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Abstract: 

Cationic cyclometalated Ir(III) complexes (Ir1 -Ir5 ) with fluorine-substituted 

2-phenylpyridine (ppy) derivatives as C^N cyclometalating ligands and 2,2’-bipyridine (bpy) as 

the ancillary ligand, have been synthesized and fully characterized. The influences of the number 

and the position of fluorine atoms at the cyclometalating ligands on the photophysical, 

electrochemical and oxygen sensing properties of the Ir(III) complexes have been investigated 

systematically. The introduction of fluorine on the C^N cyclometalating ligands of the complexes 

results in blue-shifts of the maximum emission wavelengths, and increases in the 

photoluminescence quantum yields (ΦPL), phosphorescence lifetimes and energy gaps, compared 

to the non-fluorinated [Ir(ppy)2(bpy)]+PF6
- (Ir0 ). Among them, 

2-(2,4-difluorophenyl)pyridine-derived Ir4  shows the maximum blue-shift (514 nm vs. 575 nm for 

Ir0 ) and the highest ΦPL (50.8% vs. 6.5% for Ir0 ). The complex Ir3 with 

2-(4-fluorophenyl)-5-fluoropyridine as C^N ligand exhibits the highest oxygen sensitivity and 

excellent operational stability in 10 cycles within 4000 s. 

Keywords: Fluorine, Ir(III) complex, Photophysical property, Electrochemical property, Oxygen 

sensitivity.  
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1. Introduction  

Fluorine is a special element with the strongest electronegativity and the atomic radius with 

the size near to the hydrogen atom.[1] Its unique electronic structure allows fluorine atoms to 

structurally modify the molecules by simply replacing the hydrogen atom, thereby effectively 

adjusting the properties of compounds. Compared with pure organic compounds,[2-4] 

phosphorescent heavy-metal complexes based on metal-to-ligand charge-transfer transition 

(3MLCT) exhibit superior photophysical properties.[5-7] Among them, cyclometalated iridium(III) 

complexes, due to relatively long lifetimes, high luminescent quantum yields, flexible tuning of 

photophysical and electrochemical properties by ligands,[8, 9] have been often used as highly 

efficient emitters in organic light-emitting diodes (OLEDs),[10-18] light-emitting electrochemical 

cells (LECs),[19-21] cell imaging,[22, 23] water redox[24-27] and phosphorescent chemosensing 

systems.[28-30] 

In 2008, He et al. synthesized an Ir(III) complex [Ir(dfppy)2(pzpy)]+PF6
- (dfppy = 

2-(2,4-difluorophenyl)pyridine, pzpy = 2-(1H-pyrazol-1-yl)pyridine), which demonstrated the 

bluest light emission (460 nm) in the LEC at that time.[19] In the same year, [Ir(dfppy)2(bpy)]+PF6
- 

was prepared by Yu et al. and used as a phosphorescent dye for staining the cytoplasm of living 

cells.[22] In 2011, Wang et al. reported that introduction of fluorine substituent at the 6-position of 

the benzothiazolyl moiety of the 2-phenylbenzothiazole ligand, the corresponding complex 

(F-bt)2Ir(acac) exhibited excellent performances of OLEDs.
[31]

 Very recently, Wang et al. 

synthesized an Ir(III) complex [Ir(F2bpy)2(ppba)]+PF6
- (ppba = 4-(6-(1H-pyrazol-1-yl)pyridin-3-yl) 
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benzaldehyde) by introducing fluorine atoms into the 2 and 6 positions of the bpy. This complex 

was used as a photosensitizer for photocatalytic water-reduction, providing the hydrogen 

generation yield up to 312 µmol in 5 h.[27] We have a long-standing interest in investigating the 

structure-property relationship of cyclometalated complexes.[32-37] In 2015, we found that 

introduction of fluorine into the cyclometalating ligands strongly improved the photostability of 

the corresponding cyclometalated Pt(II) complexes.[38] Recently, we synthesized a fluorinated 

Ir(III) complex Ir(DPAFppy)2(acac), which showed an obviously prolonged phosphorescent 

lifetime and enhanced oxygen sensitivity than that of the non-fluorinated complex 

Ir(DPAppy)2(acac).[36] Thus, the literature reports disclose that fluorine is an interesting and 

unique substituent for the modification of functional molecules. Therefore, systematical 

investigation on the effects of the position and the number of the fluorine atoms at the target 

molecules is of great importance for the design of novel phosphorescent systems with high 

performances. 

