potential antidiabetic agent [10–12] and as antioxidant 
∗ Corresponding author. 
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022-2860/© 2021 Published by Elsevier B.V. 
gent [13 , 14] . In 2019, according to the International Diabetes Fed- 

ration (IDF) an estimated 4.2 million deaths were assigned to high 

lood-glucose levels; It affects 463 million people worldwide and 

his number is projected to rise to 700 million by 2045, around 

5% of the World’s population in both developed and developing 

ountries [15] . Therefore, the therapeutic use of antioxidants in the 

reatment and prevention of diabetic complications has been con- 

idered [16] . Many studies have searched for effective and safe in- 

ibitors of α-amylase and α-glucosidase [17–22] , from medicinal 

lants or from chemical synthetic products [23–26] , to treat Type 

 diabetes mellitus (T2DM). The purpose of the current work is to 

ynthesize novel quinoxaline- N -aryl acetamide hybrid system and 

valuate it as antidiabetic and antioxidant agent, so, in continu- 

tion of our recent work focused on the synthesis and biological 

valuation of novel heterocyclic compounds [27–31] , herein, our 

esults are presented. 

https://doi.org/10.1016/j.molstruc.2021.130484
http://www.ScienceDirect.com
http://www.elsevier.com/locate/molstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molstruc.2021.130484&domain=pdf
mailto:y.ramli@um5s.net.ma
https://doi.org/10.1016/j.molstruc.2021.130484
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Fig. 1. ORTEP view of the molecular structure of NPOQA with labeling scheme 

and 50% probability ellipsoids. The intramolecular hydrogen bond is depicted by 

a dashed line. 
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Table 1 

Crystal data and structure refinement details. 

Value Parameter 

Chemical formula C 18 H 16 N 4 O 4 

M r 352.35 

Crystal system Triclinic 

Space group P -1 

Temperature (K) 150 

θ min, θ max 4.4, 72.5 °

a, b, c ( ̊A) 4.560 (2), 13.286 (7), 14.199 (7) 

α, β , γ ( °) 104.895 (6), 93.352 (7), 91.677 (7) 

V ( ̊A 3 ) 829.0 (8) 

Z 2 

Radiation type Mo K a 

μ (mm 

−1 ) 0.10 

Crystal size (mm) 0.31 × 0.22 × 0.07 

Diffractometer Bruker Smart APEX CCD 

Absorption correction Multi-scan 

TWINABS (Sheldrick, 2009) [36] 

T min , T max 0.97, 0.99 

No. of measured, independent and 

observed [ I > 2 σ ( I )] reflections 

12,368, 12,368, 9222 

R int 0.023 

(sin θ / λ) max ( ̊A −1 ) 0.690 

R [ F 2 > 2 σ ( F 2 )], w R ( F 2 ), S 0.045, 0.129, 1.10 

No. of reflections 12,368 

No. of parameters 286 

H-atom treatment H-atom parameters constrained 

	ρmax , 	ρmin (e ̊A −3 ) 0.29, −0.28 
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. Experimental section 

.1. Synthesis and crystallization of N-(4-methyl-2-nitrophenyl) −2- 

3-methyl-2-oxoquinoxalin-1(2H)-yl)acetamide 

NPOQA) 

All commercial chemicals were purchased from Sigma-Aldrich 

nd used as received. Follow up of the reaction and checking 

he purity of the compound were made by TLC on silica gel- 

recoated aluminum sheets (Fluorescent indicator 254 nm, Fluka, 

ermany) and the spots were detected by exposure to UV lamp at 

254/366 nm for few seconds. The melting point was obtained 

n a Büchi Melting Point SMP-20 apparatus and is uncorrected. 

he 1 H NMR and 

13 C NMR spectra were recorded on a Bruker 

vance 300 NMR Spectrometer in DMSO–d 6. The chemical shifts 

are reported in parts per million (ppm); the IR spectrum was 

btained using the Bruker-VERTEX 70 device and the associated 

oftware OPUS, in ATR (attenuated total reflectance) mode. Mass 

pectra were recorded on an API 3200 LC/MS/MS mass spectrome- 

er using electrospray ionization (ESI) in positive polarity. 

(2 g, 12.4 mmol) of 3-methylquinoxalin-2(1H)-one, was dis- 

olved in dimethylformamid (DMF) then added (3.4 g, 14,8 mmol) 

f 2–chloro-N-(4-methyl-2-nitrophenyl)acetamide, for the removal 

f the proton we used potassium bicarbonate as a base (2.5 g, 

8.6 mmol), for the phase transfer catalysis conditions a tip of a 

patula of the BTBA was used, then stirred for 2 h under reflux at 

0 °C. After the consumption of the starting reagents, a 500 ml of 

ater was added to the reaction mixture, the main product pre- 

ipitated, then filtered and dried and recrystallized from ethanol. 

.2. Single crystal X-ray structure determination 

A single Pale red crystal with dimension 

.31 × 0.22 × 0.07 mm 

3 of the compound was selected and 

-ray intensity data were collected at 150 K on a Bruker Smart 

PEX CCD diffractometer equipped with an X-ray generator op- 

rating at 50 kV and 40 mA, using Mo-K α radiation of wave 

ength 0.71073 Å. The complete sphere of data was processed 

sing SAINT [32] . The structure ( Fig. 1 ) was solved by direct

ethods and refined by full-matrix least squares method on F2 

sing SHELXT and SHELXL programs [33 , 34] . The molecular and 

acking diagrams were generated using DIAMOND [35] . Crystal 

nd refinement details are presented in Table 1 . 

