

0277-5387(95)00252-9

Polyhedron Vol. 15, No. 3, pp. 551–554, 1996 Copyright © 1995 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0277-5387/96 \$9.50+0.00

COMMUNICATION

FORMATION AND REACTIVITY OF 1,3-CYCLOHEXADIENE COMPLEXES OF NIOBIUM AND TANTALUM CONTAINING ARYLOXIDE LIGATION: SELECTIVITY DIFFERENCES IN THE HYDROGENATION OF 1,3-CYCLOHEXADIENE[†]

VALERIE M. VISCIGLIO, MINDY T. NGUYEN, JANET R. CLARK, PHILLIP E. FANWICK and IAN P. ROTHWELL*

Department of Chemistry, 1393 Brown Building, Purdue University, West Lafayette, IN 47907-1393, U.S.A.

(Received 4 April 1995; accepted 5 June 1995)

Abstract—The sodium amalgam reduction (2 Na per M) of hydrocarbon solutions of $[M(OAr)_3Cl_2]$ (M = Nb, Ta) or $[Nb(OAr)_2Cl_3]_2$ (OAr = 2,6-di-isopropylphenoxide) in the presence of either 1,3- or 1,4-cyclohexadiene yielded the complexes $[M(OAr)_3(\eta^4-C_6H_8)]$ (1a: M = Nb; 1b: M = Ta) and $[Nb(OAr)_2Cl(\eta^4-C_6H_8)]$, 2, respectively. The solid state structures of 1a, isomorphous 1b and 2 showed the 1,3-cyclohexadiene strongly bound to the metal. The ligand is not symmetrically bound to the metal in 1 but in 2 there is a crystallographic mirror plane. The solution NMR spectra of 1a and 1b show only one set of aryloxide ligand signals and only four proton and three carbon resonances for the C₆H₈ group. The hydrolysis of 1 or 2 yielded 2,6-di-isopropylphenol and one equivalent of cyclohexane (¹H NMR). The niobium compounds 1a and 2 will catalyse the disproportionation and hydrogenation of 1,3-cyclohexadiene with differing selectivity.

[†] Dedicated to Professor Malcolm Chisholm on the occasion of his 50th birthday.

 \ddagger Selected spectroscopic data. For **1a**: ¹H NMR (C₆D₆, 30° C): δ 1.25 (d, CHMe₂); 3.61 (septet, CHMe₂); 2.22 (d), 2.51 (d, 8.7 Hz, CH₂); 3.98 (m, CH₂-CH); 5.92 (m, CH_2CH-CH); 6.9–7.2 (m, aromatics). ¹³C NMR (C₆D₆, 30° C): δ 24.2 (CHMe₂); 27.6 (CHMe₂); 30.2 (CH₂); 92.4 (CH₂-CH); 122.3 (CH₂CH-CH); 159.9 (Nb-O-C). For 1b: ¹H NMR (C_6D_6 , 30°C): δ 1.25 (d, CHMe₂); 3.65 (septet, $CHMe_2$); 2.72 (m, CH_2); 3.48 (m, CH_2 -CH); 6.28 (m, CH₂CH-CH); 6.9–7.2 (m, aromatics). ¹³C NMR $(C_6D_6, 30^{\circ}C)$: δ 24.3 $(CHMe_2)$; 27.3 $(CHMe_2)$; 31.9 (CH₂); 84.0 (CH₂-CH); 125.8 (CH₂CH-CH); 156.8 (Ta-O-C). For **2**. ¹H NMR (C_6D_6 , 30°C) : δ 1.25 (d), 1.28 (d, 8.8 Hz, CHMe₂); 3.60 (septet, CHMe₂); 2.40 (d), 2.66 (d, CH_2) ; 3.87 (m, CH₂-CH); 5.73 (dd, CH₂CH-CH); 7.04–7.17 (m, aromatics). ¹³C NMR (C₆D₆, 30°C) : δ 24.2, 24.5 (CHMe₂); 27.8 (CHMe₂); 33.0 (CH₂); 99.1 (CH₂-CH); 124.9 (CH₂CH-CH); 159.2 (Nb-O-C).

Recent work by our group has shown that mixed hydrido, aryloxide derivatives of the Group 5 metals Nb and Ta will catalyse the regio- and stereoselective hydrogenation of a variety of arene substrates.^{1,2} As an extension of this work we have attempted to isolate and study the chemistry of organometallic compounds that may be intermediates within the catalytic cycle. We wish to report here the characterization and reactivity of a series of 1,3-cyclohexadiene complexes of these metals.