In this work, five fluorinated cationic cyclometalated Ir(III) complexes (Ir1-Ir5 ) with 

2,2’-bipyridine (bpy) as N^N ancillary ligand were synthesized (Scheme 1), which were used to 

explore the effects of the position and the number of fluorine atoms on the photophysical and 

electrochemical properties of the corresponding Ir(III) complexes, compared with a 

non-fluorinated complex Ir0 . In addition, the oxygen sensitivity and operational stability of the 

Ir(III) complexes were studied. 

2. Results and discussion 
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2.1 Synthesis and characterization of complexes 

Chemical structures of the Ir(III) complexes are shown in Scheme 1 (the detailed synthetic 

protocols are shown in Scheme S1, see Supporting Information). The cyclometalating ligands 

L0-L5 were prepared via a palladium-catalyzed ligand-free and aerobic Suzuki-Miyaura reaction in 

aqueous ethanol developed by our group,[39] chemical structures of L0-L5  are shown in Scheme S2. 

Cyclometalated Ir(III) complexes were synthesized in three-steps from the IrCl3·3H2O with the 

corresponding ligands to form the chloride-bridged dimers initially, followed by treatment with the 

2,2’-bipyridine (bpy), and then an anion exchange reaction to obtain the target Ir(III) complexes.[34, 

40] 

 

Scheme 1 Chemical structures of the Ir(III) complexes for this study. 

2.2 UV−Visible Absorption Spectra and Emission Spectra 

UV-vis absorption spectra of L0-L5  and Ir0-Ir5  in CH2Cl2 at room temperature are presented 

in Fig. 1 and the corresponding photophysical data are given in Table 1. All complexes exhibit 

intense absorption with high molar extinction coefficients (ε = 2.92-6.23 × 104 M-1 cm-1). The 
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intense short wavelength absorption bands in the range of 200-325 nm are primarily due to the 

spin-allowed intra-ligand (1
π-π*) transitions. The weak absorption with lower extinction 

coefficients absorption bands in the range of 350-450 nm can be assigned to mixing among 

metal-to-ligand and ligand-to-ligand charge transfer (MLCT/LLCT) together with ligand-centered 

(3
π-π*) transitions.[41-42] 

 

Fig. 1  UV-Vis absorption spectra of C^N cyclometalating ligands L0-L5  (a) and Ir(III) 

complexes Ir0-Ir5 (b) (10-5 mol/L in CH2Cl2) at room temperature. 

 

Fig. 2  Emission spectra of Ir0-Ir5 (10-5 mol/L in CH2Cl2) at room temperature. 
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The normalized emission spectra of Ir0-Ir5  in CH2Cl2 are shown in Fig. 2. These 

fluorine-substituted cyclometalated Ir(III) complexes exhibit intense emission bands at 514-575 

nm, and the photoluminescence quantum yields were 6.5%, 12.5%, 11.2%, 28.6%, 50.8%, 37.9%, 

respectively. The results indicate that the introduction of fluorine atoms on the cyclometalating 

ligands increases the ΦPL of these complexes compared with Ir0 . When only one fluorine atom is 

introduced into the 4-position of the phenyl moiety (Ir1 , ΦPL = 12.5%) or the 5-position of the 

pyridyl ring (Ir2 , ΦPL = 11.2%), the increase in ΦPL is nearly the same, while the ΦPL of the 

complexes increases markedly with the increase of the number of fluorine atoms. Especially, the 

2-(2,4-difluorophenyl)pyridine derived Ir4  (ΦPL = 50.8%) achieves the highest ΦPL. The 

introduction of fluorine atoms on the cyclometalating ligands also results in blue-shifts of the 

maximum emission wavelengths ���
���  of Ir(III) complexes. Moreover, the position of the 

fluorine atoms at the cyclometalating ligands affects the properties of the complexes to different 

extents. For example, Ir1  with a fluorine atom at the 4-position of the phenyl ring (���
��� = 542 

nm) exhibits a larger blue-shift than that of Ir2  with 5-fluorinated pyridyl ring (���
��� = 567 nm). 

The normalized emission spectra of ethylcellulose (EC) films doped with Ir0-Ir5  (0.5 wt%) were 

also measured (see Fig. S1). As shown in Table 1, the emission maxima of Ir0-Ir5  in EC films are 

ranging from 485 to 525 nm. Compared with the emission spectra in solution, the emission spectra 

in EC films of the complexes exhibit a blue-shift due to the rigidochromic effect.[43] 
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Table 1  Photophysical data of Ir0-Ir5. 

