

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 5851-5853

3-O-Glutaryl-dihydrobetulin and related monoacyl derivatives as potent anti-HIV agents

Yoshiki Kashiwada,^{a,*} Michiko Sekiya,^a Yasumasa Ikeshiro,^a Toshihiro Fujioka,^b Nicole R. Kilgore,^c Carl T. Wild,^c Graham P. Allaway^c and Kuo-Hsiung Lee^{d,*}

^aFaculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 950-2081, Japan ^bFaculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan

^cPanacos Pharmaceutical Inc, Perry Parkway, Gaithersburg, MD 20877, USA

^dNatural Products Laboratory, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA

Received 19 August 2004; accepted 15 September 2004 Available online 12 October 2004

Abstract—3-*O*-Acyl-betulin and -dihydrobetulin derivatives were prepared and evaluated for anti-HIV activity. 3-*O*-Glutaryldihydrobetulin (**17**) demonstrated extremely potent anti-HIV activity with an EC₅₀ value of $2 \times 10^{-5} \mu$ M and a TI value of 1.12×10^{6} . 3-*O*-(3',3'-Dimethylsuccinyl)- and 3-*O*-(3',3'-dimethylglutaryl)-dihydrobetulins (**15**, **16**) were also potent anti-HIV compounds with EC₅₀ values of 0.0017 and 0.0013 μ M, respectively, and TI values of 16,160 and 19,530, respectively. © 2004 Elsevier Ltd. All rights reserved.

Our modification study on betulinic acid (1), which was identified as an anti-HIV principle [EC₅₀ 1.4 μ M, therapeutic index (TI) 9.3] from the leaves of *Syzygium claviflorum*,¹ has resulted in the design and discovery of 3-*O*-(3',3'-dimethylsuccinyl)-betulinic acid (PA-457, **2**). PA-457 shows extremely potent anti-HIV activity with a reported EC₅₀ value of <0.00035 μ M and a therap-

eutic index (TI) value of >20,000.^{2,3} Moreover, PA-457 was found to interfere with viral maturation/ budding, the final step in the HIV life cycle, and thus, has a novel mechanism of action compared with the current AIDS drugs.^{4,5} PA-457 is, therefore, the first compound known to target this step in virus replication and is undergoing clinical trials.⁶

* Corresponding authors. Tel.: +1 919 962 0066; fax: +1 919 966 3993 (K.H.L.); tel./fax: +81 25 269 3140 (Y.K.); e-mail addresses: kasiwada@niigata-pharm.ac.jp; khlee@unc.edu

0960-894X/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2004.09.033

Various 3,28-di-O-acyl-betulins were also prepared as PA-457 related derivatives based on the structural similarity of betulin and betulinic acid. 3,28-Di-O-(3',3'dimethylglutaryl)-betulin (3) and 3-O-(3',3'-dimethylsuccinyl)-28-O-(2",2"-dimethylsuccinyl)-betulin (4) demonstrated potent anti-HIV activity with EC₅₀ values of 0.00066 and 0.00087 µM, respectively, and TI values of 21,515 and 42,400, respectively.^{7,8} In contrast, 28-Odimethylsuccinyl-betulins, which were prepared in the course of the structure elucidation of 3,28-di-O-dimethylsuccinyl-betulin isomers, were not potent anti-HIV agents. These data suggested that a 3-O-acyl group was essential for potent anti-HIV activity.8 In a continuing structure-activity relationship (SAR) study on PA-457 derivatives, we have now prepared 3-O-acyl-betulin and -dihydrobetulin derivatives, and evaluated their anti-HIV activity.

The 3-O-acyl-betulin derivatives were prepared as shown in Scheme 1. Protection of the 28-hydroxyl group of betulin with triphenylmethyl chloride yielded betulin 28-O-triphenylmethyl ether, whose solution in pyridine was further treated with an appropriate dicarboxylic acid in the presence of dimethylamino pyridine at reflux to give 3-O-acyl-betulin 28-O-triphenylmethyl ether derivatives. The C-28 protecting group was subsequently removed by refluxing with pyridinium p-toluenesulfonate (PPTS) in CH2Cl2-EtOH, and the product was purified by silica gel chromatography to give the 3-O-acyl-betulin derivatives. However, although the reaction of dimethylsuccinic acid and betulin 28-Otriphenylmethyl ether yielded mainly the 3-O-(3',3'dimethylsuccinyl)-betulin derivative, the undesired 2',2'-dimethyl isomer was also formed, as was seen pre-

