Synthesis and Structural Characterization of the Tetraruthenium Cluster Complexes $[Ru_4(\mu-H)_4(CO)_{10}(L-L)]$ (L-L = diphosphine)*

Dario Braga,^a Ugo Matteoli,^b Piera Sabatino^a and Alberto Scrivanti^b

^a Dipartimento di Chimica G. Ciamician, Universitá di Bologna, via F. Selmi 2, 40126 Bologna, Italy ^b Dipartimento di Chimica, Universitá di Venezia, Calle Larga S. Marta 2137, 30123 Venezia, Italy

The clusters $[Ru_4(\mu-H)_4(CO)_{10}\{(S)-(-)-binap\}]$ 1 and $[Ru_4(\mu-H)_4(CO)_{10}\{(S)-(-)-mobiph\}]$ 2 containing the atropoisomeric diphosphine ligands (S)-(-)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (binap) and <math>(S)-(-)-2,2'-bis(diphenylphosphino)-6,6'-dimethoxy-1,1'-biphenyl (mobiph) have $been synthesized via direct reaction of <math>[Ru_4H_4(CO)_{12}]$ in toluene at 150°C with a two-fold excess of the diphosphine under hydrogen pressure. Their molecular and crystal structures have been determined by single-crystal X-ray diffraction: both crystallize in the orthorhombic system, space group $P2_12_12_1, Z = 4; a = 13.009(7), b = 14.357(2), c = 29.109(7)$ Å for 1; a = 12.108(8), b = 15.845(3), c = 28.241(5) Å for 2. In both complexes the diphosphine ligand chelates the Ru atom involved in three hydride bridges.

Excellent results have been obtained in a variety of asymmetric hydrogenations using homogeneous catalysts based on mononuclear ruthenium complexes co-ordinated by atropoisometric diphosphine ligands such as (S)-(-)-binap [(S)-(-)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl]¹ or (S)-(-)-mobiph [(S)-(-)-2,2'-bis(diphenylphosphino)-6,6'-dimethoxy-1,1'-biphenyl].² To the best of our knowledge, no corresponding polynuclear ruthenium species have been tested, even though clusters such as $[Ru_4H_4(CO)_8\{(-)-(diop)\}_2]$ $\{(-)$ -diop = (-)-(4R,5R)-4,5-bis[(diphenylphosphino)methyl]-2,2-dimethyl-1,3-dioxolane} gave good results in asymmetric reactions such as hydrogenations, isomerizations and hydroformyl-ations.³ Therefore, we though it interesting to study the reactivity of $[Ru_4H_4(CO)_{12}]$ in the presence of (S)-(-)-binap or (S)-(-)-mobiph in an attempt to synthesize some new hydrido-ruthenium clusters to be used in asymmetric catalysis.

In this paper we report the synthesis and characterization of two new hydrido clusters $[Ru_4H_4(CO)_{10}(L-L)]$ where L-L is (S)-(-)-binap or (S)-(-)-mobiph. The structures of the two complexes in the solid state have been determined by single-crystal X-ray diffraction.

Results and Discussion

Synthesis and Spectroscopic Characterization.—It is known that stepwise substitution of CO groups in $[Ru_4H_4(CO)_{12}]$ by monodentate tertiary phosphines L gives the corresponding $[Ru_4H_4(CO)_{12-n}L_n]$ clusters,⁴ the major product of the reaction being determined by the phosphorus to ruthenium molar ratio. The reaction of $[Ru_4H_4(CO)_{12}]$ with bidentate diphosphine ligands can afford di- or tetra-substitution of the CO ligands. An example of a disubstituted cluster is $[Ru_4H_4(CO)_{10}(dppe)]$ [dppe = 1,2-bis(diphenylphosphino)ethane]⁵ which exists in two isomeric forms, one with the diphosphine chelating only one ruthenium atom, the other with it bridging one of the Ru-Ru edges. A systematic study of the influence of the aliphatic chain length on the bridge–chelate isomerization process as well as a full structural characterization has also been reported in the cases of the derivatives $[Ru_4H_4(CO)_{10}{Ph_2P(CH_2)_nPPh_2}]$

