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Cu(I) based catalysts derived from bidentate ligands and studies 
on effect of substituents for N-arylation of benzimidazoles and 
indoles
Sheela Kumari,‡ Anand Ratnam,‡ Kiran Mawai,‡ Virendra Kumar Chaudhary,‡ Aurobinda Mohanty,‡ 
Kaushik Ghosh*‡

A family of Cu(I) complexes [Cu(L1-4)(Cl)(PPh3)] (C1-C4) were synthesized from bidentate ligands L1-L4 (where L1= (E)-2-(2-
benzylidene-1-phenylhydrazinyl)pyridine, L2= (E)-N,N-dimethyl-4-((2-phenyl-2-(pyridin-2-yl)hydrazono)methyl)aniline, L3= 
(E)-2-(2-(4-chlorobenzylidene)-1-phenylhydrazinyl)pyridine and L4= (E)-2-(2-(4-nitrobenzylidene)-1-phenylhydrazinyl 
)pyridine) and characterized. The structure of  complex C1 was authenticated by single-crystal X-ray diffraction. These 
complexes were utilised as catalysts for N-arylation of benzimidazoles and indoles. Effect of the substituents in the ligand 
frame of metal complexes were examined and probable reaction pathway was scrutinized.  

Introduction
Transition metal complexes often act as catalyst in various organic 

transformations such as carbon-carbon, carbon-nitrogen, carbon-

sulphur and carbon-oxygen bond formation. These reactions are 

extremely important for the multi-step synthesis of novel drug 

molecules and are often adopted in different chemical and 

pharmaceutical industries.1-4 It is well known in the literature that at 

the beginning, carbon-nitrogen coupling reactions were carried out 

mainly by the reactions of amines and alkyl or aryl halides in the 

presence of palladium catalysts.5-6 In recent years, 3d transition 

metals received considerable attention over 4d and 5d transition 

metal complexes because 3d transition metals are earth-abundant 

and the complexes derived from these metals are cost-effective.7 

There are various types of C-N coupling reactions and among them 

we are focussed on N-arylation of N-H heterocycles such as 

benzimidazoles and indoles. Here, Scheme 1 represents few 

important drug molecules containing N-arylated products of 

benzimidazoles and indoles. Among the first row 3d transition 

metals, copper catalysts were found to be most operative for N-

arylation reaction.7 In the literature, Cu(I) as well as Cu(II) based 

catalysts were utilised for N-arylation of benzimidazoles and indoles. 

For example, Chauhan’s, Buchwald’s and Collman’s  group utilised 

Cu(II) metal salts for N-arylation studies.8-10 Investigation of 

mechanism suggested the occurrence of oxidative addition during 

catalytic reaction and flipping of oxidation state of the copper metal 

centre.8,11 Keeping this in mind, several research groups utilised 

         

(a) NAB                                                           (b) Lck inhibitor

(c) NeK2 inhibitor                                               (d) Sertindole

Scheme 1. Models of N-arylated drugs.1-4

Cu(I) metal salts with different ligands such as 

transcyclohexanediamine12, 4,7-dimethoxy-1,10-phenanthroline13, 

salicylaldoxime,14 amino acid,15,16 1,2-dimethylethylenediamine17, 

4,7-dichloro-1,10-phenanthroline18, 8-quinolinol19, 

aminoarenethiol20, phosphine oxime oxides21, phosphoramidites22, 

2-aminopyrimidinediols23, phenanthroline24, calcium 
fluorophosphate25, N-(4-thiazolylmethyl)morpholine N-Oxide26 and 