viously in 3-O-acyl-betulinic acid derivatives.³ After removing the 28-protective group of the products using the conditions described above, the desired 3',3'-dimethylsuccinyl-betulin could be obtained by crystallization from EtOH. On the other hand, removing the 28-O-triphenylmethyl ether of 3-O-succinyl and 3-O-glutaryl derivatives with PPTS in CH₂Cl₂-EtOH yielded mainly the corresponding ethyl ester derivatives, together with the desired product. Alternatively, the desired 3-O-succinyl- and 3-O-glutaryl-betulins were obtained by refluxing with ZnCl₂ in 95% THF. Initially, we attempted to prepare the 3-O-acyl-dihydrobetulin derivatives directly from the 3-O-acyl-betulin 28-O-triphenylmethyl ethers by catalytic reduction with Pd-C/H₂, but the 28-O-triphenylmethyl ether group was not removed under these conditions. Therefore, the 3-O-acyl-dihydrobetulin derivatives¹⁰ were prepared from the 3-O-acyl-betulin derivatives by treatment with Pd–C/H₂.

Anti-HIV activities for 3-*O*-acyl-betulin and -dihydrobetulin derivatives are summarized in Table 1. Among these derivatives, 3-*O*-glutaryl-dihydrobetulin (17) demonstrated extremely potent anti-HIV activity in acutely infected H9 cells with an EC₅₀ value of $2 \times 10^{-5} \mu$ M and inhibited uninfected H9 cell growth with an IC₅₀ value of 23.59 μ M. Its calculated TI value was $1.12 \times$ 10^{6} . Compound 17 was more potent than AZT in this assay, and this analog appears to show the greatest anti-HIV activity among the betulinic acid, dihydrobetulinic acid, betulin, and dihydrobetulin derivatives evaluated thus far. 3-*O*-(3',3'-Dimethylsuccinyl)- and 3-*O*-(3',3'-dimethylglutaryl)-dihydrobetulins (15, 16) were also potent anti-HIV compounds with EC₅₀ values of 0.0017 and 0.0013 μ M, respectively, and TI values

Scheme 1. Preparation of 3-O-acyl-betulin and -dihydrobetulin derivatives.

Table 1. Anti-HIV activities⁹ for betulinic acid (1), PA-457 (2), 3,28di-O-acyl-betulin derivatives (3, 4), and 3-O-acyl-betulin (10–14) and -dihydrobetulin (15–17) derivatives

Compd	IC ₅₀ ^a	EC ₅₀ ^b	TI ^c
1	12.9	1.4	9.2
2	7.0	< 0.00035	>20,000
3	14.2	0.00066	21,515
4	36.9	0.00087	42,400
10	33.46	0.0056	5974
11	28.9	0.0044	6568
12	44.36	0.0662	670
13	25.98	N.S. ^d	_
14	>44.75	0.0246	>1819
15	26.99	0.0017	16,160
16	25.69	0.0013	19,530
17	23.59	2×10^{-5}	1.12×10^{6}
AZT	1873	0.0062	302,096

^a Concentration (μ M) that is toxic to 50% of mock-infected H9 cells. ^b Concentration (μ M) that inhibits HIV-1 replication by 50%.

^c TI (therapeutic index) is defined by IC_{50}/EC_{50} .

^d No suppression at concentrations up to 100 µg/mL.

of 16,160 and 19,530, respectively. 3-O-Acyl-betulin derivatives (10, 11, 12) also showed relatively potent anti-HIV activities with EC₅₀ values ranging from 0.0044 to $0.0662\,\mu$ M and TI values ranging from 670 to 6568, but they were less active than the corresponding dihydrobetulin derivatives. Comparison of the anti-HIV activities for 3-O-acyl-betulin and -dihydrobetulin derivatives suggested that hydrogenation of the betulin Δ^{29} double bond increased anti-HIV potency. 3-O-Diglycol-yl-betulin (14) also displayed significant anti-HIV activity, which might be improved by hydrogenation.

Acknowledgements

The authors wish to thank Mr. H. Hanazono (Fukuoka University) for measurement of mass spectra. This investigation was supported by a grant from the Promotion and Mutual Aid Corporation for Private schools of Japan (Y.K.), as well as Grant AI-33066 from the National Institute of Allergies and Infectious Diseases (K.H.L.).

References and notes

 Fujioka, T.; Kashiwada, Y.; Kilkuskie, R. E.; Cosentino, L. M.; Ballas, L. M.; Jiang, J. B.; Janzen, W. P.; Chen, I. S.; Lee, K. H. J. Nat. Prod. 1994, 57, 243.