(n = 1 or 3-5) and $[Ru_4H_4(CO)_{10}{Ph_2PCH_2CH(Me)PPh_2}].^6$ The asymmetric diphosphine (-)-diop gives tetrasubstituted species of formula $[Ru_4H_4(CO)_8{(-)-diop}_2]^7$ with the two diphosphines spanning two different Ru-Ru edges.⁸

In our case, with both diphosphines the reaction does not proceed beyond disubstitution even in the presence of an excess of the diphosphine and under forcing conditions. Thus, $[Ru_4-H_4(CO)_{12}]$ reacts in toluene at 150 °C with a two-fold excess of (S)-(-)-binap or (S)-(-)-mobiph under hydrogen pressure to give as the main product a red compound which can be formulated as $[Ru_4H_4(CO)_{10}(L-L)]$ -solv [L-L = (S)-(-)binap, solv = CH_2Cl_2 1; L-L = (S)-(-)-mobiph, solv = heptane 2]. The formation of these clusters is always accompanied by the presence of small amounts of another polynuclear species not having hydrido ligands (as inferred by IR and ¹H NMR spectroscopy) the characterization of which is still in progress.

Both compounds 1 and 2 exhibit seven major absorptions in the CO region of the IR spectrum in hexane solution (1, 2070vs, 2040vs, 2020vs, 2000vs, 1990s, 1980s, 1970s; 2, 2075vs, 2040vs, 2018s, 2000s, 1982s, 1970s, 1958vs cm⁻¹) indicating that these species have low molecular symmetry and are structurally correlated.

More direct evidence on the nature of compounds 1 and 2 can be obtained from NMR spectroscopy. At room temperature the ¹H NMR spectra show the presence of broad resonances in the hydrido region. Hydrido clusters of the type $[Ru_4H_4$ (CO)_{12-n}L_n] are dynamic on the NMR time-scale owing to fluxional motions involving the hydride ligands.^{5,6} In our case such exchange processes are relatively slow since static spectra are obtained at ≈ 253 K for 1 and at ≈ 273 K for 2, respectively.

^{*} Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

Published on 01 January 1995. Downloaded by University of California - Santa Cruz on 30/10/2014 21:21:28.

The low-temperature patterns observed for the hydrides confirm that the two species have essentially the same structure {1, $\delta - 16.56$ (s), -17.05 (t) [J(P-H) = 13], -16.68 (dd) [J(H-P) = 18.1 and 32.8], -17.60 (dd) [J(H-P) = 20.9 and 30.1]; **2**, $\delta - 16.53$ (s), -17.21 (t) [J(P-H) = 14], -16.70 (dd) [J(H-P) = 19 and 34] and -17.60 (dd) [J(H-P) = 20 and 31 Hz]. Moreover, the ³¹P NMR spectra consist of AB spin systems [1, $\delta_A = 38.99$, $\delta_B = 28.72$, J(P-P) = 26.7; 2, $\delta_A = 40.47$, $\delta_B = 31.58$, J(P-P) = 27.1 Hz] therefore suggesting a structure such as that depicted in I, in which the diphosphine ligand chelates the apical ruthenium atom of the tetrahedral cluster with the hydrides spanning the ruthenium-ruthenium edges. Indeed both the ¹H and the ³¹P NMR spectra closely resemble those of $[Ru_4H_4(CO)_{10}(dppe)]$.⁵ As in this latter case, there is a strict agreement between the lowest-temperature ¹H NMR spectra of 1 and 2 and the H(hydride) distribution inferred on the basis of the diffraction study (see below). Therefore, the structures frozen out in the solid state coincide with the ground-state distribution of the H(hydride) ligands in solution. It should be mentioned that the alternative way of distributing the H(hydrides), namely that of idealized D_{2d} symmetry, has been observed only in the precursor [Ru₄- $H_4(CO)_{12}$] and in the phosphine derivative $[Ru_4H_4(CO)_{10}-(PPh_3)_2]^9$ where the H atoms span two edges of each triangular face.

