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Abstract 
A series of novel pyrazole-4-carboxamides were rationally designed, synthesized, and their structures were characterized 
by 1H NMR, 13C NMR and HRMS. Preliminary bioassay showed that four compounds 8g, 8j, 8o and 8s exhibited more 
than 90% and even completed inhibition against Alternaria solani at 100 μg/mL; and 8d displayed 100% inhibition against 
Fusarium oxysporum at the same concentration. Moreover, 8j exhibited good in vitro fungicidal activity against A. solani 
with  EC50 value of 3.06 μg/mL, and it also displayed completed in vivo protective antifungal activity against A. solani on 
tomato at 10 mg/L, as boscalid did. The molecular docking results indicated that 8j exhibited the high affinity with SDH 
protein by H-bond and π–π stacking interactions, which may explain the reasons for its good activities. These data support 
that compound 8j could be used as a fungicide candidate for further study.

Graphic abstract
A practical method for the synthesis of pyrazole-4-carboxamides were provided and evaluation of their antifungal activities.
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Introduction

Fungicides play an important role in agricultural production 
for controlling plant diseases [1, 2]. Succinate dehydroge-
nase inhibitors as the key class of fungicides can block the 
energy synthesis of the pathogens by targeting succinate 
dehydrogenase (SDH) to inhibit mitochondrial electron 
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transfer between succinate and ubiquinone, which system is 
critical for the oxygen-sensing and has been one of the most 
significant targets for developing fungicides [3–6]. To date, 
over a dozen commercial SDHIs have been launched as fun-
gicides with the characteristics of efficient, broad spectrum 
activities [7].

SDHIs are structurally very diversity but their essential 
common feature consists of three parts: the amide bond, the 
five- or six-membered ring systems attached to carbonyl of 
the amide bond and the amino group on the side of the amide 
bond [8, 9]. Among the SDHIs,  CF2H group-substituted 
pyrazole carboxamides scaffold were the newer represented 
type (Fig. 1) [10], which are the core moiety binding to the 
active site of SDH, and exhibit excellent antifungal activ-
ity. However, the amino substituent group is also impor-
tant for activity, which can be split into two main compo-
nents: the one is the liner such as a phenyl group, and the 
other is the hydrophobic rest that still affects the biological 
spectrum and potency of the molecules [8]. For example, 
pyrazole carboxamides containing diphenylamine scaffold 
and biphenyl ether amine were developed, respectively, and 
exhibited good antifungal activities [11–14]. Thus, making 
the amino group structural diversity based on the important 
 CF2H group-substituted pyrazole moiety may discover novel 
efficient SDHIs.

Therefore, a series of novel SDHIs were rationally 
designed and synthesized based on  CF2H-substituted pyra-
zole carboxamide by employing 2-arylbenzylamines as 

substructures into the target molecules (Fig. 2), and homol-
ogy model and docking simulation were used to study struc-
ture–activity relationship. The target molecules with high 
antifungal activities were found by the bioassay.

Results and discussion

Chemistry

The synthetic procedures of the target compounds 8a–8u are 
described in Fig. 3. Firstly, compound 1 was produced from 
the reaction between the starting materials methyl hydrazine 
and ethyl 4,4-difluoro-3-oxobutanoate, then which reacted 
with  POCl3 in DMF to give compound 2, and compound 2 
was successively oxidized, chlorinated to obtain the acid 
chloride compound 4. The 2-arylbenzylamines 7 were syn-
thesized from corresponding aldehyde compound 5 by the 
Suzuki cross-coupling reaction, condensation and reduc-
tion. Finally, compound 4 reacted with different 2-arylb-
enzylamines to give the target compounds. However, the 
substrate of Ar with substituted Br group could not give the 
corresponding products 6.

Crystal structure analysis

The crystal structure of 8u was obtained by culturing a mix-
ture of ethyl acetate and dichloromethane (Fig. 4). Single 

Fig. 1  CHF2 substituent pyra-
zole carboxamides of SDHIs 
representative type

Fig. 2  Design strategy of the 
title compounds
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crystal diffraction data were collected using graphite mono-
chromatic oxidation of MoKα radiation (λ = 0.71073 Å) in 
the range of 1.821° ≤ θ ≤ 27.879° (h, − 14 to 14; k, − 11 to 
11; l, − 29 to 29) on the Bruker SMART 1000 CCD dif-
fractometer. A total of 5189 independent diffraction data 
(Rint = 0.0375) were used for structural analysis, of which 
4161 observed reflections with I > 2σ(I).The structure was 
processed using the direct method of the SHELXS-97 sys-
tem [15]. The data are improved by the full matrix least 
squares method. All non-hydrogen atom coordinates were 
determined by Doron Fourier synthesis. The atomic coordi-
nates and the anisotropy temperature factors were corrected 

by the full matrix least squares method. The final deviation 
factors were R = 0.0527 and wR = 0.1385 (w = 1/[σ2((Fo

2) + 
(0.0824P)2 + 1.1121P], where P = (Fo

2 + 2Fc
2)/3 with (Δ/σ)

max = 0.998 and S = 1.045.

Antifungal activity

The in vitro antifungal activities of the target compounds 
were evaluated at 100 μg/mL, and the results are listed in 
Table 1 and showed that compound 8d with the olefin at 
the Ar exhibited 100% growth inhibition activity against F. 
oxysporum, which is slightly better than that of the posi-
tive control boscalid. Both compounds 8j and 8s displayed 
100% growth inhibition against A. solani, which were simi-
lar to that of boscalid, and 8j exhibited the higher inhibition 
against F. graminearum and P. sasaki than that of boscalid 
additionally.