The sodium amalgam (2 Na per M) reduction of benzene solutions of the di-chlorides $[M(OAr)_3Cl_2]$ (M = Nb, Ta; OAr = 2,6-di-isopropylphen $oxide)^{3,4}$ or $[Nb(OAr)_2Cl_3]_2$ in the presence of either 1,3- or 1,4-cyclohexadiene leads to the compounds $[M(OAr)_3(\eta^4-C_6H_8)]$ (M = Nb, 1a; Ta, 1b) and $[Nb(OAr)_2Cl(\eta^4-C_6H_8)]$, 2 in moderate yield (Scheme 1).‡ The solid state structures of 1a (Fig. 1), isomorphous 1b and 2 (Fig. 2) show the 1,3-cyclohexa

^{*} Author to whom correspondence should be addressed.

(no intermediate cyclohexene released)

Scheme 1. Reagents and conditions: i, metal chloride (1.4 mmol), Na/Hg (4 mmol/5 mL), 1,3-cyclohexadiene (2.8 mmol), hexane (10 mL), 15 h; ii, **1a** (0.085 M in C_6D_6), 1,3-cyclohexadiene (50 per Nb), 110°C, 18 h; iii, **1a** (0.1 mmol), 1,3-cyclohexadiene (5.0 mmol), H₂ (900 psi), C_6H_6 (3 mL), 25°C, 5 h; iv, **2** (0.1 mmol), 1,3-cyclohexadiene (2.5 mmol), H₂ (100 psi), C_6H_6 (3 mL), 25°C, 15 h.

Fig. 1. Molecular structure of **1a**. Selected interatomic distances (Å) and angles (°) for **1a**, isomorphous **1b**: M—O(1) 1.886(6), 1.888(3); M—O(2) 1.906(6), 1.889(3); M—O(3) 1.898(7), 1.902(3); M—C(41) 2.25(1), 2.243(5); M—C(42) 2.27(1), 2.310(5); M—C(43) 2.34(1), 2.366(4); M—C(44) 2.40(1), 2.337(5); C(41)—C(42) 1.42(1), 1.433(7); C(42)—C(43) 1.37(2), 1.375(7); C(43)—C(44) 1.38(2), 1.413(7); M—O(1)—C(11) 162.5(6), 164.8(3); M—O(2)—C(21) 150.8(6), 149.5(3); M—O(3)—C(31) 149.8(6) 150.9(3)

Fig. 2. Molecular structure of **2**. Selected interatomic distance (Å) and angles (°): Nb—Cl 2.367(1), Nb—O(1) 1.897(2), Nb—C(10) 2.344(4), Nb—C(11) 2.326(5), C(10)—C(10) ' 1.37(1), C(10)—C(11) 1.388(7), Nb—O(1)—C(1) 151.9(2).

diene strongly bound to the metal.* The ligand is not symmetrically bound to the metal in 1 (Fig. 1) but in 2 there is a crystallographic mirror plane (Fig. 2). The solution NMR spectra of 1a and 1b show only one set of aryloxide ligand signals and only four proton and three carbon resonances for the C_6H_8 group. Hence, rapid rotation of the bound cyclohexadiene about the metal centre must be occurring on the NMR time scale. The hydrolysis of 1 or 2 yields 2,6-di-isopropylphenol and one equivalent of cyclohexene (¹H NMR).

Thermolysis of compounds 1 and 2 (110° C, C₆D₆, sealed 5 mm NMR tube) leads to the formation of benzene, cyclohexene and cyclohexane along with unidentified metal products. Solutions of 1a catalyse the disproportionation of 1,3-cyclohexadiene to cyclohexene and benzene (1:1 ratio) with only trace amounts of cyclohexane being formed. A

0.085 M solution of **1a** in C_6D_6 completely disproportionates 50 equivalents of 1,3-cyclohexadiene in 18 h at 110°C, with less than 3% (¹H NMR) cyclohexane being formed. In contrast the tantalum compounds **1b** and niobium monochloride **2** will disproportionate <5 equivalents under the same conditions.