The Solid-state Molecular Structures of Compounds 1 and 2.— The structures of both compounds 1 and 2 were established by

Table 1 Bond distances (Å) and angles (°) for compounds 1 and 2

	1		2
Ru(1)-Ru(2)	2.997(2)		3.008(1)
Ru(1)- $Ru(3)$	3.027(2)		3.045(1)
Ru(1)-Ru(4)	3.007(2)		2.987(1)
Ru(2)-Ru(3)	2.766(2)		2.770(1)
Ru(2)-Ru(4)	2.773(2)		2.769(1)
Ru(3)-Ru(4)	2.920(2)		2.947(1)
Ru(1)-P(1)	2.331(3)		2.331(3)
Ru(1) - P(2)	2.360(4)		2.359(3)
P(1)-C(23)	1.85(1)		1.86(1)
P(2)-C(34)	1.85(1)	P(2)-C(31)	1.84(1)
C(23)-C(32)	1.40(2)	C(23)–C(28)	1.37(2)
C(32)–C(33)	1.49(2)	C(28)-C(30)	1.52(2)
C(33)-C(34)	1.38(2)	C(30)-C(31)	1.41(2)
		C(27)–O(12)	1.35(2)
		O(12)–C(29)	1.41(2)
		C(35)-O(11)	1.37(2)
		O(11)-C(36)	1.40(2)
Ru–C (CO) mean	1.89 ₂		1.90 ₃
C–O (CO) mean	1.131		1.132
P(1)-Ru(1)-P(2)	93.8(1)		93.5(1)
Ru(1)-P(1)-C(23)	108.2(4)		111.5(3)
C(23)-C(32)-C(33)	124(1)	C(23)-C(28)-C(30)	125(1)
C(32)-C(33)-C(34)	126(1)	C(28)-C(30)-C(31)	125(1)
C(33)-C(34)-P(2)	121(1)	C(30)-C(31)-P(2)	122(1)
C(34)-P(2)-Ru(1)	118.2(4)	C(31)-P(2)-Ru(1)	116.5(4)
		C(27)-O(12)-C(29)	118(1)
		C(35)-O(11)-C(36)	119(1)

J. CHEM. SOC. DALTON TRANS. 1995

X-ray crystallographic studies and are shown in Figs. 1 and 2, respectively, together with their atomic labelling. Relevant structural parameters are reported in Table 1. While previous crystal structures of metal complexes containing the binap ligand are known,¹⁰ this is the first structural report on a (S)-(-)-mobiph metal cluster. Both species contain a distorted-tetrahedral core of Ru atoms where the 'basal' atoms preserve the tricarbonyl units of the parent $[Ru_4H_4(CO)_{12}]^9$ and the 'apical' atom, Ru(1), is bound to only one CO group and carries a diphosphine ligand bound in a chelating mode. The electronic

Fig. 1 Solid-state molecular structure of compound 1 showing the atom labelling scheme

Fig. 2 Solid-state molecular structure of compound 2 showing the atom labelling scheme

requirements of both clusters are completed by four bridging hydride atoms, the majority of which could not be located directly (see Experimental section). The Ru-Ru bond lengths, however, provide good indications of their locations: in both complexes four 'long' [Ru(1)-Ru(2) 2.997(2), 3.008(1) Å; Ru(1)-Ru(3) 3.027(2), 3.045(1) Å; Ru(1)-Ru(4) 3.007(2), 2.987(1) Å; Ru(3)-Ru(4) 2.920(2), 2.947(1) Å in 1 and 2 respectively] and two 'short' distances [Ru(2)-Ru(3) 2.766(2), 2.770(1); Ru(2)-Ru(4) 2.773(2), 2.769(1) Å in 1 and 2 respectively] are present, though not significantly different

between the two species. The distribution of the H(hydride) atoms conforms to the idealized C_s symmetry of the tetrahedral core, bridging four edges, three of which belong to the same triangular face. The same distribution has been observed for all diphosphine derivatives of $[Ru_4H_4(CO)_{12}]$ thus far reported.^{5,6} In both 1 and 2 the Ru atom carrying the chelating ligand belongs to the H-bridged triangular face and is involved in three bridges. The H(hydride) distribution in both species leads to the formation of the same diastereomer.