In order to obtain the fungicidal potency of the com-
pounds with inhibition activities more than 90% at 100 μg/
mL, in vitro antifungal activity of compound 8d against 
F. oxysporum, and 8g, 8j, 8o and 8s against A. solani at 
50 μg/mL were further determined, respectively (Table 2). 
The results showed that compound 8j remained 93% 
growth inhibition against A. solani, which was a similar to 
that of boscalid, and better than that of fluxapyroxad [16]. 
Subsequently, the median effective concentration  (EC50) 

Reagents and conditions: (i) POCl3, DMF; (ii) KMnO4, HCl, acetone/H2O; (iii) SOCl2, CH3CN, DMF; 

(iv) ArB(OH)2, Pd(OAc)2, tricyclohexylphosphine, potassium phosphate, toluene; (v) 

Cyclopropylamine, HCl, CH3OH; (vi) NaBH4, CH3OH.  

Fig. 3  General synthetic route for the target compounds

Fig. 4  Crystal structure of compound 8u 
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of compound 8j was determined (Table 3), and it exhibited 
good fungicidal activity against A. solani with  EC50 value 
of 3.06 μg/mL, which was a similar to that of boscalid.

According to the results of in vitro antifungal activ-
ity assay, in vivo protective activity against A. solani on 
tomato of compound 8j was also evaluated at 10 μg/mL. It 

provided 100% protection activity as the positive control 
boscalid did (Table 4).

Table 1  In vitro fungicidal 
activity of compounds 8a–8u 

a F. o, Fusarium oxysporum; P. a, Pythium aphanidermatum; S. t, Setosphaeria turcica; A. s, Alternaria 
solani; F. g, Fusarium graminearum; P. s, Pellicularia sasakii; P. p, Physalospora piricola; S. s, Sclerotinia 
sclerotiorum; B. c, Botrytis cinereal

Compd. Antifungal activity (% inhibition) at 100 μg/mL

F. oa P. a S. t A. s F. g P. s P. p S. s B. c

8a 24 ± 1.0 13 ± 0.7 11 ± 1.8 62 ± 4.6 40 ± 1.1 30 ± 0.6 40 ± 1.0 44 ± 0.4 53 ± 1.3
8b 30 ± 1.1 25 ± 0.1 20 ± 0.4 36 ± 0.0 14 ± 0.8 24 ± 0.9 32 ± 1.3 48 ± 1.0 58 ± 0.5
8c 33 ± 0.8 10 ± 0 14 ± 0 31 ± 0 75 ± 1.0 35 ± 0.5 24 ± 0.9 55 ± 0.3 45 ± 0.4
8d 100 ± 1.0 20 ± 0 15 ± 0 51 ± 0.6 15 ± 1.2 37 ± 0.8 0 ± 0 60 ± 1.1 31 ± 0.3
8e 43 ± 1.2 20 ± 0.9 14 ± 0 50 ± 0.3 55 ± 0 28 ± 0.6 0 ± 0 70 ± 0.3 17 ± 0.9
8f 35 ± 0 25 ± 0 0 ± 0 40 ± 0 4 ± 1.1 27 ± 0 51 ± 0 40 ± 0.3 22 ± 1.2
8g 25 ± 0.2 20 ± 2.1 8 ± 1.4 91 ± 0 21 ± 0.2 29 ± 1.0 46 ± 0 44 ± 0.6 50 ± 1.3
8h 31 ± 2.0 21 ± 0.9 24 ± 0.1 60 ± 2.0 22 ± 2.0 32 ± 0.7 35 ± 0 67 ± 0 51 ± 0.5
8i 27 ± 1.0 22 ± 0.1 13 ± 2.2 74 ± 1.0 25 ± 1.0 28 ± 1.5 35 ± 0 11 ± 0.4 43 ± 0.1
8j 63 ± 0 29 ± 2.0 32 ± 0.3 100 ± 0 56 ± 0 49 ± 2.0 48 ± 0 76 ± 0.6 53 ± 1.5
8k 8 ± 2.1 13 ± 0.3 20 ± 0.5 45 ± 0.3 68 ± 0.1 38 ± 0 33 ± 0 15 ± 0.8 59 ± 0.4
8l 0 ± 0 27 ± 0.9 15 ± 0.4 45 ± 0.8 13 ± 0 30 ± 0 33 ± 0 17 ± 0.3 31 ± 0.7
8m 58 ± 1.0 21 ± 0.9 12 ± 0.9 61 ± 0.4 19 ± 0 42 ± 1.2 6 ± 2.3 61 ± 0 28 ± 0.6
8n 27 ± 0 0 ± 0 0 ± 0 57 ± 1.0 22 ± 1.5 12 ± 0 24 ± 0.3 43 ± 0.7 50 ± 0.1
8o 0 ± 0 13 ± 0.7 0 ± 0 90 ± 0.3 17 ± 1.0 29 ± 0.8 55 ± 0 36 ± 1.2 27 ± 1.0
8p 34 ± 0.8 9 ± 0 12 ± 1.2 55 ± 1.1 3 ± 0 30 ± 0 39 ± 0 51 ± 0 52 ± 0
8q 0 ± 0 0 ± 0 0 ± 0 29 ± 0.3 3 ± 0 12 ± 1.2 21 ± 0 42 ± 1.0 48 ± 0
8r 36 ± 0 21 ± 0 21 ± 0.1 42 ± 0 67 ± 2.1 32 ± 0 39 ± 0 50 ± 0.6 57 ± 4.6
8s 43 ± 1.5 12 ± 0.2 4 ± 0.6 100 ± 0 29 ± 0 23 ± 0 41 ± 0 39 ± 1.2 60 ± 0
8t 43 ± 0.7 48 ± 2.0 17 ± 0.2 66 ± 1.2 16 ± 0 38 ± 0 39 ± 0 48 ± 0.7 20 ± 0
8u 9 ± 0.8 0 ± 0 0 ± 0 44 ± 0.7 17 ± 1.0 9 ± 0.8 23 ± 0 40 ± 1.6 46 ± 1.2
Boscalid 83 ± 0.7 32 ± 0.5 33 ± 0.1 100 ± 0 21 ± 0.9 0 ± 0 82 ± 0 100 ± 0 86 ± 0