2-(2′-pyridyl)benzimidazole27 to carry out N-arylation activity. To the 

best of our knowledge, there is only one report available where 

copper(I) complex was utilized for N-arylation of benzimidazoles and 

indoles.28
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The design of ligand as well as metal complex are very essential to 

study the catalytic reaction. To carry out N-arylation reaction, 

catalyst should have free site or labile groups at the metal centre so 

that nucleophile can easily attack to the metal centre. In the catalytic 

cycle,  the stabilization of Cu(III) intermediate species formed during 

the reaction is an essential factor. The presence of π-acid ligands like 

PPh3 and electron-donating groups in the ligand frame could impart 

significant effect in the catalytic process.11

Considering these facts, recently we have communicated our results 

on the effect of substituents in Sonogashira coupling reaction.29 In 

this communication, we have synthesized all the four complexes 

[Cu(L1-4)(Cl)(PPh3] (C1-C4) reported. 29 These complexes were 

characterized by different spectroscopic studies. The structure of 

complex C1 was authenticated by single-crystal X-ray study. These 

complexes were utilised as catalysts for N-arylation reactions of 

benzimidazoles and indoles with iodo and bromo arenes. A total of 

13 substrates were examined for the study and the formation of 

isolated products were characterized using 1H and 13C NMR spectral 

techniques. On the basis of literature reports, a reaction pathway of 

C-N coupling reaction will be scrutinized.11

Results and discussion
Synthesis of catalysts

Ligands (L1-4) were synthesized by the reported methods and 

Scheme 2 was followed to synthesize Cu(I) complexes (C1-C4).29 The 

UV-Vis spectral change and IR data indicated the formation of Cu(I) 

complexes (C1-C4).29 

Description of crystal structure

The single crystal of complex C1 was obtained by slow evaporation 

of acetonitrile and dichloromethane solvent. Molecular structure of 

the complex C1 was authenticated using single-crystal X-ray 

technique and the ORTEP view is depicted in Figure 1. The matrix 

parameters and bond distances and bond angles related to complex 

C1 were described in the Table S1 and S2 of supporting file. 

N1
N2

N3
Cu1

Cl1

P1

Figure 1: ORTEP diagram of the complex C1. Hydrogen fragments 
were removed for the soberness.

The metal centre of the complex was found to be coordinated to 

bidentate ligands having –NN donor atoms, one phosphorus atom 

from phosphine group and one chlorine atom. This tetra 

coordination imparted a distorted tetrahedral geometry around the 

metal centre. The Cu1-Cl1 bond distance is 2.2787(19)A° which is 

lower than the values reported by Facchin and co-workers and our 

previous report.29-30 Cu1-P1 bond distance is 2.1889(17)A° which is 

less than the values reported by Kuang et. al31 and Li et. al32 but larger 

than the values reported by Alvarez et. al.30

Catalytic activity : N-arylation reactions

Scheme 3: An outline for N-arylation of heterocyles.

                                                                (a)                                                                                    (b)

Scheme 2:  Schematic drawing of complexes [Cu(L1-4)(Cl)(PPh3)] 
(C1-C4).
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Figure 2 : Effect of (a) catalysts (C1-C4)  and (b) solvents on N-arylation of benzimidazole using iodobenzene to synthesize 1-phenyl-1H-

benzo[d]imidazole.

                                                (c)                                                                                      (d)

Figure 3 : Effect of (a) bases and (b) catalyst loading (C2) on N-arylation of benzimidazole using iodobenzene to synthesize 1-phenyl-1H-

benzo[d]imidazole.

Scheme 3 was followed to carry out N-arylation reactions of 

benzimidazoles and indoles. To find out favourable conditions, 

different control reactions were performed. When only CuCl metal 

salt was employed as a catalyst to study N-arylation reaction of 

benzimidazole and iodobenzene, trace amount (<2%) of product 

was formed. No reaction was observed when only ligand was 

utilised as a catalyst We also employed only CuI metal salt as a 

catalyst for N-arylation of benzimidazole and iodobenzene under 

similar conditions, <5% product was formed. All the four mentioned 

complexes (C1–C4) were employed as a catalyst towards N-arylation 

reactions. The yields obtained for each complex is given in Figure 

2(a). Out of four complexes, C2 complex was found to be most 

efficient and provided 89% yield of the product. Optimisation 

reaction for N-arylation of benzimidazole is shown in Table S3 of 

supporting file. Further, optimisations were also performed using 

indole and iodobenzene and yields were depicted in Table S4 and 

Figure S1 and S2 of supporting file.