and 1,3-cyclohexadiene Both cyclohexene undergo hydrogenation catalysed by 1a and 2 but with differing selectivities. Hydrogenation (benzene solvent, 900 psi of H₂) of 50 equivalents of cyclohexene or 1,3-cyclohexadiene by 1a is complete after 5 h at 25°C. Analysis (NMR and GC) of the reaction mixture during hydrogenation of 1,3cyclohexadiene failed to detect significant amounts of cyclohexene. Carrying out the reaction in C_6D_6 under only 1 atm of H_2 in a 5 mm NMR tube showed the slow conversion of 1,3-cyclohexadiene to cyclohexane with only trace amounts of cyclohexene detected. This result implies that either cyclohexene is not released from the metal during hydrogenation of 1,3-cyclohexadiene by **1a** or else cyclohexene is hydrogenated at a much faster rate than 1,3-cyclohexadiene. This reactivity was further interrogated by carrying out the partial hydrogenation of a 50:50 mixture of cyclohexene and 1,3-cyclohexadiene in C_6D_6 solvent by 1a using D_2 as reagent gas. Analysis of the product mixture by GC/MS after 20% reaction showed that the cyclohexane originated entirely from the 1,3cyclohexadiene with none of the initial cyclohexene undergoing hydrogenation. The lack of any detectable deuterium incorporation into either the unreacted cyclohexene or 1.3-cyclohexadiene indicates that 1,3-cyclohexadiene is irreversibly hydrogenated to cyclohexane by solutions of 1a without release of any intermediate cyclohexene.

In contrast, the hydrogenation of 1,3-cyclohexadiene by **2** was found to produce cyclohexene. Only when all of the 1,3-cyclohexadiene was converted

^{*} Crystal data. For 1a at 20° C: NbO₃C₄₂H₅₉. M = 704.84, space group P2₁/c (No. 14), a = 11.562(1), $b = 16.117(2), \quad c = 21.914(3)$ $\dot{A}, \quad \beta = 103.69(1)^{\circ},$ V = 3967(2) Å³, $D_c = 1.180$ g cm⁻³, Z = 4. Of the 5409 unique reflections collected ($4.0^{\circ} \leq 2\theta \leq 45.0^{\circ}$) with Mo- K_x ($\lambda = 0.71073$ Å) the 2161 with $I > 3\sigma(I)$ were used in the final least squares refinement to yield R = 0.045 and $R_w = 0.051$. For **1b** at -57° C: TaO₃C₄₂H₅₉. M = 792.88, space group $P2_1/c$ (No. 14), a = 11.452(2), b = 16.175(3),c = 21.765(3) Å, $\beta = 103.52(1)^{\circ}$, V = 3919(2) Å³, $D_c = 1.343$ g cm⁻³, Z = 4. Of the 5324 unique reflections collected (4.0° $\leq 2\theta \leq 45.0^{\circ}$) with Mo- K_{α} ($\lambda = 0.71073$ Å) the 4076 with $I > 3\sigma(I)$ were used in the final leastsquares refinement to yield R = 0.022 and $R_w = 0.027$. For **2** at 20° C: NbClO₂C₃₀H₄₂. M = 563.03, space group a = 12.237(1),b = 21.633(1),P_{nma} (No. 62), c = 10.883(2) Å, V = 2881.0(9) Å³, $D_c = 1.298$ g cm⁻³, Z = 4. Of the 4690 unique reflections collected $(4.0^\circ \le 2\theta \le 60^\circ)$ with Mo- K_x ($\lambda = 0.71073$ Å) the 2050 with $I > 3\sigma(I)$ were used in the final least-squares refinement to yield R = 0.037 and $R_w = 0.043$.

to cyclohexene was the latter slowly hydrogenated to cyclohexane. This selectivity difference may be attributable to the chemistry of the as yet unisolated intermediate cyclohexene complexes [Nb(OAr)₃(η^2 -C₆H₁₀)] and [Nb(OAr)₂Cl(η^2 -C₆H₁₀)]. The trisphenoxide complex apparently undergoes hydrogenation at a rate faster than exchange with either free cyclohexene or 1,3-cyclohexadiene, while the mono-chloride complex must undergo substitution by 1,3-cyclohexadiene to regenerate **2** at a rate faster than hydrogenation.

Acknowledgement—We thank the Department of Energy for support of this research.

REFERENCES

- (a) J. S. Yu, B. C. Ankianiec, M. T. Nguyen and I. P. Rothwell, J. Am. Chem. Soc. 1992, 114, 1927; (b) J. S. Yu and I. P. Rothwell, J. Chem. Soc. Chem. Comm. 1992, 632.
- (a) V. M. Visciglio, P. E. Fanwick and I. P. Rothwell, J. Chem. Soc. Chem. Comm. 1992, 1505; (b) B. C. Ankianiec, P. E. Fanwick and I. P. Rothwell, J. Am. Chem. Soc. 1991, 113, 4710.
- 3. J. S. Yu, P. E. Fanwick and I. P. Rothwell, J. Am. Chem. Soc. 1990, 112, 8171.
- 4. L. R. Chamberlain, I. P. Rothwell and J. C. Huffman, *Inorg. Chem.* 1984, 23, 2575.