Table 2  In vitro fungicidal activity of compounds at 50 μg/mL

a nd, not determined
b Fluxapyroxad, the data cited from Ref. [16]

Compd. Antifungal activity (% inhibition)

F. o A. s

8d 55 ± 0.2 nda

8g nda 53 ± 0.5
8j nd 93 ± 0.9
8o nd 59 ± 0.7
8s nd 28 ± 1
Boscalid 84 ± 1.1 94 ± 0.6
Fluxapyroxadb nd 38 ± 1.9

Table 3  EC50 of compound 8j against A. solani 

Fungi Compd. Regression equation R2 EC50 (μg/mL)

A. s 8j y = − 0.384 + 0.791x 0.982 3.06
Boscalid y = − 0.227 + 0.967x 0.916 1.72

Table 4  In vivo protective activity against A. solani on tomato

Fungi Compd. Antifungal activity at 
10 μg/mL (% inhibi-
tion)

A. s 8j 100 ± 0
Boscalid 100 ± 0
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Molecular docking

The compound 8j was docked into the active site of Gallus 
gallus SDH complex to study the structure–activity rela-
tionship, and its binding affinity results showed the second 
highest affinities among the 21 molecules, and its bind-
ing model was also performed by the Pymol software and 
is shown in Fig. 5. The compound 8j was surrounded by 
residues (e.g., Tyr58, Ile40, Trp173, Pro169, Arg43) of the 
SDH protein, and H-bond was predicted between 8j and the 
residue Trp173, which was a similar to that of Carboxin. In 
addition, 2-chloro-phenyl group in Ar of 8j could form a π–π 
stacking interaction with Tyr58, which may contribute to its 
binding potency additionally. These results may explain why 
8j showed good antifungal activities.

Conclusions

In summary, a series of pyrazole-4-carboxamides com-
pounds were designed and synthesized as potential SDH 
inhibitors. All target compounds structures were confirmed 
by 1H NMR, 13C NMR and HRMS. The fungicidal activities 
result showed that 8j exhibited the best fungicidal potency 
against A. solani in vitro with  EC50 value of 3.06 μg/mL and 
displayed 100% protective activity against A. solani in vivo 
at 10 μg/mL. The molecular docking results also explained 
the reasons for its good activities. These results support that 
8j could be a potential fungicidal candidate and deserved 
for further studies.

Experimental

Instrumentation and materials

YASARAY 17.6.21 software was used for molecular dock-
ing. Melting points of all compounds were determined on 
an X-4 melting point apparatus and uncorrected. NMR 

spectrums were obtained in deuteron chloroform  (CDCl3) 
and tetramethyl silane (TMS) as internal standards on a 
Bruker AV-400 spectrometer operating at 400 MHz for 
1H NMR and 101  MHz for 13C NMR. High-resolution 
mass spectra (HRMS) were determined on a 7.0T FTICR-
MS instrument. Crystal structure was recorded by Bruker 
SMART 1000 CCD diffraction meter. All solvents were of 
analytical grade. General procedures for the preparation of 
target compounds 8a–8u.

Synthesis procedure for compound 1

Forty percent methylhydrazine (28.0 mmol) in a solution 
of water was added dropwise to a stirred solution of ethyl 
4,4-difluoro-3-oxobutanoate (24.0 mmol) dissolved in etha-
nol (20 mL). The mixture was adjusted to pH = 5 by con-
centrated hydrochloric acid and then was heated to reflux 
for 4 h. After the reaction was completed, it was cooled to 
room temperature and filtered. The filtrate was collected and 
the solvent was evaporated to give crude product, which was 
used for the next step without further purification.

Synthesis procedure for compound 2

POCl3 (50.0 mmol) was added dropwise to anhydrous N,N-
dimethylformamide (DMF) under 0–5 °C, and the mixture 
was reacted for 30 min at this temperature, and then, a solu-
tion of compound 1 (17.0 mmol) in DMF was added drop-
wise. The mixture was stirred at 90–95 °C for 6 h. After the 
reaction was completed, it was slowly poured into ice water, 
stirred for 30 min until the solid precipitated and then fil-
tered to give yellow solid crude compound, which was used 
for the next step without further purification.

Synthesis procedure for compound 3

Compound 3 can be synthesized according to Ref. [17]. 
Compound 2 (70.0 mmol), acetone (1.53 mL) and  H2O 
(7.71  mL) were mixed, and the mixture was stirred at 

Fig. 5  Binding models of SDH 
with 8j (a) and carboxin (b)
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60 °C for 2 min, and a solution of  KMnO4 (80.0 mol) in 
water (15.42 mL) was slowly added and allowed it to stir at 
80–85 °C for 4.5 h. When completed, it was filtered, and the 
filtrate was adjusted to pH = 2 by concentrated hydrochloric 
acid. The white solid was completely precipitated and fil-
tered to give compound 3, which was used for the next step 
without further purification.

Synthesis procedure for compound 4

Sulfoxide (14.0 mmol) was added to a solution of compound 
3 (1.4 mmol) in acetonitrile under ice bath, and a catalytic 
amount of DMF (0.1 mmol) was also added, and then, it was 
refluxed for 2 h. When completed, the solvent was evapo-
rated to give compound 4, which was used for the next step 
without further purification.

