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Abstract: The intramolecular cycloizomerization of 2-alkynyl-3-
nitrothiophenes was catalyzed by AuCl3 or CF3CO2Ag to produce
the corresponding thieno[3,2-c]isoxazoles bearing carbonyl func-
tionality in position 3 instead of expected 5-substituted 6H-
thieno[3,2-b]pyrrol-6-one 4-oxides.
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The cyclization of alkynes containing proximate nucleo-
philic centers is currently of great interest and developing
into a most effective strategy for heterocyclic ring con-
struction. This chemistry provides a straightforward ap-
proach to the synthesis of functionalized carbo- and
heterocycles through the regio- and stereoselective addi-
tion of a nucleophile and an unsaturated carbon unit
across the carbon–carbon triple bond.1 Thus a variety of
transition-metal or electrophile-induced 5-exo-dig or 6-
endo-dig cyclization reactions have been reported.2 The
ortho-alkynyl nitrobenzenes are well known as precursors
for the preparation of isatogens (Scheme 1). The classical
cycloisomerizations of starting compounds can be initiat-
ed by pyridine,3a–e nitrosobenzene,3e,f concentrated sulfu-
ric acid,3g,h tetrabutylammonium fluoride (TBAF),3c and
UV light.3i–k Usually these reactions take long times and
require high temperatures. However, few years ago, it was
shown that the presence of transition-metal salts such as
gold(III) bromide4a or silver (I) nitrate4b initiates smooth
cyclization reaction.

Scheme 1 Literature results

On the other hand, recently, we have developed a novel,
concise, and high-yielding formation of pyrrolo[3,2-d]-
pyrimidin-7-one 5-oxides via smooth cycloisomerization
of 2,4-disubstituted 6-arylethynyl-5-nitropyrimidines in
the presence of pyridine. We have shown that the triple

bond of the starting compounds is electron poor, so the cyclo-
isomerization reaction takes only a few minutes and does
not require transition-metal catalysts.5

Encouraged by knowledge from literature and our previ-
ous results, we envisioned that cycloizomerization of all
aromatic and heteroaromatic compounds, bearing triple
bond and nitro group in close proximity to each other,
would always lead to the formation of pyrolone N-oxide
ring containing compounds. However, to our great sur-
prise, we observed different regioselectivity in cyclo-
isomerization of 2-alkynyl-3-nitrothiophenes, so herein
we would like to report on these unexpected results. 

The starting compounds 1 were synthesized by well-
known Sonagashira reaction6 from 2-bromo-3-
nitrothiophene (Scheme 2).7 First of all, it should be noted
that classical pyridine initiated cycloisomerization of the
title compounds was not successful. During the long heat-
ing of 3-nitro-2-phenylethynylthiophene 1a in dry pyri-
dine, no changes of the starting material were observed by
TLC. This result can be easily explained by the fact that
triple bonds in starting compounds are electron-rich due to
neighboring electron-donating thiophene ring, so nucleo-
philic activation becomes impossible. So we decided to
take advantages of transition-metal salts catalytic poten-
cy. When we added 5 mol% of gold(III) chloride to the
solution of 3-nitro-2-phenylethynylthiophene (1a) in dry
dichloromethane, the quick and selective conversion of
the starting material was observed by TLC. The NMR, IR,
and microanalysis data of isolated product were not at
variance with the expected structure – 5-phenyl-6H-
thieno[3,2-b]pyrrol-6-one 4-oxide (3a), but we had doubt
because of the substance’s slightly yellowish color, which
is not common for structural analogues of isatogens (the
latter compounds are usually from deep red to deep vio-
let). And we were really intrigued to see the results from
X-ray analysis, which enabled the outcome of the reaction
to be elucidated unambiguously (Figure 1).8 We were sur-
prised when crystallographic data showed that during
cycloisomerization of the starting compound phenyl-
thieno[3,2-c]isoxazol-3-yl methanone (2a) was formed.

Moreover, it was interesting to note that optically inactive
phenylthieno[3,2-c]isoxazol-3-yl methanone (2a) in its
solid state forms chiral crystals with symmetry space
group P212121.8

Thus, we decided to look for the best conditions to trigger
the cycloisomerization of the title compounds and to study
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the influence of the catalyst for reaction rate and regio-
selectivity. It should be noted that in all successful cases
phenylthieno[3,2-c]isoxazol-3-yl methanone (2a) was
formed and no formation of 5-phenyl-6H-thieno[3,2-
b]pyrrol-6-one 4-oxide (3a) was observed.

Scheme 2 Cycloisomerization reaction of 2-alkynyl-3-nitrothio-
phenes. Reagents and conditions: i) AuCl3 (5 mol%), CH2Cl2, r.t., 15–
45 min or CF3CO2Ag (10 mol%), DCE, reflux, 2 h.