Both the diphosphine ligands have known S chirality, which

Table 2	Crystal data and details of measurements for compounds 1 and	12*
I avic 4	Ci ystar data and detans of measurements for compounds i and	

	1	2
Formula	$C_{54}H_{36}O_{10}P_2Ru_4$ ·CH ₂ Cl ₂	$C_{48}H_{36}O_{12}P_2Ru_4 \cdot C_7H_{16}$
М	1396.0	1371.2
Crystal size/mm	$0.25 \times 0.17 \times 0.32$	$0.12 \times 0.2 \times 0.28$
a/Å	13.009(7)	12.108(8)
b/Å	14.357(2)	15.845(3)
c/Å	29.109(7)	28.241(5)
$U/Å^3$	5436(2)	5418(2)
F(000)	2736	2728
$\mu(Mo-K\alpha)/cm^{-1}$	13.0	12.1
θ range (°)	2.5–27	2.5–25
Measured reflections	6602	5311
Unique observed reflections $[I_0 > 2\sigma(I_0)]$	4062	4351
No. of refined parameters	437	453
Goodness of fit on F^2	1.07	1.27
$R \text{ on } F, wR_2 \text{ on } F^2$	0.0518, 0.178	0.0386, 0.149
(all data)	(0.0985, 0.199)	(0.0651, 0.183)

* Details in common: 293 K; orthorhombic, space group $P2_12_12_1$; Z = 4; ω scan width 0.9° ; $R(F) = \Sigma ||F_o| - |F_c||/\Sigma(F_o)$, $wR_2 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma w(F_o^2)^2]^{\frac{1}{2}}$.