Synthesis procedure for compounds 6a–6u

Compound 5 (4.0  mmol), Ar-boronic acid (6.0  mmol), 
palladium acetate (0.4  mmol), tricyclohexylphosphine 
(0.8 mmol), potassium phosphate (11.8 mmol, 2.5 g) and 
 H2O (5 mL) were added to toluene (20 mL). The reaction 
mixture was stirred at 110 °C overnight under nitrogen. 
When completed, it was poured into water (50 mL) and 
extracted with ethyl acetate (20 mL × 3). The organic layer 
was collected and dried over anhydrous sodium sulfate and 
filtered. The solvent was evaporated to give compounds 
6a–6u, which were used for the next step without further 
purification.

Synthesis procedure for compounds 7a–7u

Cyclopropylamine (0.78 mol) was added to a solution of 
compounds 6 (0.65 mol) in methanol (15 mL) and stirred 
about 1–2 h, and then, sodium borohydride (2.26 mol) was 
solely added. It was allowed to react at room temperature for 
2 h. When completed, the mixture was washed with 30 mL 
of saturated brine and then was extracted with ethyl acetate. 
The solvent was evaporated and compounds 7a–7u were 
obtained. They can be used for the next step without further 
purification.

Synthesis procedure for compounds 8a‑8u

Triethylamine (1.38 mol) was added to a solution of com-
pounds 7 (1.15 mol) in anhydrous dichloromethane (10 mL), 
and then, a solution of compound 4 (1.38 mol) in anhydrous 
dichloromethane was slowly added under 0–5 °C. The reac-
tion was stirred at room temperature for 2 h. When com-
pleted, the reaction mixture was washed with saturated brine 
(30 mL × 3) and dried by anhydrous sodium sulfate. After 
filtration, the solvent was evaporated. The residue was then 

purified column chromatography on silica gel to give com-
pounds 8a–8u in 50–73% yield.

The yields, physical properties and their 1H NMR, 13C 
NMR, HRMS of the target compounds 8a–8u were shown 
as below:

Data for 8a: brown solid; yield 65%; m.p.: 82–83 °C; 
1H NMR  (CDCl3, 400  MHz) δ: 7.51–7.34 (m, 4H), 
7.33–7.24 (m, 3H), 7.19 (d, J = 8.1 Hz, 1H), 6.72 (t, 
J = 54.9 Hz, 1H), 4.71 (s, 2H), 3.89 (s, 3H), 2.65 (s, 1H), 
0.37 (m, 4H);13C NMR  (CDCl3, 101 MHz) δ: 164.37 (s), 
143.09 (t, J = 27.6 Hz), 139.93 (s), 139.65 (s), 136.48 (s), 
133.78 (s), 131.31 (s), 129.24 (s), 128.44 (s), 127.60 (s), 
127.49 (s), 127.14 (s), 112.76 (s), 110.41 (s), 108.05 (s), 
47.66 (s), 36.89 (s), 30.42 (s), 8.41 (s); HRMS calcd for 
 C22H19Cl2F2N3O (M + H)+: 450.0873, found 450.0947.

Data for 8b: yellow solid; yield 68%; m.p.: 114–116 °C; 
1H NMR  (CDCl3, 400 MHz) δ: 7.45 (s, 1H), 7.29–7.15 
(m, 6H), 6.71 (t, J = 54.9 Hz, 1H), 4.70 (s, 2H), 3.88 (s, 
3H), 2.65 (s, 1H), 2.40 (s, 3H), 0.36 (m, 4H); 13C NMR 
 (CDCl3, 101 MHz) δ: 164.37 (s), 143.21 (t, J = 27.6 Hz), 
139.92 (s), 137.35 (s), 136.68 (s), 136.53 (s), 133.56 (s), 
131.36 (s), 129.13 (s), 127.36 (s), 127.07 (s), 115.13 
(s), 112.77 (s), 110.41 (s), 108.06 (s), 47.67 (s), 36.89 
(s), 30.40 (s), 21.21 (s), 8.36 (s); HRMS calcd for 
 C23H21Cl2F2N3O (M + H)+: 464.1030, found: 464.1102.

Data for 8c: yellow oil; yield 59%; 1H NMR  (CDCl3, 
400 MHz) δ: 7.72 (s, 1H), 7.58 (t, J = 8.5 Hz, 2H), 7.48 (s, 
1H), 7.32 (s, 2H), 7.26–7.18 (m, 1H), 6.75 (t, J = 54.2 Hz, 
1H), 4.80 (d, J = 43.6 Hz, 2H), 3.91 (d, J = 7.5 Hz, 3H), 
2.71 (s, 1H), 2.07 (s, 2H), 1.61 (s, 1H), 1.28 (t, J = 6.3 Hz, 
3H), 0.39 (m, 4H); 13C NMR  (CDCl3, 101  MHz) δ: 
164.35 (s), 142.77 (t, J = 27.6 Hz), 139.94 (s), 137.87 (s), 
136.53 (s), 134.86 (s), 133.54 (s), 131.36 (s), 130.59 (s), 
129.17 (s), 127.90 (s), 126.95 (s), 112.76 (s), 110.40 (s), 
108.04 (s), 47.67 (s), 36.86 (s), 30.41 (s), 28.56 (s), 15.51 
(s), 8.38 (s); HRMS calcd for  C24H23Cl2F2N3O (M + H)+: 
478.1186, found: 478.1257.