Complex λabs
a (nm) λem

b (nm) In CH2Cl2 

Фsolution
c τ

d (µs) kr
c (105 s-1) knr

c (105 s-1) 

Ir0 
256(4.58) 268(4.54) 

382(0.72) 

575(CH2Cl2) 

525(EC film) 
0.065 0.58 1.13 16.1 

Ir1 
253(6.13) 268(6.23) 

369(1.01) 

542(CH2Cl2) 

502(EC film) 
0.125 1.14 1.10 7.67 

Ir2 
260(4.16) 270(4.25) 

312(1.93) 

567(CH2Cl2) 

493(EC film) 

515(EC film) 

0.112 0.69 1.62 12.9 

Ir3 
268(4.70) 308(2.23) 

370(0.59) 

534(CH2Cl2) 

476(EC film) 

503(EC film) 

0.286 1.23 2.32 5.81 

Ir4 
250(4.52) 262(4.36) 

301(2.47) 362(0.73) 

514(CH2Cl2) 

462(EC film) 

485(EC film) 

0.508 1.29 3.94 3.81 

Ir5 
238(2.65) 262(2.92) 

298(1.89) 363(0.41) 

524(CH2Cl2) 

471(EC film) 

497(EC film) 

0.379 1.01 3.75 6.15 

a Measured in CH2Cl2 at a concentration of 10-5 M and extinction coefficients (104 M-1cm-1) are shown in 

parentheses, the absorption maxima are the values in bold style. 
b The emission maxima are the values in bold style (λexc = 400 nm). 
c The quantum yields (Фsolution) in deoxygenated CH2Cl2 were measured with [Ir(ppy)2(acac)] (ФPL = 0.34) as a 

standard, radiative and nonradiative decay rates of kr and knr were calculated from kr = ФPL × τ-1, knr = τ-1 - kr. 
d Excitation wavelength: 405 nm; monitor wavelength: the maximum emission wavelength of the corresponding 

complex in CH2Cl2. 

 

Fluorine substituent has a significant influence on phosphorescence lifetimes (Table 1). The 

lifetimes (τ) of Ir(III) complexes in CH2Cl2 were measured to be 0.58-1.29 µs at room temperature 
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(the phosphorescence decay traces of Ir0 -Ir5  illustrated in Fig. S3). The lifetimes increase in the 

following order: Ir0  < Ir2  < Ir5  < Ir1  < Ir3  < Ir4 . The results show that the substitution of 

fluorine at the 4-position of the phenyl (Ir1 , τ = 1.14 µs) prolongs the phosphorescence lifetime 

obviously (Ir0 , τ = 0.58 µs). Introducing a fluorine at the 5-position of the pyridyl or the 

2-position of the phenyl of the cyclometalating ligands results in nearly the same phosphorescence 

lifetimes for Ir3  (1.23 µs) and Ir4 (1.29 µs). The 2-(3,4,5-trifluorophenyl)pyridine-derived Ir5  

also exhibits a prolonged lifetime (1.01 µs) compared to Ir0 . However, introducing a fluorine 

atom into the 5-position of pyridyl moiety of the C^N ligand gives only a little increased lifetime 

for Ir2  (0.69 µs). The radiative decay rate (kr) and the nonradiative decay rate (knr) of the 

complexes in CH2Cl2 were calculated (Table 1). Ir4  shows the longest lifetime (1.29 µs) and a 

relatively higher radiative decay rate than other complexes, which is attributed to the 

2-(2,4-difluorophenyl)pyridine ligand. These results are useful information for designing novel 

Ir(III) complexes with a long lifetime. 

2.3 Electrochemical properties 

The electrochemical behaviors of these Ir(III) complexes were investigated in CH2Cl2, the 

cyclic voltamograms of these Ir(III) complexes are provided in Fig. S4 and the corresponding data 

are collected in Table 2. The onset oxidation potentials of Ir0-Ir5  are at 1.27 V, 1.54 V, 1.34 V, 