The reactions were also carried out in different solvents and the 

yields obtained using different solvents are presented in Figure 2(b). 

Dimethyl sulfoxide solvent gave better yield in comparison to N,N-

dimethylformamide and toulene solvent. Several bases such as 

NaOH, KOH, K2CO3 and KOtBu were utilised to study N-arylation 

Table 1: Reaction of heterocycles with haloarenes using catalyst C2.
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Reaction conditions: Heterocycles (1.0 mmol), Haloarenes (1.0 mmol), C2 (5 mol%), base (1.0 mmol), DMSO. Temperature (110°C) under 

inert atmosphere for 20h. (a) Represents the isolated yields.

S.No Heterocycles Haloarenes Products %Yielda

1. (R1)                                              89

2. (R2)                                              82

3. (R3)                                              86

4. (R4)                                              77

5.
(R5)                                              68

6. (R6)                                              66

7. (R7)
63

8. (R8) 87

9. (R9) 83

10. (R10) 84

11. (R11) 78

12. (R12) 69

13. (R13) 64
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reaction shown in Figure 3(a). Compared to other bases, NaOH base 

was found to be more reactive towards N-arylation reaction and 

provided higher yield of products. Different mol% of catalyst C2 was 

utilised to study N-arylation reaction. As the mol% of catalyst C2 was 

increased, the isolated yield got increased. The isolated yields 

obtained with each mol% are shown in Figure 3(b). After performing 

several optimizations, C2 complex was found most efficient to 

perform N-arylation reaction in presence of NaOH base and dimethyl 

sulfoxide as solvent. We further examined the substrate scope of the 

reactions of various haloarenes with heterocyles in the presence of 

catalyst C2. The isolated yields obtained for each substrate are given 

in Table 1. 1H NMR and 13C NMR plots of desired products are given 

in Figure S3-S28 of supporting file.

Substituted iodobenzene in comparison to bromobenzene 

derivatives reacted efficiently with benzimidazoles and indoles 

resulting N-arylation reaction in better yields. Iodobenzene 

derivatives, on reaction with benzimidazole, formed N-arylated 

product with up to 77-89% yield (Table 1, entry 1, 2, 3 and 4). We 

ended up with 78-87- yield. (Table 1, entry 8, 9, 10 and 11), when 

these derivatives were reacted with indole, Further, the isolated 

yields were found to be in the range of 63-69%. (Table 1, entry 5, 6, 

7, 12 and 13), when bromobenzene derivatives were reacted with 

benzimidazoles and indoles, 

A reaction pathway for N-arylation reaction has been proposed on 

the basis of literature and was depicted in Figure S29.8,11 In the first 

step of the reaction, deprotonation of benzimidazoles/indoles gave 

rise to coordination of heterocycles to copper centre through 

nitrogen. In the second step, the oxidative addition of derivatives of 

aryl halides gave rise to intermediate (C). In the last step, reductive 

elimination gave rise to N-arylated benzimidazoles and indoles and 

the reaction continues. It has been found out that iodobenzene 

derivatives of aryl halides provided higher yields compared to bromo 

derivatives. This is due to less bond energy of CI bond compared to 

CBr bond present in aryl halides. We have found that electron-

donating groups in the bidentate ligands increase the efficiency of 

the reaction, however, efficiency decreased if electron-withdrawing 

groups are present in the ligand frame .

In order to investigate the oxidation state of copper during N-

arylation reaction, we utilised X-ray photoelectron spectroscopy 

(XPS) technique to understand the oxidation state of metal ion during 

catalytic cycle. The 2p core-level lines of C2 complex were fitted with 

two main peaks, where Cu 2p1/2 and 2p3/2 peaks at 952.4 eV and 

932.8 eV were indicated the presence of Cu(I) species (presented in 

Figure S30a of supporting file).33  After treating the complex C2 with 

sodium hydroxide base, heterocycle and haloarenes for 30 min in 

presence of dimethylsulfoxide solvent, the peaks shifted from 952.4 

to 952.1 eV, for Cu 2p1/2 and 932.8 eV to 931.4 eV for Cu 2p3/2. 