Data for 8d: yellow oil; yield 63%; 1H NMR  (CDCl3, 
400 MHz) δ: 7.48 (d, J = 7.1 Hz, 3H), 7.24 (dt, J = 17.4, 
16.6 Hz, 4H), 6.75 (dt, J = 66.8, 40.4 Hz, 1H), 5.81 (d, 
J = 17.6 Hz, 1H), 5.31 (d, J = 10.9 Hz, 1H), 4.72 (s, 
2H), 3.88 (s, 3H), 2.66 (s, 1H), 0.37 (m, 4H); 13C NMR 
 (CDCl3, 101 MHz) δ: 164.38 (s), 143.08 (t, J = 27.6 Hz), 
139.55 (s), 139.08 (s), 136.91 (s), 136.55 (s), 136.24 (s), 
133.85 (s), 131.23 (s), 129.48 (s), 127.49 (s), 127.18 (s), 
126.26 (s), 114.49 (s), 112.78 (s), 110.42 (s), 108.06 (s), 
47.68 (s), 36.89 (s), 30.45 (s), 8.43 (s); HRMS calcd for 
 C24H21Cl2F2N3O (M + H)+: 476.1030, found: 476.1101.
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Data for 8e: brown crystal; yield 73%; m.p.: 125–
127 °C; 1H NMR (400 MHz,  CDCl3) δ: 7.46 (s, 1H), 
7.32–7.25 (m, 3H), 7.20 (dd, J = 13.8, 8.0 Hz, 3H), 6.73 
(t, J = 54.9 Hz, 1H), 4.72 (s, 2H), 3.89 (s, 5H), 2.97 (dt, 
J = 13.8, 6.8 Hz, 1H), 2.66 (s, 1H), 1.30 (d, J = 6.9 Hz, 
6H), 0.37 (m, 4H); 13C NMR(CDCl3, 101 MHz) δ: 164.35 
(s), 148.25 (s), 143.08 (t, J = 27.6 Hz), 139.95 (s), 137.01 
(s), 136.56 (s), 133.54 (s), 131.38 (s), 129.16 (s), 127.37 
(s), 127.06 (s), 126.48 (s), 112.76 (s), 110.41 (s), 108.05 
(s), 47.71 (s), 36.87 (s), 33.85 (s), 30.43 (s), 23.99 (s), 
8.40 (s); HRMS calcd for  C25H25Cl2F2N3O (M + H)+: 
492.1343, found: 492.1414.

Data for 8f: yellow solid; yield 74%; m.p.: 106–108 °C; 
1H NMR  (CDCl3, 400 MHz)δ: 7.44 (d, J = 8.1 Hz, 3H), 
7.29–7.13 (m, 4H), 6.71 (t, J = 54.8 Hz, 1H), 4.72 (s, 2H), 
3.88 (s, 3H), 2.66 (s, 1H), 1.36 (s, 9H), 0.36 (m, 4H); 
13C NMR(CDCl3, 101 MHz) δ: 164.36 (s), 143.08 (t, 
J = 27.6 Hz), 139.88 (s), 136.56 (s), 133.53 (s), 131.40 
(s), 128.91 (s), 127.33 (s), 125.33 (s), 112.76 (s), 112.08 
(s), 110.41 (s), 109.73 (s), 108.05 (s), 107.37 (s), 47.73 
(s), 36.89 (s), 34.62 (s), 31.37 (s), 30.45 (s), 8.42 (s); 
HRMS calcd for  C26H27Cl2F2N3O (M + H)+: 506.1499, 
found: 506.1568.

Data for 8g: brown solid; yield 43%; m.p.: 53–54 °C; 
1H NMR  (CDCl3, 400 MHz)δ: 7.49 (s, 1H), 7.38 (d, 
J = 5.4 Hz, 1H), 7.30 (dd, J = 8.1, 1.7 Hz, 1H), 7.27–7.08 
(m, 4H), 6.71 (t, J = 54.7 Hz, 1H), 4.61 (s, 2H), 3.87 
(s, 3H), 2.66 (s, 1H), 0.38 (m, 4H); 13C NMR(CDCl3, 
101 MHz)δ: 164.34 (s), 160.68 (s), 158.24 (s), 143.07 
(t, J = 27.5  Hz), 137.67 (s), 134.54 (s), 133.32 (s), 
131.68 (s), 130.03 (s), 129.95 (s), 127.56 (s), 127.26 (s), 
124.35 (s), 115.65 (s), 112.75 (s), 110.40 (s), 108.04 (s), 
47.57 (s), 36.87 (s), 30.42 (s), 8.40 (s); HRMS calcd for 
 C22H18Cl2F3N3O (M + H)+: 468.0799, found: 468.0854.

Data for 8h: brown oil; yield 58%; 1H NMR  (CDCl3, 
400 MHz) δ: 7.48 (s, 1H), 7.45–7.36 (m, 1H), 7.30 (d, 
J = 8.2 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.09 (dd, J = 8.0, 
6.1 Hz, 2H), 7.02 (d, J = 7.6 Hz, 1H), 6.73 (t, J = 55.2 Hz, 
1H), 4.69 (s, 2H), 3.90 (s, 3H), 2.68 (s, 1H), 0.40 (m, 4H); 
13C NMR  (CDCl3, 101 MHz) δ: 164.36 (s), 163.82 (s), 
161.36 (s), 142.77 (t, J = 77.2 Hz), 138.56 (s), 136.50 
(s), 134.28 (s), 131.13 (s), 130.08 (s), 129.99 (s), 127.61 
(s), 127.27 (s), 125.10 (s), 114.68 (s), 112.77 (s), 110.42 
(s), 108.06 (s), 47.66 (s), 36.89 (s), 30.48 (s), 8.48 (s); 
HRMS calcd for  C22H18Cl2F3N3O (M + H)+: 468.0799, 
found: 468.0851.