Figure 1 ORTEP view of phenylthieno[3,2-c]isoxazol-3-yl meth-
anone (2a)

Firstly, we noted, that the use of gold(III) chloride (5
mol%) in dichloromethane at room temperature gave the
best result (Table 1, entry 3). While CF3CO2Ag in boiling
dichloroethane provided a slightly lower yield of the de-
sired product 2a (Table 1, entry 5), CF3CO2Ag, CuI, and
PdCl2(PPh3)2 in dichloromethane at room temperature as
well as AgNO3 in boiling dichloroethane proved to be far

less effective (entries 4, 6–8). Cycloisomerization of 1a
on silica gel in microwave oven was unsuccessful (entry
9) and the use of pyridine did not initiate the reaction at all
(entries 1, 2). So, we have found that the preliminarily op-
timal reaction conditions are: 5 mol% of gold(III) chloride
in dichloromethane at room temperature, or 10 mol% of
silver trifluoroacetate in dichloroethane at reflux.

Encouraged by these results we decided to perform the
cycloisomerization reactions of the other 2-alkynyl-3-
nitrothiophenes 1. The results are summarized in Table 2.
It is noteworthy that the nature of the substituent on alky-
nyl group does not have influence on the cycloisomeriza-
tion regioselectivity – in all cases the corresponding
substituted thieno[3,2-c]isoxazol-3-yl methanones have
been formed. In the case of 3-nitro-2-trimethylsilylethy-
nylthiophene (1e), slow decomposition of the starting ma-
terial was observed (Table 2, entry 5). We solved this
problem by performing the deprotection of alkynyl moi-
ety, followed by cycloisomerization of obtained 2-ethy-
nyl-3-nitrothiophene (1f). The latter reaction was smooth
enough and the thieno[3,2-c]isoxazol-3-ylcarbaldehyde
(2f) was isolated in high yield (Table 2, entry 6).

Moreover, we decided to study the cycloisomerization of
3-alkynyl-2-nitrothiophenes (4a,b). The latter two com-
pounds were prepared from the corresponding 3-bromo-
2-nitrothiophene,9 using Sonogashira coupling reaction. It
should be noted, that compounds 4a,b underwent the
same regioselective cycloisomerization reaction to form
arylthieno[2,3-c]isoxazol-3-yl methanones 5a,b. But on
the other hand, the conversions of starting materials were
incomplete after long reactions times, and the yields of the
final products were not high (Table 2, entries 9 and 10).

After a thorough literature search, we had found find only
one literature source where the formation of isoxazole
ring from the neighboring nitro and ethynyl groups was
described.4a In 2003, Asao and co-workers, during inves-
tigations of gold-catalyzed intramolecular cyclizations of
o-(alkynyl)nitrobenzenes, found that, besides the produc-
tion of the desired isatogens, anthranyls were also formed
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Table 1 Reaction Conditions for the Cycloisomerization of 3-Nitro-2-phenylethynylthiophene (1a)

Entry Reaction conditions Time Conversion Yield of 2a (%)

1 pyridine, reflux 10 h 0a 0

2 pyridine, DMAP, reflux 12 h 0a 0

3 AuCl3 (5 mol%), CH2Cl2, r.t. 20 min 100 97

4 CF3CO2Ag (5 mol%), CH2Cl2, r.t. 50 h 43 33

5 CF3CO2Ag (10 mol%), DCE, reflux 2 h 100 93

6 CuI (5 mol%), CH2Cl2, r.t. 50 h 30 11

7 PdCl2(PPh3)2 (5 mol%), CH2Cl2, r.t. 50 h 44 40

8 AgNO3 (10 mol%), DCE, reflux 8 h 80 77

9 SiO2, MW 20 min 0a 0

a Starting material 1a was isolated.
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as side products in low yields.4a The authors proposed a
mechanism for these reactions and postulated therein that
water present in the solvents played a key role in the
cycloisomerization step.

However, we speculate that the cycloisomerization of ar-
omatic or heteroaromatic compounds bearing nitro group
and triple bond moiety in close proximity to each other
takes place via intramolecular oxidation–reduction pro-
cesses via subsequent ring cleavage and recyclization re-
actions. Moreover, we performed the cycloisomerization
reactions in absolute solvent and precisely avoided the
presence of water; so therefore, we think that oxygen in
carbonyl function came from the nitro group, not from the
water.

In conclusion, we have presented unexpected regioselec-
tive cycloisomerization reactions of 2-alkynyl-3-
nitrothiophenes. The novel, simple, and high-yielding
synthetic method of thieno[3,2-c]isoxazole framework
was proposed. Extension of regioselective cycloizomer-
izations of aromatic and heteroaromatic compounds, bear-
ing triple bond and nitro group in close proximity to each
other, is currently under way in our laboratory. More de-
tailed study of the mechanism of the cycloisomerizations
together with their scope and limitations are in progress,
and the results will be published in due course.
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