These data clearly indicated the formation of Cu(I) species in the 

reaction mixture.34 However, two new peaks originated at 953.8 eV 

and 934.4 eV indicated the formation of Cu(III) species in the reaction 

mixture shown in Figure S30b of supporting file.35 Therefore, we 

proposed that Cu(I) metal centre flips its oxidation state between I 

and III  during N-arylation reaction.  

The best thing about our complexes is that we can utilise different 

kind of substituents in the ligand frame. We compared our results of 

N-arylation reaction with the literature reports. For N-arylation of 

benzimidazoles and indoles, 5 mol% of catalyst loading was required. 

Among reported results, our catalyst loading was low. Tahsini and 

coworkers utilised 10 mol% of N-heterocyclic carbene (NHC)-copper 

(I) catalysts to study N-arylation of benzimidazoles and indoles which 

is less effective compared to our catalyst loading.28 Peng et. al 

reported N-arylation of benzimidazoles using 20 mol% of N-(4-

thiazolylmethyl)morpholine N-Oxide ligand and 10 mol% of CuI metal 

salt and their catalyst amount is high and less effective in comparison 

to our catalyst.26 Buchwald and co-workers carried out N-arylation of 

indoles using 20 mol% of diamine ligand and 5 mol% of CuI metal salt 

in presence of K3PO4 base which was also high compared to our 

catalyst loading.36 However, our results are comparable with the 

data reported by Hayashi and co-workers where they have utilised 5 

mol% of 2-(2′-pyridyl)benzimidazole ligand and 5 mol% of CuI for N-

arylation of indoles.27

Conclusions

The following are the conclusions of the present study:

I. To study a new methodology for N-arylation reaction, four 

mononuclear Cu(I) complexes were synthesized. Molecular structure 

of the complex C1 was determined by single crystal X-ray method. 

II. Above mentioned complexes were utilised as a catalyst for N-

arylation reaction. 5 mol% of complex was employed for the N-

arylation study. The major advantage of our complexes is that we can 

tune different kind of substituents in the ligand frame to tune the 

reactivity of metal complexes. 
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III. For substrate scope, a total of thirteen N-arylated compounds 

were isolated using column chromatography and were characterized 

by 1H NMR and 13C NMR spectral studies.

IV. In terms of catalytic efficiency, order of catalysts were found to 

be C2>C1>C3>C4. The efficiency order of the catalysts to catalyze N-

arylation reaction indicated the role of electron donating group 

present in the ligand frame of catalyst.

Applications of these catalysts in other organic transformation are 

under progress.

Materials and Measurements

All reagents obtained for synthesis and catalysis are of standard 

quality. Solvents were highly purified by the distillation process. N-

arylation catalysis was performed under an inert atmosphere.

Methods and instrumentation

IR spectra were analysed using KBr pellets with Thermo Nikolet 

Nexus FT-IR spectrometer. The UV-Vis spectra were obtained from 

Thermo Scientific UV-Visible spectrophotometer. 1H, 13C and 31P 

NMR spectral data was collected by Jeol, 400 MHz and 500 MHz 

spectrometer. The single-crystal X-ray data for complex C1 was 

collected by Bruker Kappa Apex-II CCD diffractometer. X-ray 

photoelectron spectrophotometer (XPS; ULVAC – PHI, INC, Japan) 

was utilised to determine the oxidation state.

Syntheses of ligands and metal complexes

Ligands (L1-4) were synthesized by the previously reported methods 

and Scheme 2 was followed to synthesize Cu(I) complexes (C1-C4).29

Syntheses of metal complexes: [Cu(L1-4)Cl(PPh3)] complexes were 

prepared using the resulting method given below.

[Cu(L1)(PPh3)Cl] (C1): This complex was prepared in acetonitrile 

solution by using L1 and CuCl in inert atmosphere. Rest of the 

procedure was similar to procedure described in our previous report. 
29 Theoretical. calcd. for C36H30ClCuN3P (634.61): C, 68.13; H, 4.76; N, 

6.62. Found: C, 68.25; H, 4.69; N, 6.51. 

[Cu(L2)(PPh3)Cl] (C2): Same procedure as described in our previous 

report29 was followed to obtain C2. Theoretical. calcd. for 

C38H35ClCuN4P (677.68): C, 67.35; H, 5.21; N, 8.27. Found: C, 67.49; 

H, 5.36; N, 8.39. 