Data for 8i: brown solid; yield 63%; m.p.: 100–102 °C; 
1H NMR  (CDCl3, 400 MHz)δ: 7.46 (s, 1H), 7.27 (dd, 
J = 6.9, 5.1 Hz, 3H), 7.14 (dd, J = 16.7, 8.3 Hz, 3H), 6.72 

(t, J = 54.6 Hz, 1H), 4.67 (s, 2H), 3.89 (s, 3H), 2.68 (s, 
1H), 0.39 (m, 4H); 13C NMR(CDCl3, 101 MHz) δ: 164.34 
(s), 163.55 (s), 161.09 (s), 143.07 (t, J = 27.7 Hz), 138.80 
(s), 136.61 (s), 135.58 (s), 133.98 (s), 131.37 (s), 130.90 
(s), 130.82 (s), 127.50 (s), 127.20 (s), 115.53 (s), 115.32 
(s), 112.79 (s), 110.43 (s), 47.70 (s), 36.89 (s), 30.48 (s), 
8.43 (s); HRMS calcd for  C22H18Cl2F3N3O (M + H)+: 
468.0799, found: 468.0853.

Data for 8j: brown oil; yield 66%; 1H NMR  (CDCl3, 
400 MHz) δ: 7.48 (s, 2H), 7.39–7.28 (m, 3H), 7.27 (s, 
1H), 7.13 (d, J = 7.5 Hz, 1H), 6.72 (t, J = 54.4 Hz, 1H), 
4.53 (s, 2H), 3.90 (s, 3H), 2.73 (s, 1H), 0.62 (s, 1H), 0.42 
(m, 4H); 13C NMR  (CDCl3, 101 MHz) δ: 164.42 (s), 
142.96 (t, J = 27.8 Hz), 138.17 (s), 137.33 (s), 136.81 
(s), 134.45 (s), 133.87 (s), 133.45 (s), 131.37 (s), 131.21 
(s), 129.67 (s), 129.43 (s), 127.20 (s), 127.13 (s), 112.76 
(s), 110.41 (s), 108.05 (s), 47.69 (s), 36.90 (s), 30.51 (s), 
8.65 (s); HRMS calcd for  C22H18Cl3F2N3O (M + H)+: 
484.0484, found: 484.0559.

Data for 8k: brown oil; yield 77%; 1H NMR  (CDCl3, 
400 MHz) δ: 7.48 (s, 1H), 7.37 (d, J = 4.1 Hz, 2H), 7.32–
7.27 (m, 2H), 7.17 (t, J = 9.0 Hz, 2H), 6.72 (t, J = 54.8 Hz, 
1H), 4.68 (s, 2H), 3.89 (s, 3H), 2.67 (s, 1H), 0.40 (m, 
4H); 13C NMR  (CDCl3, 101 MHz) δ: 164.35 (s), 143.11 
(t, J = 27.7 Hz), 141.43 (s), 138.40 (s), 136.51 (s), 134.34 
(s), 131.16 (s), 129.74 (s), 129.27 (s), 127.79 (s), 127.68 
(s), 127.49 (s), 127.30 (s), 114.98 (s), 112.77 (s), 110.41 
(s), 108.06 (s), 47.69 (s), 36.91 (s), 30.47 (s), 8.52 (s); 
HRMS calcd for  C22H18Cl3F2N3O (M + H)+: 484.0484, 
found: 484.0556.

Data for 8l: brown solid; yield 67%; m.p.: 113–114 °C; 
1H NMR  (CDCl3, 400  MHz) δ: 7.51–7.37 (m, 3H), 
7.29 (dd, J = 8.2, 1.9 Hz, 2H), 7.25–7.20 (m, 1H), 7.15 
(d, J = 8.1 Hz, 1H), 6.72 (t, J = 54.6 Hz, 1H), 4.67 (s, 
2H), 3.89 (s, 3H), 2.68 (s, 1H), 0.40 (m, 4H); 13C NMR 
 (CDCl3, 101 MHz) δ: 164.34 (s), 143.04 (t, J = 27.7 Hz), 
138.55 (s), 138.04 (s), 136.51 (s), 134.16 (s), 133.75 (s), 
131.19 (s), 130.55 (s), 128.66 (s), 127.51 (s), 127.25 (s), 
126.31 (s), 114.95 (s), 112.77 (s), 110.41 (s), 108.06 (s), 
47.70 (s), 36.89 (s), 30.49 (s), 8.45 (s); HRMS calcd for 
 C22H18Cl3F2N3O (M + H)+: 484.0484, found: 484.0555.

Data for 8m: yellow oil; yield 55%; 1H NMR  (CDCl3, 
400 MHz) δ: 7.49 (d, J = 22.4 Hz, 2H), 7.32 (t, J = 7.9 Hz, 
2H), 7.21 (d, J = 7.9 Hz, 1H), 7.09 (d, J = 8.0 Hz, 1H), 
6.72 (t, J = 54.7 Hz, 1H), 4.51 (s, 2H), 3.90 (s, 3H), 2.75 
(s, 1H), 0.44 (m, 4H); 13C NMR  (CDCl3, 101 MHz) δ: 
164.36 (s), 143.06 (t, J = 27.7 Hz), 137.45 (s), 136.74 
(s), 135.60 (s), 134.81 (s), 134.65 (s), 134.29 (s), 133.84 
(s), 132.11 (s), 131.14 (s), 129.50 (s), 128.90 (s), 127.29 
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(s), 112.79 (s), 110.43 (s), 108.08 (s), 47.74 (s), 36.89 
(s), 30.59 (s), 8.59 (s); HRMS calcd for  C22H17Cl4F2N3O 
(M + H)+: 518.0094, found: 518.0163.