CCDC 2,053,356 contains the supplementary crystallographic 

ata for this paper. These data can be obtained free of charge via 

ttp://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cam- 

ridge Crystallographic Data centre, 12, Union Road, Cambridge 

B2 1EZ, UK; fax: + 44 1223 336,033). 
2 
.3. Computational and theoretical study 

All DFT/B3LYP level [37 , 38] computations of the compound 

POQA were performed at 6–311G 

∗∗ basis set [39 , 40] , in both the

as and water media. In water environment simulation, PCM “Po- 

arized Continuum Model” [41 - 43] was used. The frequency calcu- 

ations were performed for both the structure verification of the 

ompound and to get the thermochemical and physicochemical 

uantities. After affirming of the structure, the possible reactivity 

endency was calculated by using the FMO “Frontier Molecular Or- 

ital” energies. In this context, Koopmans’ Theorem [44] has de- 

ned the “the ionization energy ( I ) and electron affinity ( A )” via 

sing the HOMO and LUMO energies as follows 

I = -E HOMO 

A = -E LUMO 

Then, the ( I ) and ( A ) values have been used for calculating the

lobal reactivity identifiers, referring on the CDFT (Conceptual Den- 

ity Functional Theory) [45–48] as follows. 

= − I + A 

2 

= 

I − A 

2 

 = 

μ2 

2 η

N max = 

I + A 

2 ( I − A ) 

Here, these values define as follows χ “electronic chemical 

otential”, η “global hardness”, ω “electrophilicty”, and 	Nmax 

maximum charge transfer capability”. 

In addition, two useful parameters hae been introduced as ω 

−

the electrodonating power” and ω 

+ “the electroaccepting power”

erms [49] , and they have been calculated by the following formu- 

ae. 

 

+ ≈ (I + 3 A ) 2 / ( 16 ( I − A ) ) 

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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− ≈ (3 I + A ) 2 / ( 16 ( I − A ) ) 

Furthermore, the back donation contribution to the chemical 

ehavior is also important in the molecular systems, and Gomez 

nd coworkers [50] have introduced 	E back-donation “back-donation 

nergy” as follows. 

ε back −donation = −η

4 

The NBO "Natural Bond Orbital" study introduced by Weinhold 

t al. [51–54] was performed to estimate the intramolecular inter- 

ctions. Based on the NBO, the lowering of the stabilization energy 

as been defined as below, with q i “bonding orbital occupancy”, εi 

nd εj “bonding and antibonding orbital energies” (diagonal ele- 

ents) and the off-diagonal NBO Fock matrix element. 

 

( 2 ) = 	E i j = qi 
( F i j ) 

2 

( ε j − ε i ) 

G09W [55] and GausView 6.0.16 [56] packages were used to 

erform all quantum chemical computations and pictorial repre- 

entations of the related results, respectively. 

.4. Antidiabetic study 

ρ-Nitrophenyl- α- d -glucopyranoside (pNPG), α-glucosidase 

rom Saccharomyces cerevisiae, α-amylase from Bacillus licheni- 

ormis, buffer Solution, DMSO (Dimethylsulfoxide): organic polar 

olvent for solubilizing products, Sodium Carbonate: solution to 

top the reaction, acarbose. All other reagents and standards were 

f analytical reagent (AR) grade. 

In this investigation the synthesized compound was evalu- 

ted for the antidiabetic action via two in-vitro assays namely, 

-amylase and α-glucosidase inhibition method and results were 

ompared with acarbose standard reference in both α-glucosidase 

nd α-amylase methods. 

.4.1. α-glucosidase inhibition assay 

The α-glucosidase inhibitory activity of the compound NPOQA 

as performed by using ρ-nitrophenyl- α- d -glucopyranoside 

 ρNPG)) as a substrate according to the method described by Kee 

t al. [57] With minor modifications. The α-glucosidase method 

s based on the inhibition of the enzyme. α-glucosidase, which 

ydrolyses pNPG (4-Nitrophenyl- α- d -glucopyranoside) to α- d - 

lucopyranose and P-nitrophenol of yellow color. The target 

ompound was dissolved in DMSO and all the evaluated sam- 

les were dissolved in tampon phosphqate at a series of different 

oncentrations such as 500, 250, 125, 62, 5 and 31,25 μM. The 

esired concentrations of enzyme were prepared in PBS (pH 6.8, 

0 mM). A mixture of 150 μl of the sample and 100 μl of PBS

pH = 6.7) containing the α-glucosidase enzyme solution (0.1 U / 

l) was incubated at 37 °C for 10 min, after incubation, 200 μl of 

NPG (1 mM) was added to the mixture . The mixtures were in- 

ubated at 37 °C for 30 min. Then 1 ml Na 2 CO 3 (0.1 M) was added

o stop the reaction and the absorbance (Abs) was measured at 

05 nm. The result of the antidiabetic activity of our synthesis 

roduct was expressed in percentage of inhibition of enzymes 

tudied according to the following formula: 

nhibition ( % ) = 

(
Abs Control − AbsCompound 

AbsControl 

)
∗ 100 

Where Abs Control refers to the absorbance of control (enzyme 

nd buffer), Abs Compound refers to the absorbance of sample (en- 

yme and inhibitor). 