[Cu(L3)(PPh3)Cl] (C3): Same procedure as described in our previous 

report29 was followed to obtain C3. Theoretical. calcd. for 

C36H29Cl2CuN3P (669.06): C, 64.63; H, 4.37; N, 6.28. Found C, 64.74; 

H, 4.48; N, 6.35. 

[Cu(L4)(PPh3)Cl] (C4): Same procedure as described in our previous 

report29 was followed to obtain C4. Theoretical. calcd. for 

C36H29ClCuN4O2P (679.61): C, 63.62; H, 4.30; N, 8.24;. Found: C, 

63.56; H, 4.41; N, 8.20.

Single X-ray crystallography

Crystal of [Cu(L1)(Cl)(PPh3)] (C1) were attained by slow evaporation 

of acetonitrile and dichloromethane solvent. The X-ray data 

collection for complex C1 was performed on a Bruker Kappa Apex-II 

CCD diffractometer by using graphite monochromated Mo-Kα 

radiation (λ = 0.71073 Å) at 293K. Structural outline of complex C1 

was resolved using WinGX software. Crystal structures were solved 

by direct methods. Structure solutions, refinement and data output 

were carried out with the SHELXTL program.37-39 All atoms except 

hydrogen were refined anisotropically. ORTEP view was achieved 

using MERCURY software. 

Catalytic studies

5 mole % of catalyst, NaOH (1.0 mmol), Heterocycles (1 mmol), 

Haloarenes (1 mmol), and 4ml dimethyl sulfoxide were taken in a 

round bottom flask and refluxed with stirring at 110°C for 20h under 

inert surroundings. After it, the solvent was removed and extracted 

with ethyl acetate and water. Ethyl acetate solvent was mixed with 

silica to make slurry and it was passed through column to get pure 

compound. The desired compounds obtained were analysed utilizing 
1H and 13C NMR techniques.

R1. 1-phenyl-1H-benzo[d]imidazole {C13H10N2} (89%, 173mg)
 
1H NMR 

(500 MHz, CDCl3) δ 8.11 (s, 1H), 7.89 – 7.87 (m, 1H), 7.58 – 7.52 (m, 

3H), 7.50 (m, 2H), 7.47 – 7.44 (m, 1H), 7.35 – 7.30 (m, 2H) ppm. 13C 

NMR (126 MHz, CDCl3) δ 143.96, 142.18, 136.27, 133.62, 129.96, 

127.95, 123.96, 123.61, 122.71, 120.51, 110.37 ppm.40

R2. 1-(p-tolyl)-1H-benzo[d]imidazole {C14H12N2} (82%, 171mg). 1H 

NMR (500 MHz, CDCl3) δ 8.09 (s, 1H), 7.89 – 7.86 (m, 1H), 7.52 – 7.50 

(m, 1H), 7.38 (d, J = 6.6 Hz, 4H), 7.34 – 7.30 (m, 2H), 2.46 (s, 3H) ppm.
 
 

13C NMR (126 MHz, CDCl3) δ 143.85, 142.30, 138.04, 133.79, 133.69, 

130.49, 123.91, 123.50, 122.59, 120.43, 110.40, 21.05 ppm.41

R3. 1-(4-methoxyphenyl)-1H-benzo[d]imidazole {C14H12N2O} (86%, 

193mg).
 
1H NMR (400 MHz, CDCl3 ) δ 8.05 (s, 1H), 7.87-7.85 (m, 1H), 

7.47-7.43 (m, 1H), 7.40 (d, J = 8.9 Hz, 2H), 7.35-7.28 (m, 2H), 7.08 – 

7.05 (m, 2H), 3.88 (s, 3H) ppm.
 