Table 3 Atomic coordinates (×10⁴) for compound 1

Atom	x	у	Z	Atom	x	У	Ζ
Ru(1)	3 316(1)	3 982(1)	1 247(1)	C(22)	3 595(11)	3 384(9)	-13(5)
Ru(2)	1 923(1)	2 411(1)	978(1)	C(23)	4 950(10)	5 129(9)	534(4)
Ru(3)	1.024(1)	3 907(1)	1 422(1)	C(24)	5 523(11)	4 623(10)	214(5)
Ru(4)	2375(1)	2 609(1)	1 904(1)	C(25)	6 577(12)	4 680(11)	214(5)
P(1)	3 560(2)	4 889(2)	592(1)	C(26)	7 103(11)	5 264(10)	540(5)
P(2)	4 184(3)	5 037(3)	1 733(1)	C(27)	8 169(13)	5 333(12)	545(6)
O (1)	5 224(10)	2 891(10)	997(4)	C(28)	8 663(14)	5 921(13)	835(6)
O(2)	909(9)	2 697(9)	39(4)	C(29)	8 098(13)	6 494(12)	1 119(6)
O(3)	3 576(15)	1 134(12)	635(6)	C(30)	7 056(12)	6 457(11)	1 113(5)
O(4)	341(17)	928(13)	1 140(6)	C(31)	6 517(11)	5 843(10)	837(5)
O(5)	535(9)	4 595(9)	466(4)	C(32)	5 426(9)	5 767(8)	831(4)
O(6)	-20(11)	5 506(12)	1 917(5)	C(33)	4 856(11)	6 445(9)	1 122(5)
O(7)	-866(11)	2 694(13)	1 525(5)	C(34)	4 361(10)	6 251(9)	1 530(4)
O(8)	2 970(15)	2 952(12)	2 902(4)	C(35)	3 963(13)	6 982(10)	1 791(5)
O(9)	722(14)	1 235(13)	2 171(6)	C(36)	3 997(14)	7 884(12)	1 629(6)
O(10)	3 934(14)	1 100(11)	1 750(5)	C(37)	4 429(11)	8 097(10)	1 217(5)
C(1)	4 516(13)	3 338(11)	1 101(5)	C(38)	4 437(16)	9 036(15)	1 036(7)
C(2)	1 310(12)	2 605(12)	380(5)	C(39)	4 850(15)	9 217(15)	621(7)
C(3)	2 946(15)	1 615(12)	774(5)	C(40)	5 329(12)	8 494(11)	353(5)
C(4)	945(18)	1 498(15)	1 105(7)	C(41)	5 311(12)	7 636(11)	517(5)
C(5)	709(11)	4 326(11)	823(5)	C(42)	4 873(10)	7 397(9)	943(4)
C(6)	403(12)	4 913(13)	1 755(6)	C(43)	3 537(11)	5 201(10)	2 281(5)
C(7)	-164(14)	3 148(15)	1 476(7)	C(44)	2 525(13)	5 518(11)	2 282(6)
C(8)	2 714(16)	2 867(12)	2 533(6)	C(45)	2 055(17)	5 708(14)	2 694(7)
C(9)	1 336(15)	1 758(15)	2 059(6)	C(46)	2 539(17)	5 572(15)	3 101(8)
C(10)	3 371(15)	1 666(11)	1 789(5)	C(47)	3 532(18)	5 238(15)	3 116(8)
C(11)	2 952(9)	6 032(9)	532(4)	C(48)	4 014(15)	5 098(12)	2 707(6)
C(12)	2 220(12)	6 337(11)	839(5)	C(49)	5 475(10)	4 681(9)	1 913(5)
C(13)	1 795(14)	7 213(12)	793(6)	C(50)	6 248(13)	5 339(13)	1 988(6)
C(14)	2 070(15)	7 780(14)	436(6)	C(51)	7 200(18)	5 030(15)	2 146(7)
C(15)	2 790(14)	7 471(14)	108(6)	C(52)	7 383(16)	4 109(13)	2 191(6)
C(16)	3 208(14)	6 600(11)	163(6)	C(53)	6 627(16)	3 449(14)	2 125(6)
C(17)	3 217(10)	4 263(8)	53(4)	C(54)	5 685(12)	3 725(11)	1 977(5)
C(18)	2 515(12)	4 665(11)	-252(5)	Cl(1)	10 261(13)	8 017(10)	2 016(4)
C(19)	2 200(13)	4 137(11)	-621(6)	C(55)	10 247(23)	9 046(12)	1 694(9)
C(20)	2 576(14)	3 278(13)	- 696(6)	Cl(2)	9 401(14)	8 829(9)	1 239(7)
C(21)	3 290(13)	2 871(12)	- 398(5)				