- Kashiwada, Y.; Hashimoto, F.; Cosentino, L. M.; Chen, C. H.; Garrett, P. E.; Lee, K. H. J. Med. Chem. 1996, 39, 1016.
- Hashimoto, F.; Kashiwada, Y.; Cosentino, L. M.; Chen, C. H.; Garrett, P. E.; Lee, K. H. *Bioorg. Med. Chem.* 1997, 5, 2133.
- Kanamoto, T.; Kashiwada, Y.; Kanbara, K.; Gotoh, K.; Yoshimori, M.; Goto, T.; Sano, K.; Nakashima, H. *Antimicrob. Agents Chemother.* 2001, 45, 1225.
- Li, F.; Goila-Gaur, R.; Salzwedel, K.; Kilgore, N. R.; Reddick, M.; Matallana, C.; Castillo, A.; Zoumplis, D.; Martin, D. E.; Orenstein, J. M.; Allaway, G. P.; Freed, E. O.; Wild, C. T. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 13555.
- 6. Panacos Pharmaceuticals Inc., announcement, 2004.
- Sun, I. S.; Wang, H. K.; Kashiwada, Y.; Shen, J. K.; Cosentino, L. M.; Chen, C. H.; Yang, L. M.; Lee, K. H. *J. Med. Chem.* **1988**, *41*, 4648.
- Kashiwada, Y.; Chiyo, J.; Ikeshiro, Y.; Nagao, T.; Okabe, H.; Cosentino, L. M.; Fowke, K.; Lee, K. H. *Bioorg. Med. Chem. Lett.* 2001, 11, 183.
- 9. The HIV-1 (IIIB isolate) growth inhibition assay in the H9 cells was performed according to the procedure described in Refs. 1–3 and 7.
- 10. All new compounds gave satisfactory analytical and spectroscopic data. Selected spectroscopic data for 3-Oglutaryl dihydrobetulin (17): Colorless needles (from MeOH); mp 230–231 °C; [α]_D –6.6 (*c* 0.47, pyridine); ¹H NMR (500 MHz, pyridine- d_5) δ : 0.83, 0.89 (each 3H, d, J = 6.7 Hz, CH₃-29 and 30), 0.81, 0.90, 0.91, 0.97, 1.01 (each 3H, s, CH₃-23, 24, 25, 26, 27), 2.23 (2H, m, glutaryl H₂-3'), 2.59–2.66 (4H, m, glutaryl H₂-2' and 4'), 3.60, 4.06 (each 1H, d, J = 10.5 Hz, H₂-28), 4.74 (1H, dd, J = 4.5, 11.5 Hz, H-3); positive FABHRMS m/z 581.4174 ([M+Na]⁺), C₃₅H₅₈O₅Na requires 581.4182. 3-O-(3',3'dimethylglutaryl)-dihydrobetulin (16): Colorless needles (from MeOH); mp 224–225°C; $[\alpha]_D$ –12.5 (c 0.4, pyridine); ¹H NMR (500 MHz, pyridine- d_5) δ : 0.83, 0.90 (each 3H, d, J = 7.0 Hz, CH₃-29 and 30), 0.81, 0.93, 0.95, 0.97, 1.00 (each 3H, s, CH₃-23, 24, 25, 26, 27), 1.37, 1.38 (each 3H, s, dimethylglutaryl CH₃), 2.75, 2.81 (each 1H, d, J = 14 Hz, dimethylglutaryl H₂-2'), 2.69 (2H, s, dimethylglutaryl H_2 -4'), 3.60, 4.05 (each 1H, d, J = 11 Hz, H₂-28), 4.75 (1H, dd, J = 4.5, 11.5 Hz, H-3); FABHRMS 609.4502 positive m|z $([M+Na]^{+}),$ C₃₇H₆₂O₅Na requires 609.4495. 3-O-(3',3'-dimethylsuccinyl)-dihydrobetulin (15): Colorless needles (from MeOH); mp 273–274°C; [α]_D –15.6 (*c* 0.5, pyridine); ¹H NMR (pyridine- d_5): 0.84, 0.90 (each 3H, d, J = 7.0 Hz, CH₃-29 and 30), 0.79, 0.95, 0.97, 0.97, 0.99 (each 3H, s, CH₃-23, 24, 25, 26, 27), 1.54 (6H, s, dimethylsuccinyl CH₃), 2.88, 2.95 (each 1H, d, J = 15.5 Hz, dimethylsuccinyl H₂-2'), 3.59, 4.04 (each 1H, d, J = 10.5 Hz, H₂-28), 4.76 (1H, dd, J = 4.5, 11.8 Hz, H-3); Positive FABHRMS m/z 595.4326 ([M+Na]⁺), C₃₆H₆₀O₅Na requires 595.4338.