13C NMR (100MHz, CDCl3): δ = 159.24, 

143.71, 142.48, 134.14, 129.05, 125.67, 123.45, 122.54, 120.40, 

115.06, 110.31, 55.57 ppm.42 
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R4. 1-(4-nitrophenyl)-1H-benzo[d]imidazole {C13H9N3O2} (77%, 

184mg). 1H NMR (400 MHz, CDCl3): δ 1H NMR (400 MHz, ) δ 8.44 (d, 

J = 8.9 Hz, 2H), 8.18 (s, 1H), 7.88-7.86 (m, 1H), 7.72 (d, J = 8.9 Hz, 2H), 

7.61 – 7.58 (m, 1H), 7.41 – 7.36 (m, 2H) ppm.
 
13C NMR (100 MHz, 

CDCl3): δ = 146.37, 144.28, 141.58, 141.49, 132.66, 125.74, 124.48, 

123.62, 123.51, 121.03, 110.20 ppm.40

R5. 1-(pyridin-2-yl)-1H-benzo[d]imidazole {C12H9N3} (68%, 133mg). 
1H NMR (500 MHz, CDCl3) δ 8.59 (d, J = 4.9 Hz, 1H), 8.58 (s, 1H), 8.05 

(d, J = 7.3 Hz, 1H), 7.87 (t, J = 7.6 Hz, 2H), 7.55 (d, J = 8.2 Hz, 1H), 7.40-

7.33 (m, 2H), 7.28-7.27 (m, 1H) ppm. 13C NMR (126 MHz, CDCl3) δ 

149.77, 149.34, 144.56, 141.22, 138.82, 132.02, 124.10, 123.18, 

121.72, 120.51, 114.19, 112.56.43

R6. 1-(3-nitrophenyl)-1H-benzo[d]imidazole {C13H9N3O2} (66%, 

158mg).
 
1H NMR (500 MHz, CDCl3) δ 8.40 (t, J = 2.1 Hz, 1H), 8.30 (m, 

1H), 8.16 (s, 1H), 7.90 – 7.86 (m, 2H), 7.78 (t, J = 8.1 Hz, 1H), 7.56 – 

7.52 (m, 1H), 7.38 – 7.34 (m, 2H) ppm.
 
13C NMR (126 MHz, CDCl3) δ 

149.16, 144.08, 141.61, 137.42, 132.99, 131.11, 129.32, 124.37, 

123.43, 122.45, 120.95, 118.61, 109.90 ppm.44

R7. 1-(thiophen-2-yl)-1H-benzo[d]imidazole {C11H8N2S} (63%, 

126mg). 1H NMR (400 MHz, CDCl3) 1H NMR (500 MHz, CDCl3) δ 8.08 

(s, 1H), 7.87 – 7.84 (m, 1H), 7.58 – 7.54 (m, 1H), 7.37 – 7.34 (m, 2H), 

7.32 (d, J = 5.5 Hz, 1H), 7.17 (d, J = 3.7 Hz, 1H), 7.13 – 7.10 (m, 1H) 

ppm.
 
13C NMR (126 MHz, CDCl3) δ 143.54, 143.09, 137.08, 134.71, 

126.41, 124.13, 123.42, 123.20, 121.92, 120.58, 110.52 ppm.45

R8. 1-phenyl-1H-indole {C14H11N} (87%, 168mg). 1H NMR (500 MHz, 

CDCl3) δ 7.76 (d, J = 7.7 Hz, 1H), 7.64 (d, J = 8.2 Hz, 1H), 7.57 (d, J = 

4.6 Hz, 4H), 7.43-7.40 (m, 2H), 7.29 (t, J = 7.6 Hz, 1H), 7.24 (t, J = 7.4 

Hz, 1H), 6.75 (d, J = 3.2 Hz, 1H) ppm. 13C NMR (126 MHz, CDCl3) δ 

139.84, 135.87, 129.57, 129.32, 127.91, 126.41, 124.36, 122.32, 

121.10, 120.33, 110.47, 103.55 ppm.46

R9. 1-(p-tolyl)-1H-indole {C15H13N} (83%, 172mg).
 