1.68 V, 1.62 V and 1.79 V, respectively. It is found that the introduction of fluorine atoms into the 

complexes can increase the onset oxidation potentials. Meanwhile, the onset oxidation potentials 

of the complexes increase with the number of fluorine atoms. The position of the fluorine atoms at 
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the cyclometalating ligands affects the oxidation potentials of the corresponding complexes. It is 

clear that Ir1  with a fluorine at the 4-position of the phenyl ring (1.54 V) exhibits a positive 

potential than that of Ir2  with a fluorine at the 5-position of the pyridyl ring (1.34 V), indicating 

the relative difficulty of oxidation.[44, 45] The HOMO-LUMO energy gaps are in the order of 2.74 

eV (Ir4 ) > 2.70 eV (Ir5)  > 2.68 eV (Ir3 ) > 2.56 eV (Ir1 ) > 2.47 eV (Ir2 ) > 2.45 eV (Ir0 ), which is 

consistent with the results of emission spectra illustrated in Fig. 2. Specifically, Ir4  shows the 

highest energy gaps, which is attributed to the addition of fluorine atoms at 2 and 4 positions of 

the phenyl ring of the cyclometalating ligand. 

 

Table 2  Electrochemical data of Ir0-Ir5. 

Complex ���
�	
��

 
a (V) 

���
�	
��

 
a (V) EHOMO

b (eV) ELUMO
c (eV) Eg

d (eV) 

Ir0 1.27 -1.18 -5.67 -3.23 2.45 

Ir1 1.54 -1.02 -5.94 -3.38 2.56 

Ir2 1.34 -1.12 -5.74 -3.28 2.47 

Ir3 1.68 -1.00 -6.08 -3.40 2.68 

Ir4 1.62 -1.12 -6.02 -3.28 2.74 

Ir5 1.79 -0.92 -6.19 -3.48 2.70 
a 0.1 M [Bu4N]PF6 in CH2Cl2, scan rate 100 mV s−1, measured using a saturated calomel electrode (SCE) as the 

standard. 
b EHOMO (eV) = -e(4.4 + ���

�	
��). 
c ELUMO (eV) = -e(4.4 + ���

�	
��). 
d Eg = ELUMO - EHOMO. HOMO and LUMO denote the highest-occupied molecular orbital and the 

lowest-unoccupied molecular orbital, respectively. 

 

2.4 Oxygen sensitivity properties 
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The oxygen sensors using ethylcellulose (EC) as an efficient matrix have been reported.[46] 

Herein the oxygen sensitivity of the Ir(III) complexes was also studied in EC films. The 

relationship between emission intensity and the concentration of oxygen is reflected by a two-site 

model to fit the curved Stern-Volmer plots (SVPs) in the heterogeneous oxygen sensing films, 

which can be described as follows (Eq 1).[32, 34-36, 38, 47] 

�

��
=

�

��
=

��

������∙���
+

��

������∙���
                                    Eq 1  

In the equation, I0 and τ0 are the unquenched luminescent intensity and lifetime in an inert 

atmosphere. I and τ are the corresponding quantities in the presence of oxygen. f1 and f2 are the 

fractions of the total emission for each component (f1 + f2 = 1). KSV1 and KSV2 are the Stern-Volmer 

constants for the two components. � � is the partial pressure of oxygen. The weighted quenching 

constant !"#
$�� (!"#

$��
= %� ∙ !"#� + %& ∙ !"#&) is the guide of the sensitivity of an oxygen sensor, and 

a higher value of !"#
$�� indicates that the sensor is more sensitive to oxygen. 

The dynamic responses of oxygen sensing films were tested against small steps of O2 partial 

pressure variation (Fig. 3 and Fig. S5). The Stern-Volmer plots for oxygen sensing films of these 

Ir(III) complexes immobilized in EC are shown in Fig. 4. The fitting results of the O2 sensing data 

of these Ir(III) complexes are summarized in Table S1. 
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Fig. 3  Variation of the emission intensity of Ir3 incorporated into EC with the oxygen concentration. 

 

 
Fig. 4  Stern-Volmer plots of Ir0-Ir5  oxygen sensing films. 

 

The I0/I100 ratio (I0 and I100 represent the detected phosphorescent intensities from a film 

exposed to 100% N2 and 100% O2, respectively) can be used to evaluate the oxygen sensitivity. As 

the results shown in Table S1, the I0/I100 values of the Ir(III) complexes immobilized in EC films 

are 2.34 (Ir0 ), 2.56 (Ir1 ), 3.00 (Ir2 ), 3.26 (Ir3 ), 2.64 (Ir4 ) and 2.84 (Ir5 ), respectively. The !"#
$�� 
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values of these Ir(III) complexes immobilized in EC films are 0.00269 (Ir0 ), 0.00359 (Ir1 ), 

0.00444 (Ir2 ), 0.00542 (Ir3 ), 0.00412 (Ir4 ), 0.00430 (Ir5 ) Torr-1. The Ir3  immobilized EC film 

exhibits the highest sensitivity to O2 at a !"#
$�� value of 0.00542 Torr-1. These results indicate that 

introducing fluorine atoms into the Ir(III) complexes can improve oxygen sensitivity compared to 

the non-fluorinated Ir0 . 