Acarbose was used as a positive control to compare the ob- 

ained results. The same reaction mixture without α-glucosidase 

as used as negative control where no improvement in absorbance 

as observed. 
3 
.4.2. α-amylase inhibition assay 

The α-amylase assay was performed by reacting various con- 

entrations of the compound NPOQA with α-amylase and starch 

olution by following the DNSA method with minor modification 

58] . The target compounds were dissolved in DMSO and all the 

valuated samples were dissolved in tampon phosphqate with var- 

ous concentrations. 

The sample solution (10 μL) was mixed with 240 μL (sodium 

hosphate buffer 0.02 M pH6.9) containing α-amylase (240 U/mL), 

nd incubated at 37 °C for 20 min. After pre-incubation, 250 μL 

f 1% starch solution (1%, sodium phosphate buffer 0.02, pH 6.9) 

ere added to each tube and incubated for 15 min. Add 1 ml of 

initrosalicylic acid to stop the reaction, then incubate the solution 

n a water bath at 90 °C for 10 min. The mixture was diluted with

 mL deionized water and the absorbance (Abs) was measured at 

40 nm. 

The percentage inhibitions were tested at different concentra- 

ions, and the IC 50 values were determined. The control sample 

as prepared without α-amylase and acarbose was used as a stan- 

ard drug (positive control). 

.5. Docking methodology 

The molecular docking study was performed to investi- 

ate the binding mode between the compound NPOQA and 

-glucosidase and α-amylase. The preparation of the pro- 

eins/ligands, generation of receptor grid, and docking were per- 

ormed on AutoDock 1.5.6 as described [59] . The 3D struc- 

ure of the compound N -(4-methyl-2-nitrophenyl) −2-(3-methyl-2- 

xoquinoxalin-1(2H)-yl)acetamide was obtained using CIF file after 

rystallization and DRX study. The 3D structure of acarbose was 

repared and optimized using molecular builder module imple- 

ented in ChemDraw. Gasteiger partial charges were added, non- 

olar hydrogen atoms were merged and rotatable bonds were de- 

ned. The crystal structure of α-amylase (PDB Id: 4GQR; resolu- 

ion 1.2 Å) [60] and α-glucosidase (PDB Id: 5NN5; resolution 2.0 Å) 

61] were downloaded from the PDB database ( http://www.rcsb. 

rg/pdb ). AutoDock tool (ADT) was employed to prepare proteins 

y adding missing hydrogen atoms, assigning Kollman united atom 

ype charges. Grid maps of 40 - 48 −70 Å and 72- 60 −70 Å

imensions with 0.375 Å spacing were prepared using AutoGrid. 

ther AutoDock parameters were set at their default values. Molec- 

lar docking employed the Lamarck Genetic Algorithm (LGA) and 

he Solis and Wets search methods. And for comparison, molecu- 

ar docking of reference inhibitor (acarbose) was carried out with 

-amylase and α-glucosidase. 

.6. Antioxidant activity 

DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2 ′ -Azinobis-(3- 

thylbenzthiazolin-6-Sulfonic Acid), (H 2 O 2 ) hydrogen peroxide and 

scorbic acid were purchased from Sigma–Aldrich. All other 

eagents and standards were of analytical reagent (AR) grade. 

.6.1. Radical scavenging activity dpph 

The DPPH radical activity assay was performed following 

62] with minor modification. The method using the stable free 

adical 2,2-diphenyl-1-picrylhydrazyl (DPPH) is based upon the re- 

uction of DPPH free radical. Different concentrations of the pre- 

ared compound (500, 250, 125, 62.5, 31.25 μM) were tested. The 

PPH solution was prepared by dissolving 3,9 mg of DPPH in 

0 mL of the methanol. Then, 50μL of each concentration was 

dded to 1,2 ml of methanol and 250μL of the prepared DPPH so- 

ution (0.02 mM). The reaction mixture incubated in the dark for 

0 min. The control was prepared by adding 1,25 mL of methanol 

o 250 μL of DPPH. Ascorbic acid was used as the standard. The 

http://www.rcsb.org/pdb
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Scheme 1. Synthesis procedure for preparation of (NPOQA). 
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bsorbances of solutions were spectrophotometrically examined at 

17 nm. The radical activity is expressed as inhibition ratio of ini- 

ial concentration of DPPH radical and is calculated according to 

he formula: 

DPPH(%) = [(Abs DPPH – Abs Sample )/Abs DPPH ] 
∗ 100 

Where Abs DPPH is the absorbance of DPPH radical and Abs sample 

s the absorbance in the presence of sample. The activity result in 

his assay was expressed as IC 50 , which represents the concentra- 

ion of the sample required to inhibit 50% of the free radical activ- 

ty. 