Atom	x	у	Z	Atom	x	у	z
Ru(1)	1580(1)	5019(1)	5874(1)	C(20)	1099(14)	8899(11)	6053(6)
Ru(2)	3644(1)	4559(1)	5340(1)	$\dot{C}(21)$	938(13)	8312(9)	5730(6)
Ru(3)	2113(1)	5540(1)	4862(1)	C(22)	1201(11)	7459(8)	5805(5)
Ru(4)	1698(1)	3753(1)	5092(1)	C(23)	1421(8)	5995(6)	6973(3)
P(1)	2036(2)	6134(2)	6376(1)	C(24)	2084(10)	5741(7)	7350(4)
P(2)	-319(2)	5091(2)	6056(1)	C(25)	1609(11)	5598(7)	7792(4)
O (1)	2056(8)	3797(6)	6652(4)	C(26)	511(10)	5712(7)	7852(5)
O(2)	4667(12)	3364(9)	6046(5)	C(27)	-155(10)	5972(7)	7491(4)
O(3)	5467(8)	5859(7)	5462(4)	C(28)	311(9)	6118(7)	7036(4)
O(4)	4862(9)	3801(10)	4512(5)	C(29)	-1667(13)	6329(13)	7983(6)
O(5)	3503(10)	7066(7)	5106(4)	C(30)	-465(9)	6513(7)	6675(4)
0(6)	3393(10)	5161(8)	3960(4)	CÌÌÌ	-841(9)	6119(7)	6256(4)
O (7)	365(10)	6522(9)	4319(5)	C(32)	-1579(10)	6539(7)	5972(4)
O(8)	2671(12)	2927(9)	4213(4)	C(33)	- 1945(12)	7343(8)	6081(5)
O(9)	- 550(9)	3009(8)	4866(5)	C(34)	-1569(11)	7753(8)	6482(4)
O(10)	2350(11)	2374(7)	5773(5)	C(35)	-829(10)	7334(7)	6776(4)
O(11)	-417(8)	7679(5)	7185(4)	C(36)	-750(15)	8491(8)	7314(6)
O(12)	-1253(7)	6098(6)	7536(3)	C(37)	-804(9)	4311(7)	6482(4)
C(1)	1842(9)	4273(7)	6366(4)	C(38)	- 1544(10)	4506(8)	6835(4)
C(2)	4266(11)	3791(9)	5777(6)	C(39)	-1978(12)	3855(9)	7111(5)
C(3)	4766(10)	5370(9)	5431(5)	C(40)	-1702(12)	3026(9)	7031(5)
C(4)	4371(11)	4100(10)	4798(5)	C(41)	-971(12)	2829(9)	6660(5)
C(5)	3005(11)	6491(9)	5027(4)	C(42)	-532(10)	3458(7)	6392(5)
C(6)	2928(11)	5293(9)	4324(5)	C(43)	-1236(9)	4845(6)	5562(4)
C(7)	957(12)	6143(9)	4528(5)	C(44)	-2147(12)	4288(8)	5596(5)
C(8)	2333(12)	3256(9)	4545(5)	C(45)	-2792(13)	4127(9)	5212(5)
C(9)	236(11)	3317(8)	4951(5)	C(46)	-2589(13)	4503(9)	4794(6)
C(10)	2141(13)	2892(9)	5516(6)	C(47)	-1740(12)	5079(9)	4751(5)
C(11)	3553(9)	6185(7)	6478(4)	C(48)	-1090(11)	5240(8)	5130(5)
C(12)	4109(10)	5472(8)	6625(4)	C(50)	5409(24)	9681(16)	6827(9)
C(13)	5230(12)	5488(10)	6708(5)	C(51)	4915(18)	8980(14)	7134(8)
C(14)	5831(14)	6215(10)	6637(5)	C(52)	5539(19)	8369(14)	7457(9)
C(15)	5284(13)	6925(10)	6466(5)	C(53)	4801(19)	7735(14)	7724(8)
C(16)	4140(10)	6921(8)	6404(4)	C(54)	5351(21)	7006(16)	7992(10)
C(17)	1671(9)	7239(7)	6240(4)	C(55)	4483(22)	6639(17)	8333(11)
C(18)	1821(10)	7838(8)	6581(5)	C(56)	4986(20)	5926(16)	8632(10)
C(19)	1574(13)	8664(10)	6488(5)				

Table 4Atomic coordinates ($\times 10^4$) for compound 2

allows one to deduce the absolute configuration of compounds 1 and 2. The resulting skewed seven-membered ring is then forced by the steric requirements of the diphosphine to adopt a λ conformation. The bite angles of the (S)-(-)-binap and (S)-(-)-mobiph ligands are very similar [93.8(1) and 93.5(1)°] and fall at the upper end of the range of values usually found for binap ligands in complexes of lower nuclearity.¹⁰ The dihedral angles between the two naphthyl units in 1 and the two methoxyphenyl units in 2 are 76.3(3) and 68.4(3)° respectively. The Ru–P distances in the two species are unusually asymmetric [Ru(1)–P(1) 2.331(3) and 2.331(3) Å, Ru(1)–P(2) 2.360(4) and 2.359(3) Å in 1 and 2 respectively], though identical between the two sets of bonds. All the carbonyl groups are terminally bound, with Ru–C distances ranging from 1.85(1) to 1.93(2) Å.

