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Herein, by symmetrically merging six thiophene units into the hexaazatriphenylene (HAT) core, a HAT-
based sensor (1) was designed and synthesized, which was found capable of exhibiting selective recog-
nition of Ag+ with detection limit as low as 1.79 � 10�6 M in chloroform featuring with significant fluo-
rescence ‘‘turn-off” property. Through the systematical investigation with UV–Vis absorption,
fluorescence spectroscopy and the naked-eye experiments, as well as the 1H NMR titration and the
Job’s plot, it was revealed that sensor 1 could complex with Ag+ in a stoichiometric ratio of 2:3. We envis-
age the construction of such a thiophene-derived HAT molecule is conducive to exploring new type of Ag+

sensors, and it also will bring potential application in environmental detection.
� 2021 Elsevier Ltd. All rights reserved.
Introduction

The design and construction of chemosensors targeting cations
[1-5] or anions [6-10] of biological, chemical and environmental
importance is one of vibrant areas in supramolecular chemistry.
Silver ion (Ag+), on one hand, plays an indispensable role in a wide
range of fields such as pharmacy,[11] catalysis,[12,13] and
supramolecular self-assembly.[14-16] On the other hand, the uti-
lization of silver compounds causes unavoidable negative impact
on the environment, and long-term and excess intake of Ag+ will
lead to healthy problem such as stomach distress, skin irritation,
disruptive renal and neurological functions.[17-19] Owing to the
duplicitous effects of Ag+ ion, the development of new chemosen-
sors for the excellently selective, instantly responsive and efficient
detection of Ag+ is highly desirable.

Traditional approaches such as atomic absorption spectrometry,
[20] inductively-coupled plasma emission mass spectrometry [21]
and electrochemical method [22] have been utilized to monitor the
existence of Ag+. However, these strategies commonly suffer from
disadvantages of high-cost, time-consuming and labour-intensity.
Comparatively speaking, fluorescent probes featuring with easy
operation, high selectivity and sensitivity are more preferable
tools. In this context, a vast number of Ag+ sensors with conjugated
aromatic structures such as fluorescein, [23] rhodamine, [24] rho-
danine, [25] boron-dipyrromethene,[26,27] 1, 8-naphthalimide,
[28,29] coumarin,[30] anthracene,[31] isoquinoline,[32] phena-
zine,[33,34] as well as polymers[35] have been extensively
explored, benefiting from the distinctive characteristics of exten-
sive p-electron delocalization and strong fluorescent emission.

Hexaazatriphenylene (HAT),[36] which is a rigid planar conju-
gated motif with the feature of easy derivatization and plentiful
N-containing coordinative sites, has been extensively explored
not only to fabricate self-assembly systems but also as fluorescent
probes for ion recognition. In our previous work, a series of HAT-
based derivatives were developed to achieve the selective detec-
tion of F�,[37] Cu2+,[38] and even proton-anion ion-pair.[39] More-
over, Bu and co-workers have showed that pyridine-derived HAT
molecules could be applied as Cd2+ fluorescent sensors.[40,41]
However, the HAT-based molecules have rarely been used as selec-
tive fluorescent probes for Ag+ so far. Aiming to enrich the struc-
tural diversity of Ag+ chemosensors and expand the application
scope of HAT-based derivatives, we here report a unique HAT-
based sensor (compound 1 in Scheme 1) containing six symmetri-
cally substituted thiophene units, the introduction of which was
found to enable 1 to selectively recognize Ag+ ion with significant
‘‘turn-off” of emission. The Job’s plot and 1H MR titration experi-
ments revealed that 1 could complex with Ag+ in a ratio of 2:3 with
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Scheme 1. The synthesis of sensor 1.
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an apparent association constant of 3.98 � 107 M�1, and the limit
of detection was calculated to be 1.79 � 10�6 M.
Results and discussion

Sensor 1 was synthesized through a facile three-step route as
showed in Scheme 1. The benzoic condensation of 2-thenaldehyde
(2) yielded compound 3, which was further efficiently oxidized by
CuSO4 to give diketone 4. Then, the condensation of 4 with hex-
aaminobenzene(5) [15] afforded the target compound 1, the chem-
ical structure of which was unambiguously assigned by 1H NMR,
13C NMR as well as HR-MS spectroscopies (see ESI for details).