 

2.5 Operational stability and photostability of oxygen sensing films 

Reversibility and stability are important factors to influence the overall performance of a 

sensor. Therefore, the operational stability tests of oxygen sensing films were conducted. It is clear 

that the emission intensity responses of Ir3  are fully reversible when the atmosphere varies 

periodically between 100% N2 and 100% O2 in 4000 s (Fig. 5). The complete reversibility of the 

luminescence emission of the oxygen-sensitive films allows stable and continuous monitoring the 

concentration of oxygen. Additionally, fast response time (6.3 s for switching from N2 to O2) and 

recovery time (8.2 s for switching from O2 to N2) were obtained. Thus, the oxygen sensing films 

of these cationic Ir(III) complexes exhibit complete reversibility with short response times (see 

Fig. S6). 
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Fig. 5  Reversibility and response time of Ir3  (0.5 wt%) immobilized in EC when cycling from 100% N2 to 

100% O2 atmosphere. 

 

3. Conclusions 

In summary, six cationic cyclometalated Ir(III) complexes (Ir0 -Ir5 ) were synthesized and 

their photophysical, electrochemical and oxygen sensing properties were studied in detail. The 

results indicate that the number and the position of the fluorine atoms at the cyclometalating 

ligands significantly affect the properties of the Ir(III) complexes. The introduction of fluorine on 

the cyclometalating ligands of the Ir(III) complexes makes the maximum emission wavelengths 

blue-shifts and results in prolonged phosphorescence lifetimes and increases in photoluminescence 

quantum yields and energy gaps as well. The 2-(2,4-difluorophenyl)pyridine derived Ir4  achieves 

the maximum blue-shift (514 nm vs. 575 nm for Ir0 ) and the highest photoluminescence quantum 

yield (50.8%). Furthermore, the fluorinated Ir(III) complexes immobilized ethylcellulose films 

demonstrate excellent operational stability in oxygen sensing. 
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4. Experimental 

4.1 Materials and instruments 

All starting materials were commercially available and used without further purification. The 

solvents were treated as required prior to use. 1H NMR and 13C NMR spectra were recorded on a 

400 MHz Vaian DLG400 or a 500 MHz Bruker AVANCE Ⅲ. Mass spectra were recorded with a 

MALDI micro MX spectrometer and a LTQ Orbitrap XL spectrometer. UV/Vis absorption spectra 

were recorded on an HP8453 UV/Vis spectrophotometer. Emission spectra were recorded with a 

HITACHI F-7000 fluorescence spectrophotometer. Photoluminescence quantum yields were 

measured relative to [Ir(ppy)2(acac)] (ФP = 0.34 in CH2Cl2, under degassed conditions). 

Phosphorescence lifetimes were measured on an Edinburgh FLS920 Spectrometer. Cyclic 

voltammograms of the Ir(III) complexes were recorded on an electrochemical workstation 

(BAS100B/W, USA) at room temperature in a 0.1 M [Bu4N]PF6 solution under argon conditions. 

The phosphorescent intensity responses of sensing films of the Ir(III) complexes were recorded with 

a F-7000 spectrofluorimeter. 

 

4.2 Synthesis of cyclometalated Ir(III) complexes 

Synthetic procedure of ligands L0-L5 

A mixture of 2-bromopyridine derivatives (1 mmol), 1.5 equiv. of arylboronic acid, 2 equiv. of 

K2CO3, Pd(OAc)2 (1.5 mol%), ethanol/water (3:1 v/v) was stirred at 80 °C in air for the indicated 

time. The reaction mixture was added to brine (20 mL) and extracted with dichloromethane. The 

solvent was concentrated under vacuum, and the product was isolated by column chromatography. 