.6.2. Radical scavenging activity abts 

The ABTS assay was performed as previously described by 

uberoso et al. [63] ABTS + radical were generated by oxidation 

f ABTS with potassium persulfate. The blue-green ABTS was pro- 

uced through the reaction between 2 mM ABTS and 70 mM 

otassium persulfate in water. The mixture was left to stand in 

he dark for 12–16 h before use. The ABTS + solution as diluted 

ith methanol to an absorbance of 0.700 ± 0.005 at 734 nm. Then 

 mL of diluted ABTS solution were mixed with 100 μL of sam- 

les and absorbance was measured after 1 min incubation at room 

emperature. A standard curve was obtained by using Ascorbic acid 

s standard solution. The results were expressed as μM Ascorbic 

cid equivalent. 

.6.3. Ferric reducing power assay (FRAP) 

The ferric ion (Fe3 + ) reducing power assay was performed as 

reviously described by Amarowicz et al. [64] with minor modifi- 

ations. Briefly, 1 mL of the samples were mixed with 2.5 mL of 

.2 M sodium phosphate buffer (pH 6.6) and 2.5 mL of 1% potas- 

ium ferricyanide. The mixtures were incubated in a boiling wa- 

er bath at 50 °C for 2 min. Then, 2.5 mL of 10% trichloroacetic 

cid was added and centrifuged at 30 0 0 rpm for 10 min. Finally,

.5 mL of the supernatant were mixed with 2.5 mL distilled water 

nd 0.5 mL FeCl 3 solution (0.1%, w/v). The absorbance was mea- 

ured at 700 nm and the results were expressed as ascorbic acid 

quivalent. 

.6.4. Hydrogen peroxide activity H 2 O 2 

The hydrogen-donating activity, measured utilizing hydrogen 

eroxide radicals as the hydrogen acceptor was performed as pre- 

iously described by Muruhan et al. [65] with minor modifications. 

riefly a solution of hydrogen peroxide (40 mM) was prepared in 

hosphate buffer (pH 7.4). Different concentrations of the prepared 

ompound (62.5, 31.25, 15.62, 7.81 and 3.9 μM) were added to a 

ydrogen peroxide solution (0.6 mL, 40 mM). The absorbance of 

ydrogen peroxide at 230 nm was determined after 10 min against 

 blank solution containing phosphate buffer without hydrogen 

eroxide (or ascorbic acid as the control). The hydrogen peroxide 

ercentage activity was then calculated using the following equa- 

ion: 

2 O 2% = Ab ′ − Ab 

Ab ′ × 100 

Where Ab’ is the absorbance of the control reaction and Ab is 

he absorbance in the presence of the samples. 
4 
. Results and discussions 

The synthesis of the compound (NPOQA) is depicted in 

cheme1. The starting material, 3-methylquinoxalin-2(1 H )- one 

as prepared through treatment of o -phenylenediamine with 

odium pyruvate in acetic acid [66] . This compound was 

roven to be a good synthons for different highly biologi- 

ally active compounds. The lactam function of quinoxalinone is 

ery reactive and so it condensed with 2–chloro- N -(4-methyl-2- 

itrophenyl)acetamide. Structure of NPOQA was elucidated on the 

asis of spectral data. 

Yield 80%, mp = 266.7 – 268.5 °C, FT-IR (ATR, υ , cm 

-1 ): 3251 

(N 

–H amide ), 1651 υ( C = O amide ), 833 υ(C 

–H arom 

), 1601

( C = C arom 

), 1408 υ(C 

–H CH3qin ), 1470 υ(NO 2 ); 
1 H NMR (DMSO–

 6 ) δ ppm: 2.37 (3H, s, CH 3,quin ); 2.49 (3H, s, CH 3,arom 

); 5.17

2H, s, CH 2 ); 10.64 (1H, s, NH); 7.35–7.92 (m, J = 7.5 Hz, 7H Ar );
3 C NMR (DMSO–d 6 ) δ ppm: 44.91 (CH 2 –N Quin ); 19.99 (CH 3,arom 

); 

1.11 (CH 3,Quin ); 142.35 (C 

–NO 2 ); 165.45 ( C = O acetamid ); 154.29 

 C = N ,Quin ); 157.57 ( C = O quin ). Its mass spectrum showed a

olecular ion peak (MH 

+ , m/z = 353,12) which conforms to its 

olecular formula C 18 H 16 N 4 O 4 . SM (ESI + ), IR and NMR spectra are

iven in the Supplementary Material Tables S1-S3. 

The melting point was highly increased, compared to the pre- 

ursor [66] , yet our compound shown a moderate melting point if 

t was compared by the compounds of the same family [67–69] 

On the basis of 1 H NMR spectrum which exhibited three sig- 

als at δ 2.49, 5.17 and 10.64 ppm referring to methyl group, CH 2 

ound to the quinoxaline nitrogen and NH of acetamide group 

espectively, and revealed the absence of signal at δ 10.66 ppm 

orresponding hydrogen of the lactam which confirms the re- 

ction between 3-methylquinoxalin-2(1H)-one and 2–chloro-N- 

4-methyl-2-nitrophenyl) acetamide [69] . Its 13 C NMR spectrum 

howed signals at δ 19.99, 21.11, 44.91, 142.35,154.29, 157.57 and 

65.45 referring to CH 3 of the phenyl ring, methyl group, CH 2 

ound to quinoxaline nitrogen group, carbon liked to nitro group, 

 = N of quinoxaline group, C = O of quinoxaline group and Carbon 

f acetamide group respectively. IR spectrum of NPOQA showed 

and at 3251cm 

−1 for NH group and 1470 cm 

−1 due to NO 2 group, 

n addition the spectrum displayed absorption band at 1651 cm 

−1 

haracteristics for the carbonyle group. The elemental analyses and 

pectral data were in agreement with its structure. 