Naked-eye experiments were first carried out in chloroform
under ambient condition and UV-lamp irradiation, respectively.
As depicted in Fig. 1, the addition of Ag+ (4 equiv.) into the solution
of 1 led to the development of distinct colour change from light
yellow to dark yellow and discernible fluorescence quenching phe-
nomenon. By contrast, both the colour and fluorescence changes
were negligible when the same amount of other metal ions were
introduced. This result demonstrated that 1 was capable of serving
as a colorimetric sensor for Ag+ with a high selectivity, and the
detailed recognition behaviour of 1 over Ag+ was then investigated.
Fig. 1. The solutions of 1 (5 � 10�6 M) in chloroform before and after the addition of v
irradiation.

2

The spectroscopic property of 1 in chloroform was then
revealed by UV–Vis and fluorescent spectroscopic studies. Upon
the addition of Ag+, it was found that the absorption of 1 at
425 nm decreased gradually and a new peak cantered at 450 nm
appeared (Fig. 2a), the dramatic spectral change of which could
be attributed to the coordination between Ag+ and 1.[25] However,
the characteristic absorption band of 1 exhibited negligible
responses when other metal ions were introduced (Fig. 2b), again
suggesting the high selectivity towards Ag+.

Fluorescent spectroscopic experiments were further carried out
to investigate the recognition behaviour of 1 towards Ag+ ion. As
shown in Fig. 3a, upon the addition of 6 equiv. of Ag+, the fluores-
cence emission intensity at 475 nm drastically decreased until
completely quenched, which could be attributed to the d10 config-
uration of silver.[25,30] However, except for the observation of
slight decrease for the emission intensity of 1 at 475 nm after
introducing Fe3+ and Cu2+ ions, the fluorescent spectra of 1 exhib-
ited negligible changes while other metal ions were added to its
solution (Fig. 3b). Furthermore, the detection limit could be calcu-
lated as 1.79 � 10�6 M in CHCl3,[42] which suggested a high recog-
nition sensitivity of 1 for the Ag+ ion (Fig. S5).

To further reveal the selective recognition behavior of 1 to Ag+,
fluorescent spectra of sensor 1 in the presence of various metal
arious metal cations (2 � 10�5 M) under (a) visual light and (b) UV lamp (365 nm)



Fig. 2. (a) UV–Vis spectra of sensor 1 (1.25 � 10�5 M, CHCl3) upon the addition of
Ag+ (0 to 6 equiv.), (b) UV–Vis spectra of sensor 1 (1.25 � 10�5 M, CHCl3) upon the
addition of 6 equiv. of various metal ions (Fe3+, Zn2+, Cu2+, Ni2+, Co2+, Cd2+, Pd2+,
Hg2+, Ca2+, Mg2+, and Na+).