1H NMR (500 MHz, 

CDCl3) δ 7.71 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 8.2 Hz, 1H), 7.42 (d, J = 

8.3 Hz, 2H), 7.34 (m, 3H), 7.25 – 7.22 (m, 1H), 7.19 (t, J = 7.4 Hz, 1H), 

6.70 (d, J = 3.9 Hz, 1H), 2.47 (s, 3H) ppm.  13C NMR (126 MHz, CDCl3) 

δ 137.31, 136.32, 136.01, 130.12, 129.17, 128.05, 124.34, 122.18, 

121.03, 120.16, 110.49, 103.17, 21.02 ppm.47

R10. 1-(4-methoxyphenyl)-1H-indole {C15H13NO} (84%, 187mg). 1H 

NMR (500 MHz, CDCl3) δ 7.78 (d, J = 7.6 Hz, 1H), 7.56 (d, J = 8.1 Hz, 

1H), 7.48 (d, J = 8.9 Hz, 2H), 7.36 (d, J = 3.2 Hz, 1H), 7.30 (d, J = 8.1 Hz, 

1H), 7.26 (d, J = 7.9 Hz, 1H), 7.10 (d, J = 8.9 Hz, 2H), 6.75 (d, J = 3.8 Hz, 

1H), 3.94 (s, 3H) ppm. 13C NMR (126 MHz, CDCl3) δ 158.20, 136.30, 

132.80, 128.93, 128.22, 125.91, 122.10, 120.97, 120.03, 114.87, 

114.69, 110.32, 102.85, 55.50 ppm.47

R11. 1-(4-nitrophenyl)-1H-indole {C14H10N2O2} (78%, 186mg).
  1H 

NMR (500 MHz, CDCl3) δ 8.41 (d, J = 9.0 Hz, 2H), 7.75 (d, J = 7.8 Hz, 

1H), 7.69 (d, J = 9.0 Hz, 3H), 7.41 (d, J = 3.4 Hz, 1H), 7.34 (t, J = 7.7 Hz, 

1H), 7.28 (t, J = 7.0 Hz, 1H), 6.82 (d, J = 3.4 Hz, 1H) ppm. 13C NMR (126 

MHz, CDCl3) δ 145.15, 144.97, 135.19, 130.06, 127.04, 125.41, 

123.35, 123.21, 121.61, 121.53, 110.41, 106.11 ppm.48

R12. 1-(3-nitrophenyl)-1H-indole {C14H10N2O2} (69%, 164mg). 1H 

NMR (500 MHz, CDCl3) δ 8.42 (t, J = 2.1 Hz, 1H), 8.23 (d, J = 7.0 Hz, 

1H), 7.90 (d, J = 8.0 Hz, 1H), 7.74 (m, 2H), 7.62 (d, J = 7.7 Hz, 1H), 7.41 

(d, J = 3.3 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 7.29-7.25 (m, 1H), 6.80 (d, 

J = 3.3 Hz, 1H) ppm. 13C NMR (126 MHz, CDCl3) δ 149.11, 140.89, 

135.43, 130.53, 129.66, 129.52, 127.15, 123.17, 121.52, 121.19, 

120.75, 118.68, 109.96, 105.34 ppm.49

R13. 1-(naphthalen-2-yl)-1H-indole {C18H13N} (64%, 156mg). 1H NMR 

(500 MHz, CDCl3) δ 7.97 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 7.9 Hz, 1H), 

7.61 – 7.53 (m, 3H), 7.46 (d, J = 8.0 Hz, 1H), 7.44 – 7.39 (m, 1H), 7.37 

(d, J = 3.2 Hz, 1H), 7.21 – 7.16 (m, 1H), 7.16 – 7.11 (m, 1H), 7.05 – 6.99 

(m, 1H), 6.78-6.77 (m, 1H) ppm. 13C NMR (126 MHz, CDCl3) δ 138.03, 

136.09, 134.48, 130.60, 129.78, 128.46, 128.24, 126.93, 126.63, 

125.49, 125.14, 123.41, 122.13, 120.90, 120.10, 110.82, 102.90 

ppm.50
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