.1. X-ray crystallography 

The quinoxaline moiety is slightly non-planar as seen by the 

ihedral angle of 1.4 (1) ° between the mean planes of the con- 

tituent rings. The dihedral angle between the mean planes of the 

1/C6/N1/C7/C8/N2 and the C12 ···C17 rings is 78.51(5) ° while the 

itro group is twisted from co-planarity with the latter ring by 

6.5(1) °. The intramolecular N3—H3A ···O3 hydrogen bond ( Table 2 

nd Fig. 2 ) partially aids in determining the conformation of that 

ortion of the molecule. The bond lengths and interbond angles 

re normal for the given formulation. In the crystal, thick chains 

f molecules extending along the a -axis direction are formed by 

3—H3A ···O2, C16—H16 ···O2 and C18—H18 ···O1 hydrogen bonds 
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Table 2 

Hydrogen-bond geometry ( ̊A, °). 

Cg2 is the centroid of the C1 ···C6 benzene ring. 

D —H ···A D —H H ···A D ···A D —H ···A 
N3—H3A ···O2 i 0.91 2.15 2.840(2) 132 

N3—H3A ···O3 0.91 2.03 2.647(2) 124 

C10—H10B ···Cg2 i 0.99 2.90 3.809(3) 153 

C16—H16 ···O2ii 0.95 2.56 3.288(3) 134 

C18—H18B ···O1 iii 0.98 2.53 3.391(3) 146 

Symmetry codes: (i) x − 1, y, z ; (ii) −x + 2, −y + 1, −z ; (iii) −x + 1, −y + 1, 

−z . 

Fig. 2. Detail of the intermolecular interactions in a portion of one chain. N—H ···O 
and C—H ···O hydrogen bonds are depicted, respectively, by blue and black dashed 

lines while C—H ···π (ring) and CO ···π-ring interactions are shown, respectively, by 

green and purple dashed lines. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. The optimized structures of the compound NPOQA at B3LYP/6–311G ∗∗ level. 
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Table 3 

The calculated physiochemical quantities of the compound at 

B3LYP/6–311G ∗∗ level. 

Gas Water 

DM (debye) 3.901 5.291 

α (au) 253.048 341.275 

	E (au) −1215.394590 −1215.411957 

	H (au) −1215.371074 −1215.388460 

	G (au) −1215.450046 −1215.467289 

	E thermal (kcal/mol) 215.818 215.593 

Cv (cal/molK) 85.677 85.729 

S (cal/molK) 166.210 165.910 
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ogether with C10—H10B ···Cg 2 interactions ( Table 2 and Fig. 2 ) 

nd assisted by π-stacking interactions between the N4O4 por- 

ion of the nitro group and the C12 ···C17 ring at x − 1, y, z

N4 ···ring centroid = 3.462(2) Å, O4 ···ring centroid = 3.330 (2) Å, 

4O4 ···centroid = 85.85 (10) °). 

.2. Theoretical studies 

.2.1. Quantum chemical studies 

The optimized and verified structure of the compound by the 

bsence of the negative value in frequencies was presented in 

ig. 3 , and the physical quantities were summarized in Table 3 . 

he dipole moment and polarizability behavior of the compound 

ere affected by the solvent media, namely, they were estimated 

n 3.901 D and 253.048 au in the gas phase and in 5.291 D and
5 
41.275 au in the water phase, due to the existence of the nitro (- 

O 2 ) and carbonyl groups. Besides, the changing of the free energy 

f the compound implied that the compound had higher stability 

n the water ( −1215.450046 au) phase than the gas ( −1215.467289 

u). The 	E and 	H quantities of the compound were com- 

uted as −1215.394590 au and −1215.371074 au in the gas and as 

1215.411957 au and −1215.388460 au in the water. 	E thermal (in 

cal/mol), Cv (in cal/molK), and S (in cal/molK) values were calcu- 

ated as 215.818, 85.677, and 166.210 in the gas, whereas they were 

redicted as 215.593, 85.729, and 165.910, respectively. 