Data for 8n: yellow oil; yield 71%; 1H NMR  (CDCl3, 
400 MHz) δ: 7.88 (s, 1H), 7.82 (d, J = 7.5 Hz, 1H), 7.71 
(d, J = 11.3 Hz, 1H), 7.68 (s, 1H), 7.66 (s, 1H), 7.62 (s, 
1H), 7.36 (d, J = 7.9 Hz, 1H), 6.71 (t, J = 54.6 Hz, 1H), 
4.78 (s, 2H), 3.88 (s, 3H), 2.72 (s, 1H), 0.41 (m, 4H); 
13C NMR  (CDCl3, 101 MHz) δ: 164.51 (s), 143.07 (t, 
J = 27.8 Hz), 141.17 (s), 139.63 (s), 135.47 (s), 132.73 
(s), 131.21 (q, J = 25.1 Hz), 130.76 (s), 130.53 (s), 129.32 
(s), 128.99 (s), 126.29 (s), 125.95 (s), 124.35 (s), 123.94 
(s), 122.83 (s), 112.90 (s), 110.55 (s), 47.97 (s), 36.87 
(s), 30.66 (s), 8.43 (s); HRMS calcd for  C23H18Cl2F5N3O 
(M + H)+: 518.0747, found: 518.0828.

Data for 8o: brown solid; yield 95%; m.p.: 129–131 °C; 
1H NMR  (CDCl3, 400 MHz) δ: 7.46 (s, 1H), 7.42–7.35 
(m, 1H), 7.28 (dd, J = 8.2, 1.9 Hz, 1H), 7.14 (d, J = 7.8 Hz, 
2H), 7.03 (t, J = 7.3 Hz, 1H), 6.97 (d, J = 7.7 Hz, 1H), 
6.72 (t, J = 54.7 Hz, 1H), 4.88 (s, 1H), 4.23 (s, 1H), 3.89 
(s, 3H), 3.79 (s, 3H), 2.63 (s, 1H), 0.36 (d, J = 23.6 Hz, 
4H); 13C NMR  (CDCl3, 101 MHz) δ: 164.39 (s), 156.51 
(s), 143.21 (t, J = 27.5 Hz), 137.86 (s), 136.32 (s), 133.69 
(s), 131.57 (s), 131.07 (s), 129.50 (s), 128.39 (s), 127.06 
(s), 120.74 (s), 112.76 (s), 110.64 (s), 110.41 (s), 108.05 
(s), 99.99 (s), 55.41 (s), 47.46 (s), 36.88 (s), 30.31 (s), 
8.68 (s); HRMS calcd for  C23H21Cl2F2N3O2 (M + H)+: 
480.0979, found: 480.1050.

Data for 8p: brown solid; yield 60%; m.p.: 94–95 °C; 
1H NMR  (CDCl3, 400 MHz)δ: 7.46 (s, 1H), 7.35 (t, 
J = 7.8 Hz, 1H), 7.31–7.27 (m, 1H), 7.19 (d, J = 8.2 Hz, 
1H), 6.96–6.86 (m, 2H), 6.86–6.57 (m, 2H), 4.71 (s, 2H), 
3.90 (s, 2H), 3.84 (s, 3H), 2.67 (s, 1H), 0.39 (m, 4H); 13C 
NMR(CDCl3, 101 MHz) δ: 164.45 (s), 159.50 (s), 143.21 
(t, J = 27.5 Hz), 141.02 (s), 139.75 (s), 136.48 (s), 133.83 
(s), 131.16 (s), 129.48 (s), 127.40 (s), 127.09 (s), 126.37 
(s), 121.65 (s), 115.04 (s), 112.93 (s), 110.41 (s), 108.05 
(s), 55.32 (s), 47.71 (s), 36.89 (s), 30.48 (s), 8.42 (s); 
HRMS calcd for  C23H21Cl2F2N3O2 (M + H)+: 480.0979, 
found: 480.1051.

Data for 8q: brown solid; yield 68%; m.p.: 127–128 °C; 
1H NMR  (CDCl3, 400 MHz) δ: 7.45 (s, 1H), 7.28 (d, 
J = 2.1 Hz, 1H), 7.20 (dd, J = 19.9, 8.0 Hz, 3H), 6.97 (d, 
J = 8.3 Hz, 2H), 6.72 (t, J = 55.0 Hz, 1H), 4.71 (s, 2H), 
3.89 (s, 3H), 3.86 (s, 3H), 2.66 (s, 1H), 0.37 (m, 4H); 
13C NMR  (CDCl3, 101 MHz) δ: 164.35 (s), 159.11 (s), 
143.07 (t, J = 27.8 Hz), 139.60 (s), 136.61 (s), 133.46 (s), 
131.92 (s), 131.45 (s), 130.36 (s), 127.38 (s), 127.07 (s), 
113.85 (s), 112.77 (s), 110.41 (s), 108.06 (s), 55.35 (s), 

47.66 (s), 36.88 (s), 30.41 (s), 8.38 (s); HRMS calcd for 
 C23H21Cl2F2N3O2 (M + H)+: 480.0979, found: 480.1046.

Data for 8r: brown solid; yield 71%; m.p.: 69–70 °C; 
1H NMR  (CDCl3, 400 MHz) δ: 7.55 (d, J = 10.1 Hz, 
2H), 7.40 (s, 1H), 7.28 (dd, J = 8.5, 2.0 Hz, 1H), 6.75 (t, 
J = 54.4 Hz, 1H), 6.51 (s, 2H), 4.96 (s, 2H), 3.91 (s, 3H), 
2.77 (s, 1H), 0.53 (m, 4H); 13C NMR(CDCl3, 101 MHz) 
δ: 164.54 (s), 142.60 (t, J = 27.8 Hz), 138.77 (s), 135.60 
(s), 134.04 (s), 129.45 (s), 128.08 (s), 127.67 (s), 127.39 
(s), 126.45 (s), 114.91 (s), 112.76 (s), 111.57 (s), 110.40 
(s), 109.36 (s), 48.69 (s), 36.89 (s), 30.79 (s), 8.51 (s); 
HRMS calcd for  C20H17Cl2F2N3O2 (M + H)+: 440.0666, 
found: 440.0738.