Experimental

The diphosphine ligands $(S) \cdot (-) \cdot \text{binap}^{11}$ and $(S) \cdot (-) \cdot \text{mobiph}^{12}$ and the cluster $[\operatorname{Ru}_4H_4(\operatorname{CO})_{12}]^{4b}$ were prepared as described in the literature. Elemental analyses were carried out at the University of Florence. Infrared spectra were obtained on a Perkin-Elmer 683 spectrophotometer, NMR spectra with a Bruker AC 200 spectrometer in CDCl₃ or CD₂Cl₂ solutions. Optical rotations were measured with a Perkin-Elmer 241 polarimeter. Values of $[\alpha]_D$ are given as $10^{-1} \circ \text{cm}^2 \text{ g}^{-1}$.

Synthesis of Complexes.—(-)- $[Ru_4H_4(CO)_{10}\{(S)-(-)-(binap)\}]$ -CH₂Cl₂ 1. A deaerated solution of $[Ru_4H_4(CO)_{12}]$ (0.436 g, 0.58 mmol) and binap (0.766 g, 1.23 mmol) in toluene (30 cm³) was transferred to a stainless-steel autoclave (volume ≈ 150 cm³) equipped with a magnetic stirring bar.

The autoclave was pressurized to 150 bar $(1.5 \times 10^7 \text{ Pa})$ with hydrogen and heated to 150 °C. After 6 h the reactor was cooled to room temperature and the gas phase vented off. Thinlayer chromatographic analysis on silica gel (hexane-CH₂Cl₂ 1:1) of the resulting red solution revealed the presence of two species. Recrystallization from CH₂Cl₂-MeOH afforded [Ru₄-H₄(CO)₁₀(binap)]·CH₂Cl₂ as red crystals (0.20 g, 26% yield) (Found: C, 47.05; H, 3.00. Calc. for C₅₅H₃₈Cl₂O₁₀P₂Ru₄: C, 47.25; H, 2.90%); [x]_D²⁵ - 440 (c 0.05 g cm⁻³, CH₂Cl₂).

(-)-[Ru₄H₄(CO)₁₀{(S)-(-)-mobiph}]-C₇H₁₆ **2**. This complex was synthesized analogously and recrystallized from CH₂Cl₂-MeOH-C₇H₁₆ as red crystals (66% yield) (Found: C, 48.25; H, 3.55. Calc. for C₅₅H₅₂O₁₂P₂Ru₄: C, 48.20; H, 3.80%); $[\alpha]_D^{25}$ - 395 (c 0.21 g cm⁻³, CH₂Cl₂).

X-Ray Crystallography.-Diffraction data were collected at room temperature on an Enraf-Nonius CAD-4 diffractometer equipped with a graphite monochromator (Mo-K α radiation, $\lambda = 0.71069$ Å). The intensities were collected in the ω -20 scan mode at room temperature. Crystal data and details of measurements are summarized in Table 2. Both structures were solved by direct methods, followed by Fourier-difference syntheses and subsequent least-squares refinement. For all calculations the SHELX 86^{13a} and SHELXL 93^{13b} programs were used. Absorption corrections were applied by azimuthal scans of eight (1) and seven (2) reflections with $\chi > 80^{\circ}$ (transmission range 0.75-1.00). Anisotropic thermal vibrations were applied to the $Ru_4(CO)_{10}$ core, including the MeO units in 2. Owing to the better quality of the data for 2, two hydride atoms could be located in ΔF maps, *i.e.* the ones bridging the Ru(1)-Ru(3) and Ru(3)-Ru(4) edges with Ru-H distances