Fig. 3. Fluorescent spectra of 1 (5 � 10�6 M, CHCl3) (a) upon the addition of Ag+ (0
to 6 equiv.), and (b) upon adding 6 equiv. of various other metal ions (Fe3+, Cu2+,
Zn2+, Ni2+, Co2+, Cd2+, Pd2+, Hg2+, Ca2+, Mg2+, and Na+).
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ions (Fe3+, Zn2+, Cu2+, Ni2+, Co2+, Cd2+, Pd2+, Hg2+, Ca2+, Mg2+, and
Na+) were recorded, and the emission intensity of 1 at 475 nm
was further compared with that of after introducing Ag+ ion. As
exhibited in Fig. 4a, no pronounced signal interference was
observed for the detection of Ag+ by 1 in the presence of other
metal ions, suggesting that 1 exhibited great potential for discrim-
inating Ag+ from other competing metal ions, especially Cu2+ and
Hg2+. In addition, the fluorescent reversibility of 1 was also tested
by alternative addition of Ag+ and EDTA (Fig. 4b), which showed
fluorescence quenching with Ag+ and comparable restoration in
fluorescence with EDTA in 6 cycles, accompanied by almost no loss
of fluorescent intensity at each cycle. Moreover, the time depen-
dent plot was generated by correlating the fluorescence intensity
of 1 to Ag+ vs. time, from which it was found that the steady com-
plex between 1 and Ag+ could be formed in less than 40 s (Fig. S6).
These results demonstrated that 1 could serve as a quickly respon-
sive Ag+ sensor.

Job’s plot experiments were performed to determine the stoi-
chiometry of 1 and Ag+. The absorbance value of the mixed solution
of 1 and AgNO3 reached a maximum at 0.4 molar fraction of Ag+,
suggesting a 2:3 stoichiometry for 1 and Ag+ (Fig. S7a). By using
the Benesi-Hildebrand method based on titration data [43], the
apparent association constant of 1 and Ag+ was calculated to be
3.98 � 107 M�1 (Fig. S7b). In addition, theoretical calculations were
performed, which gave an optimized sandwich-like coordination
3

structure of 1-Ag+ (2:3) complex (Fig. S8). This further confirmed
the complexation behaviour of 1 and Ag+ revealed by the experi-
mental investigations.

To get more insight of the recognition mechanism between 1
and Ag+, 1H NMR titration experiments were further performed.
As displayed in Fig. 5, the thiophene protons signals (H1, H2 and
H3) of 1 gradually broadened and then completely disappeared
during the addition of Ag+. Meanwhile, as the concentration of
Ag+ increased, the proton signals of the aromatic rings slightly
shifted upfield which might be attributed to conformation change
of 1 after its complexion with Ag+. We proposed that the structural
rigidification and redistribution of electron density of sensor 1
could be induced upon coordination with Ag+, which might facili-
tate the intramolecular photoinduced electron transfer (PET) pro-
cess,[44] thus causing the fluorescent quench of 1. It is worthy of
mentioning that the heavy metal atom effect of Ag+ could also be
responsible for such impressive fluorescent quenching behavior.
[45]
Conclusion

In summary, a unique HAT derivative (sensor 1) bearing six
thiophene substituents was prepared, and its recognition beha-
viour towards various metal ions was systematically investigated.
It was found that 1 could exhibit a naked-eye detection capability



Fig. 4. (a) Fluorescence intensity variations of 1 (5 � 10�6 M, CHCl3) without (black
column) and with (red column) the addition of Ag+ (4 equiv.) at the existence of
various other metal ions (4 equiv.), and (b) plot of corresponding fluorescence
intensity at k = 475 nm of 1 (5 � 10�6 M, CHCl3) after alternative addition of Ag+ (6
equiv.) and EDTA (6 equiv.).
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and distinctive ‘‘turn-off” fluorescence featuring with excellent
selectivity, reversibility and fast-response towards Ag+. In addition,
sensor 1 was found insensitive to the presence of Hg2+, which sug-
Fig. 5. 1H NMR titration spectra (400 MHz, CDCl3, 298 K) of sensor 1 (5

4

gests its unique ability to distinguish Ag+ without the interference
of mercury ions. These features enabled such a thiophene-derived
HAT sensor to be capable of serving as a new type of colorimetric
and fluorescent chemosensor. More broadly, this work has well-
demonstrated that the modification of HAT core by introducing
heteroaromatic substitutions might be an efficient approach for
the exploration of novel HAT-based chemosensors with unprece-
dented recognition behavior towards a wider range of guest
species.
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