.2.2. Natural bond orbital study 

NBO analysis provides highly descriptive information about the 

eactivity behavior of organic [70–72] and inorganic systems [73–

5] by predicting possible intermolecular interactions. Table 4 

ummarized the interactions that had the higher energy contri- 

utions to the lowering of the stabilization energy. Accordingly, 

he charge flow to aromatic ring from each of the lone pairs 

f the nitrogen atoms were determined as the highest contribu- 

ions to E (2) , which were LP (1) N25 (ED i = 1.59816e) → �∗

1-C6 (ED j = 0.4 4 453e) and LP (1) N32 (ED i = 1.64156e) → �∗

12-C13 (ED j = 0.46356e) with the energies of 38.35 and 

3.35 kcal/mol, respectively. Besides, the � C12-C13 → �∗ N36- 

38 (ED j = 0.61901e) interaction was determined by the energy 

f 30.95 kcal/mol, remarkable. Also, the charge flow to each of an- 

ibonding orbitals �∗ C14-C15 (ED j = 0.29765e) and �∗ C16-C17 

ED j = 0.27819e) from filled orbital � C12-C13 had a striking en- 

rgy of 20.07 and 14.00 kcal/mol, respectively. The E (2) values for 

he charge movement to each of �∗ C2-C3, �∗ C4-C5, and �∗

7-N24 unfilled orbitals from � C1-C6 filled orbital were calcu- 

ated as 17.03, 18.97, 12.61 kcal/mol, respectively. The E (2) values 

or the other resonance interactions occurred in the nitro substi- 

uted aromatic rings were calculated as 19.00, 20.85, 23.93, and 

7.67 kcal/mol for the interactions of � C14-C15 → �∗ C12-C13, 

C14-C15 → �∗ C16-C17, � C16-C17 → �∗ C12-C13, and � C16- 

17 → �∗ C12-C13, respectively. Also, the E (2) values for � C7- 

24 → �∗ C1-C6 and � C7-N24 → �∗ C8-O42 interactions were 

redicted as 14.77 and 13.34 kcal/mol, respectively. 

.2.3. Global reactivity study 

Global reactivity identifiers obtained from the ( I ) and ( A ) val- 

es have been widely applied to a lot of scientific disciplines to 

valuate the chemical behavior of the organic [76–79] and/or in- 

rganic [80–82] molecular systems. In this study, the calculated 

eactivity parameters were given in Table 5 . Accordingly, HOMO 

nergy of the compound decreased whereas the LUMO energy in- 

reased, in the water simulation media. Thus, the energy gap of 

he compound was enlarged in the water phase in comparison to 

he gas phase. The E HOMO and E LUMO energies of the compound 

ere calculated as −6.391 and −2.995 eV in gas and as −6.508 and 

2.975 eV in the water, respectively. It can be said that the com- 

ound is more reactive in the water phase because of the larger 

E value, that is, the 	E values of the compound are calculated 
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Table 4 

NBO analysis results of the compound at B3LYP/6–311G ∗∗ level. 

Donor(i) ED i /e Acceptor (j) ED j /e E (2) / kcalmol −1 E(j)-E(i)/ a.u F(i.j)/ a.u 

Gas 

� C1-C6 1.57496 �∗ C2-C3 �∗ C4-C5 �∗ C7-N24 0.329290.298680.18842 17.0318.9712.61 0.290.300.29 0.0640.0690.057 

� C2-C3 1.70495 �∗ C1-C6 �∗ C4-C5 0.444530.29868 21.2316.62 0.280.30 0.0720.063 

� C4-C5 1.68763 �∗ C1-C6 �∗ C2-C3 0.444530.32929 18.2022.49 0.270.28 0.0650.071 

� C7-N24 1.84750 �∗ C1-C6 �∗ C8-O42 0.444530.33158 14.7713.34 0.340.33 0.0690.062 

� C12-C13 1.63515 �∗ C14-C15 �∗ C16-C17 �∗ N36-O38 0.297650.278190.61901 20.0714.0030.95 0.310.310.15 0.0720.0600.064 

� C14-C15 1.66361 �∗ C12-C13 �∗ C16-C17 0.463560.27819 19.0020.85 0.260.29 0.0650.070 

� C16-C17 1.67441 �∗ C12-C13 �∗ C14-C15 0.463560.29765 23.9317.67 0.260.29 0.0730.065 

LP (1) N25 1.59816 �∗ C1-C6 0.44453 38.35 0.29 0.095 

LP (1) N32 1.64156 �∗ C12-C13 0.46356 43.35 0.27 0.099 

Fig. 4. HOMO& LUMO (isoval:0.02), and MEP (isoval:0.0 0 04) pilots of the compound at B3LYP/6–311G ∗∗ level in the gas phase. 

Table 5 

The quantum chemical parameters of the 

compound NPOQA at B3LYP/6–311G ∗∗ level. 

Gas Water 

H (-I) (eV) −6.391 −6.508 

L (-A) (eV) −2.995 −2.975 

	E (L-H) (eV) 3.397 3.533 

μ (eV) −4.693 −4.741 

η (eV) 1.698 1.766 

ω (eV) 6.485 6.364 

	N max (eV) 2.763 2.684 

	εback-donat. (eV) −0.425 −0.442 

ω 

+ (au) 0.160 0.155 

ω 

− (au) 0.332 0.329 
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f

c

h

N

T

(

3

a

s 3.397 eV in gas and 3.533 eV in the water, respectively. Besides, 

he compound is harder in the water (1.766 eV) than the gas phase 

1.698 eV). From Table 5 , ( ω) and 	N max indexes (in eV) were cal-

ulated higher in the gas ( ω= 6.485 and 	N max = 2.763) than the

as water ( ω= 6.364 and 	N max = 2.684). Also, the ( ω 

+ ) and ( ω 

−)

ndexes implied that the compound more likely prefer the elec- 

rodonating tendency than the electroaccepting behavior, in both 

hases. The ( ω 

+ ) and ( ω 

−) values of the compound were estimated

s 0.160 and 0.332 in the gas and as 0.155 and 0.329 in the water

edia. 