Data for 8s: yellow oil; yield 73%; 1H NMR  (CDCl3, 
400 MHz) δ: 7.46 (s, 1H), 7.39 (d, J = 4.3 Hz, 1H), 7.33 
(d, J = 8.1 Hz, 1H), 7.28 (d, J = 1.9 Hz, 1H), 7.15–7.09 
(m, 1H), 7.03 (s, 1H), 6.74 (t, J = 55.0 Hz, 1H), 4.86 (s, 
2H), 3.90 (s, 3H), 2.71 (s, 1H), 0.44 (m, 4H); 13C NMR 
 (CDCl3, 101 MHz) δ: 165.12 (s), 146.34 (t, J = 27.8 Hz), 
140.20 (s), 137.84 (s), 134.42 (s), 132.51 (s), 132.07 (s), 
131.42 (s), 127.94 (s), 127.51 (s), 127.35 (s), 126.03 (s), 
112.49 (s), 110.14 (s), 107.79 (s), 48.65 (s), 36.91 (s), 
31.14 (s), 10.11 (s); HRMS calcd for  C20H17Cl2F2N3OS 
(M + H)+: 456.0437, found: 456.0509.

Data for 8t: brown oil; yield 68%; 1H NMR  (CDCl3, 
400 MHz) δ: 7.91 (dd, J = 7.8, 4.6 Hz, 2H), 7.62–7.36 
(m, 7H), 7.25 (t, J = 6.3 Hz, 1H), 6.71 (t, J = 54.8 Hz, 
1H), 4.44 (d, J = 34.6 Hz, 2H), 3.87 (s, 3H), 2.65 (s, 1H), 
0.28 (m, 4H); 13C NMR  (CDCl3, 101 MHz) δ: 164.39 
(s), 143.06 (t, J = 27.5 Hz), 137.97 (s), 137.76 (s), 137.10 
(s), 134.17 (s), 133.55 (s), 131.96 (s), 128.44 (s), 128.33 
(s), 127.14 (s), 126.58 (s), 125.62 (s), 125.33 (s), 112.78 
(s), 110.42 (s), 108.06 (s), 47.85 (s), 36.88 (s), 30.42 (s), 
8.40 (s); HRMS calcd for  C26H21Cl2F2N3O (M + H)+: 
500.1030, found: 500.1099.

Data for 8u: yellow crystal; yield 70%; m.p.: 157–158 °C; 
1H NMR  (CDCl3, 400 MHz) δ: 7.71 (d, J = 8.0 Hz, 1H), 
7.63 (d, J = 7.5 Hz, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.48 (s, 
1H), 7.34 (dd, J = 13.7, 5.1 Hz, 2H), 7.28 (d, J = 7.7 Hz, 
1H), 6.96–6.58 (m, 2H), 5.07 (s, 2H), 3.90 (s, 3H), 2.79 
(d, J = 4.3 Hz, 1H), 0.51 (d, J = 12.5 Hz, 4H); 13C NMR 
 (CDCl3, 101 MHz) δ: 164.49 (s), 154.77 (s), 153.94 (s), 
143.19 (t, J = 27.5 Hz), 136.88 (s), 135.23 (s), 130.37 
(s), 128.71 (s), 127.79 (s), 127.53 (s), 124.81 (s), 123.20 
(s), 121.18 (s), 115.02 (s), 112.85 (s), 111.28 (s), 110.50 
(s), 108.14 (s), 106.06 (s), 48.76 (s), 36.91 (s), 30.84 (s), 
8.54 (s); HRMS calcd for  C24H19Cl2F2N3O2 (M + H)+: 
490.0822, found: 490.0893.
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Determination of antifungal activity

In vitro antifungal activity

In vitro antifungal activities against Fusarium oxysporum, 
Pythium aphanidermatum, Setosphaeria turcica, Alter-
naria solani, Fusarium graminearum, Pellicularia sasakii, 
Physalospora piricola, Sclerotinia sclerotiorum and Botrytis 
cinereal of all compounds were determined according to 
an established method [18]. The inhibition activities of any 
target compounds showed that more than 90% at 100 μg/
mL were further evaluated at 50 μg/mL, and the median 
effective concentration  (EC50) of 8j was determined by a 
reported method [19].

In vivo fungicidal activity

The in vivo fungicidal activity of 8j against A. solani on 
tomato leaves was evaluated according to the following 
procedures [20]. The target compound solution (10 μg/
mL) was sprayed onto the tomato plants. The control plants 
were sprayed with water. After 24 h, the tomato plants were 
infected with spore suspension of the A. solani (concentra-
tion: 1 × 105 spore/mL) and then cultured in the greenhouse. 
The disease percentage of diseased control plants was com-
pared with the healthy control plants by considering the dis-
ease control is set as 100 and no disease as 0. Boscalid was 
used as a positive control.

Molecular docking

The molecular structure 8j was drawn by ChemDraw Ultra 
14.0 and then saved as mol2 file. The crystal structure of 
SDH of Gallus gallus (PDB: 2FBW) was obtained from the 
PDB database (https ://www.rcsb.org/struc ture/2fbw) [21], 
which was applied as the target for molecular docking by 
YASARA software. The docking models were analyzed by 
the AutoDock Vina program. Pymol software was used to 
show the docking models.
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