Synthetic procedure of Ir(III) complexes Ir0-Ir5 
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The IrCl3·3H2O (0.2 mmol) was reacted with 2.5 equiv. of cyclometalating ligand in a mixture 

of 2-ethoxyethanol and water (9 mL/3 mL) at 120 °C under nitrogen for 24 h. Upon cooling to room 

temperature, the suspension was concentrated under vacuum. The solid was completely dried to 

give the crude cyclometalated Ir(III) chloride-bridged dimer. Without further purification, the 

dimeric Ir(III) complex reacted subsequently with 3 equiv. of the 2,2’-bipyridine in 2-ethoxyethanol 

at 120 °C under nitrogen for 24 h. After cooling to room temperature, a 10-fold excess of KPF6 was 

added. The reaction mixture was added to water (15 mL) and extracted with dichloromethane. The 

crude product was purified by column chromatography. 

Ir2:  an orange solid, yield 85%; 1H NMR (400 MHz, DMSO-d6) δ 8.87 (d, J = 8.1 Hz, 2H), 

8.36 (dd, J = 9.2, 5.5 Hz, 2H), 8.27 (dd, J = 11.2, 4.6 Hz, 2H), 8.01 (td, J = 9.2, 2.6 Hz, 2H), 7.90 

(d, J = 7.6 Hz, 2H), 7.83 (d, J = 4.7 Hz, 2H), 7.75 - 7.63 (m, 2H), 7.59 (t, J = 2.6 Hz, 2H), 7.04 (t, 

J = 7.5 Hz, 2H), 6.93 (t, J = 7.4 Hz, 2H), 6.23 (d, J = 7.5 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) 

δ 164.17, 158.96, 156.47, 155.62, 149.90, 149.17, 142.83, 139.79, 137.40, 131.09, 128.68, 126.90, 

125.26, 122.52, 121.32. HRMS (MALDI-TOF, m/z): calcd for C32H22N4F2Ir [M - PF6]
+ 693.1442, 

found 693.1425; calcd for C22H12F4N2Ir [M - PF6 - bpy]+ 537.0749, found 537.0938. 

Ir3:  a yellow solid, yield 68%; 1H NMR (500 MHz, DMSO-d6) δ 8.88 (d, J = 8.2 Hz, 2H), 

8.37 (dd, J = 9.2, 5.4 Hz, 2H), 8.30 (t, J = 7.9 Hz, 2H), 8.04 (td, J = 8.7, 4.2 Hz, 4H), 7.86 (d, J = 

5.3 Hz, 2H), 7.75 - 7.64 (m, 2H), 7.57 (t, J = 2.5 Hz, 2H), 6.91 (td, J = 8.9, 2.5 Hz, 2H), 5.85 (dd, 

J = 9.3, 2.5 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ 163.81, 162.89, 162.87, 161.81, 158.56, 

156.56, 155.48, 152.14, 152.10, 150.14, 139.97, 139.41, 137.50, 137.25, 128.80, 127.63, 127.55, 
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127.27, 127.12, 125.29, 121.47, 121.42, 117.08, 116.94, 109.84, 109.65. HRMS (LTQ, m/z): calcd 

for C32H20F4N4Ir [M - PF6]
+ 729.1253, found 729.1235. 

Ir5:  a yellow solid, yield 80%; 1H NMR (500 MHz, DMSO-d6) δ 8.91 (d, J = 8.2 Hz, 2H), 

8.40 - 8.26 (m, 4H), 8.16 (dd, J = 10.8, 6.4 Hz, 2H), 8.05 (d, J = 5.2 Hz, 2H), 7.96 (dd, J = 11.4, 

4.3 Hz, 2H), 7.76 - 7.64 (m, 2H), 7.56 (d, J = 5.7 Hz, 2H), 7.13 (t, J = 6.7 Hz, 2H). 13C NMR (126 

MHz, DMSO-d6) δ 165.25, 156.31, 155.26, 154.42, 150.42, 149.62, 148.39, 148.30, 146.48, 

146.40, 140.94, 140.52, 140.28, 139.19, 138.53, 138.41, 138.25, 129.36, 125.40, 125.15, 124.20, 

120.78, 110.31, 110.17. HRMS (LTQ, m/z): calcd for C32H18F6N4Ir [M - PF6]
+ 765.1065, found 

765.1046. 
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Highlights 
 

1) The position and number of fluorine atoms affect properties of cationic Ir(III) 

complexes. 

2) Fluorinated cationic Ir(III) complexes show increased photoluminescence quantum 

yields. 

3) Fluorinated cationic Ir(III) complexes demonstrate excellent oxygen sensing 

stability. 
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