The HOMO, LUMO and MEP profiles of the compound were 

llustrated in Fig. 4 to give a clear picture for the nucleophilic 

HOMO) and electrophilic (LUMO) attack sites. Except for the 

ethyl groups and for oxygen atoms of the nitro group, HOMO 

ensity of the compound spread out overall molecular surface. On 

he other hand, LUMO density did lay out completely on the 3- 

ethyl-2-oxoquinoxalin ring of the compound. Besides, MEP plots 
6 
ndicated that the electron-rich region (orange color) in moderate 

ize covered the oxygen atoms, whereas the electron-poor region 

blue color) of the compound coated the around of hydrogen atom 

f the secondary amin group. The remaining parts of the com- 

ound seem neutral for both the electrophilic and nucleophilic at- 

ack because of the green color, but there were sprinkle the slight 

ositive potential (light blue) on the electron density surface of the 

ompound NPOQA. 

.3. Enzyme inhibitory activities 

In an array to explore the in vitro antidiabetic activity, quinox- 

line derivative was screened for the α-amylase and α-glucosidase 

nhibitory properties. Effects were compared with the commer- 

ially available inhibitor, acarbose (Ac). Inhibitory activities of the 

ompound were evaluated at different concentrations and results 

ere given in Fig. 5 A,B. Acarbose and NPOQA showed a dose de- 

endent inhibitory effect on enzymes. 

The results showed that the compound NPOQA had a 

emarkable inhibitory effect on α-glucosidase activity ( IC 50 

3.78 ± 0.888 μM ). NPOQA has a dose-dependent inhibitory ef- 

ect on α-glucosidase and it showed a statistically highly signifi- 

ant as P < 0.001, which is comparable to others N -aryl acetamides 

ybrid system [10 , 11] , similar result was found for α-amylase. 

POQA showed a considerable activity (IC 50 199.7 ± 0.952 μM) . 

herefore, it considered as an active compound for this application 

 Table 6 ). 

.4. Antioxidant activity 

In vitro antioxidant activity of NPOQA complexe was evalu- 

ted by using radical methods, DPPH, ABTS, FRAP, The antioxi- 
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Fig. 5. A ) α-amylase inhibitory activities of NPOQA ; B ) α-glucosidase inhibitory activities of NPOQA. 

Fig. 6. Molecular docking of acarbose with α–amylase and α-glucosidase. ( A ) Binding of acarbose with glucosidase, ( B ) amino acid residues and various interactions involved 

in acarbose-glucosidase complex, ( C ) binding of acarbose with -amylase ( D ) amino acid residues and various interactions involved in acarbose-amylase complex. 

Table 6 

IC 50 of the NPOQA enzyme inhibitory activity:. 

(IC 50 μmol/ml) 

Compound α-glucosidase α-amylase 

NPOQA 83.78 ± 0.888 ∗∗∗∗ 199.7 ± 0.952 ∗∗∗∗

Acarbose 72.58 ± 0.682 115.6 ± 0.574 

Values represent mean ± standard deviation ( n = 3). 

Values with the same superscript on the same row are sig- 

nificantly similar (P ( < 0,0 0 01)). 

d

c

c

s

6

N

A

[

D

7 
ant property of the tested samples was evaluated at different 

oncentrations and Ascorbic Acid was used as a standard for the 

omparison of the activity. The obtained result of DPPH assay 

howed a good antioxidant activity, with IC50 value (104, 1 ± 4, 

5 μM), while IC50 value of ascorbic acid (78, 11 ±0, 68 μM). The 

POQA have developed an important antioxidant activity in the 

BTS test, and better than other similar heterocyclic compounds 

13] . With a correlation to the antioxidant activity shown in the 

PPH test ( Table 7 ), it showed the average antioxidant ability 



M. Missioui, S. Mortada, W. Guerrab et al. Journal of Molecular Structure 1239 (2021) 130484 

Fig. 7. Molecular docking of NPOQA with α-glucosidase. ( A ) Binding of NPOQA with α-glucosidase, ( B ) (2D) amino acid residues and various interactions involved in NPOQA - 

glucosidase complex, ( C ) (3D) amino acid residues and various interactions involved in NPOQA -glucosidase complex, ( D )binding of NPOQA with glucosidase hydrophobic 

pocket. 

Table 7 

Antioxidant activities (DPPH, ABTS, FRAP and H 2 O 2 ) of NPOQA . Data are expressed 

as mean ± SD ( n = 3). 

DPPH ABTS FRAP H 2 O 2 
(IC 50 μM) (μM AAE) (μM AAE) (IC 50 μM) 

NPOQA 104,1 ± 4,65 330,30 ± 3,44 298,54 ±6,59 5,06 ±0,48 

Ascorbic Acid 78,11 ±0,68 ̵ ̵ 7,45 ±1,11 

(

e

(

p

a

s

a

o

3

i

α
N

c

s

g

g

330,30 ± 3,44 μM AA). Moreover, in the FRAP method, the high- 

st reducing power was interestingly observed also in the NPOQA 

298,54 ±6,59 μM AAE). The FRAP value indicates that the com- 

ound has a ferric reducing antioxidant power and it has a rel- 

tively high antioxidant activity compared to compounds of the 
Table 8 

. The calculated binding energy for acarbose and NPOQA . 