ranging from 1.67 to 1.80 Å. The H atoms of the phenyl and methyl groups were added in calculated positions (C-H 0.93 and 0.96 Å for the phenyl and methyl ones, respectively), and refined 'riding' on their respective C atoms. The absolute configurations of 1 and 2 were tested by using the Flack parameter [-0.05(9) and -0.14(7), respectively]. Both species cocrystallize with solvent molecules: 1 includes a disordered CH_2Cl_2 molecule, 2 a heptane one. Fractional atomic coordinates are reported in Tables 3 and 4.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Consiglio Nazionale delle Ricerche (Progetto Finalizzato Chimica Fine II) and the Ministero dell' Universitá e della Ricerca Scientifica e Tecnologica for financial support.

References

- 1 R. Noyori and H. Takaya, Acc. Chem. Res., 1990, 23, 345; T. Manimaran, T. Wu, W. D. Klobucar, C. H. Kolich, G. P. Stahly, F. R. Fronczek and S. E. Watkins, Organometallics, 1993, 12, 1467; J. B. Hoke, L. S. Hollis and E. W. Stern, J. Organomet. Chem., 1993, 455, 193.
- 2 B. Heiser, E. A. Broger and Y. Crameri, Tetrahedron Asymmetry, 1991, 2, 51.
- 3 U. Matteoli, P. Frediani, M. Bianchi, C. Botteghi and S. Gladiali, J. Mol. Catal., 1981, 12, 281; U. Matteoli, M. Bianchi, P. Frediani,

G. Menchi, C. Botteghi and M. Marchetti, J. Organomet. Chem., 1984, 263, 243; F. Piacenti, P. Frediani, U. Matteoli, G. Menchi and M. Bianchi, Chim. Ind. (Milan), 1986, 68, 53.

- 4 (a) G. Wilkinson, F. G. A. Stone and E. W. Abel (Editors), Comprehensive Organometallic Chemistry, Pergamon, New York, 1982, vol. 4, p. 891; (b) F. Piacenti, M. Bianchi, P. Frediani and E. Benedetti, Inorg. Chem., 1971, 10, 2759.
- 5 J. R. Shapley, S. I. Richter, M. R. Churchill and R. A. Lashewycz, Am. Chem. Soc., 1977, 99, 7384; M. R. Churchill, R. A. Lashewycz, J. R. Shapley and S. I. Richter, Inorg. Chem., 1980, 19, 1277.
- 6 J. Puga, A. Arce, D. Braga, N. Centritto, F. Grepioni, R. Castillo and J. Ascanio, Inorg. Chem., 1987, 26, 867.
- 7 C. Botteghi, M. Bianchi, E. Benedetti and U. Matteoli, Chimia, 1975, 29, 256; C. Botteghi, S. Gladiali, M. Bianchi, U. Matteoli, P. Frediani, P. G. Vergamini and E. Benedetti, J. Organomet. Chem., 1977, 140, 221.
- 8 V. Gramlich, personal communication.
- 9 R. D. Wilson, S. M. Wu, R. A. Love and R. Bau, Inorg. Chem., 1978, 17, 1271
- 10 M. T. Ashby, M. A. Khan and J. Halpern, Organometallics, 1991, 10, 2011; H. Kawano, T. Ikariya, Y. Ishii, T. Kodama, M. Saburi, S. Yoshikawa, Y. Uchida and S. Akutagawa, Bull. Chem. Soc. Jpn., 1992, 65, 1595; K. Mashima, T. Hino and H. Takaya, J. Chem. Soc., Dalton Trans., 1992, 2099 and refs. therein.
- 11 H. Takaya, S. Akutagawa and R. Noyori, Org. Synth., 1988, 67, 20. 12 R. Schmid, J. Foricher, M. Cereghetti and P. Schönholzer, Helv. Chim. Acta, 1991, 74, 370.
- 13 G. M. Sheldrick, (a) Acta Crystallogr., Sect. A, 1990, 46, 467; (b) SHELXL 93, University of Göttingen, 1993.

Received 29th June 1994; Paper 4/03953J