Acarbose glucosidase Glucosidase 

Affinity kcal/mol Risidus 

acarbose −6.5 ASN470, THR567, SER566

ASN570, TYR191, GLY335

ARG189, ASP243, HIS562

NPOQA −6.9 Leu538, asp243, ASN570

SER566, THR56 

8 
ame family [8] . The synthesized compound NPOQA demonstrated 

 strong activity, with IC50 value (5,06 ±0,48 μM), while IC50 value 

f ascorbic acid (7,45 ±1,11 μM). 

.5. Molecular docking 

Molecular docking study was performed to analyze the bind- 

ng modes of the studied compound against α-glucosidase and 

-amylase enzyme. The results showed that both acarbose and 

POQA were able to bind to the active site of α-glucosidase, the 

alculated binding energy was found to be −6.5 and −6.9 kcal/mol 

uccessively for acarbose and NPOQA ( Table 8 ). Several hydro- 

en bonded interactions were observed between various hydroxyl 

roups of acarbose and amino acids Ser3, Pro312, Arg252, Gly403, 
Amylase 

Affinity kcal/mol Risidus 

, LEU538, 

, ARG190, 

 

−6.6 THR6,GLN8, SER3,PRO4, 

ARG252,ASP402,GLY403,ARG421, 

PRP332, PHE335, THR336, THR11, 

ARG398, GLY334, ASN5, ARG92 

, TYR191, −7.6 ASP402,ARG398, SER289, TYR333, 

ARG421, PRO332 
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Fig. 8. Molecular docking of NPOQA with Amylase. ( A ) Binding of NPOQA with amylase, ( B ) (2D) amino acid residues and various interactions involved in NPOQA-amylase 

complex, ( C ) (3D) amino acid residues and various interactions involved in acarbose-amylase complex, ( D )binding of NPOQA with amylase hydrophobic pocket. 
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rg421, Thr 11, Arg398, Gly334, Asn5 and Arg5 of α-glucosidase 

nzyme ( Fig. 6 ). Exploration of molecular interaction of NPOQA 

hows several hydrogen’s bonds (Asn570, Tyr191, Ser566, Thr567), 

i-anion interactions with Asp243, and a Pi-alkyl interaction be- 

ween the methyl and Leu538. The studied compound NPOQA was 

ell accommodated in the binding pocket of α-glucosidase as 

hown in Fig. 7 . Results showed that compound NPOQA has an 

mportant binding affinity as compared to standard drug acarbose. 

hich are in agreement with the results of in vitro studies. 

We have also performed molecular docking of NPOQA and acar- 

ose with α–amylase. The calculated binding affinity was pre- 

icted to be −6.6 and −7.6 Kcal/mol successively for acarbose and 

POQA ( Table 8 ) . Compound NPOQA was lockted at the hydropho- 

ic pocket of the enzyme ( Fig. 8 ). Surrounded by the residues ASP- 

02, ARG-398, SER-289, TYR-333, ARG-421, PRO-332 forming a sta- 

le hydrophobic binding. Detailed analysis showed that the methyl 

roup in position 3 of the NPOQA formed π-alkyl interactions with 

he residues Arg-398 in addition to an π-anion and π-alkyl be- 

ween phenyl group and residues Asp-402 and Pro-332. All these 

nteractions helped NPOQA to anchor in the binding site of the α- 

mylase and explain the higher binding affinity compared to acar- 

ose. The magnitude of the binding affinity and the different inter- 

ctions indicates that the studied compounds NPOQA and acarbose 

nteracted strongly with α -amylase, confirming the in vitro data. 

. Conclusion 

In this research, new quinoxaline derivative, N -(4-methyl- 

-nitrophenyl) −2-(3-methyl-2-oxoquinoxalin-1(2H)-yl)acetamide 

NPOQA) has been synthesized, with significant yield and charac- 
9 
erized by different spectroscopic techniques. The structure was 

esolved by the XRD analysis and this illustrates that the quinox- 

line unit is not quite planar. FMO analyses revealed that the 

lectrodonating potency (0.332au) of the compound was greater 

han the electroaccepting capability (0.160au) in both phases. In 

ddition, the HOMO density of the compound expanded on the 

hole molecular surface more than the LUMO, and the 3-methyl- 

-oxoquinoxalin ring was liable for the electrophilic attacks. NBO 

nalyses showed that the n → П∗ and П→ П∗ interactions were 

reatly responsible for the decreasing of the stabilization energy. 

he compound NPOQA was evaluated for its in vitro antidiabetic 

nd antioxidant activities ; It showed an excellent antidiabetic and 

ntioxidant activities. In addition to this, molecular docking studies 

ere carried to investigate the binding mode between NPOQA and 

he two enzymes, α-glucosidase and α-amylase. Thus, this study 

xplores, theoretical prediction, antidiabetic, antioxidant activi- 

ies and docking studies of quinoxaline- N -aryl acetamide hybrid 

ystem for development of potential multifunctional medicinal 

andidates. 
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