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Abstract- -The sodium amalgam reduction (2 Na per M) of  hydrocarbon solutions of 
[M(OAr)3C12] (M = Nb, Ta) or [Nb(OAr)2C13]2 (OAr = 2,6-di-isopropylphenoxide) in the 
presence of either 1,3- or 1,4-cyclohexadiene yielded the complexes [M(OAr)3(t/4-C6H8)] 
( la :  M = Nb;  lb:  M = Ta) and [Nb(OAr)2CI(r/4-C6H8)], 2, respectively. The solid state 
structures of  la, isomorphous lb and 2 showed the 1,3-cyclohexadiene strongly bound to 
the metal. The ligand is not symmetrically bound to the metal in 1 but in 2 there is a 
crystallographic mirror plane. The solution N M R  spectra of  la  and lb show only one set 
of  aryloxide ligand signals and only four proton and three carbon resonances for the C6H 8 

group. The hydrolysis of 1 or 2 yielded 2,6-di-isopropylphenol and one equivalent of 
cyclohexane (1H NMR).  The niobium compounds la  and 2 will catalyse the dis- 
proportionation and hydrogenation of 1,3-cyclohexadiene with differing selectivity. 

* Author to whom correspondence should be addressed. 

t Dedicated to Professor Malcolm Chisholm on the 
occasion of his 50th birthday. 

Selected spectroscopic data. For la : IH NMR (C6D6, 
30°C) : b 1.25 (d, CHMe2) ; 3.61 (septet, CHMe:) ; 2.22 
(d), 2.51 (d, 8.7 Hz, CH2) ; 3.98 (m, CH2-CH) ; 5.92 (m, 
CH2CH-CH) ; 6.9-7.2 (m, aromatics). ~3C NMR (C6D6, 
30°C): 6 24.2 (CHMe2); 27.6 (CHMe2); 30.2 (CH2); 
92.4 (CH2-CH); 122.3 (CH2CH-CH); 159.9 (Nb-O-C). 
For lb : IH NMR (C6D6, 30°C) " 6 1.25 (d, CHMe2) ; 3.65 
(septet, CHMe:) ; 2.72 (m, CH2); 3.48 (m, CH2-CH); 
6.28 (m, CH2CH-CH) ; 6.9-7.2 (m, aromatics). 13C NMR 
(C6D6, 30°C): 6 24.3 (CHMe2); 27.3 (CHMe2); 31.9 
(CH:) ; 84.0 (CH2-CH) ; 125.8 (CH2CH-CH) ; 156.8 (Ta- 
O-C). For 2. 1H NMR (C6D6, 30°C) " b 1.25 (d), 1.28 (d, 
8.8 Hz, CHMe2); 3.60 (septet, CHMe2) ; 2.40 (d), 2.66 
(d, CH2); 3.87 (m, CH2-CH); 5.73 (dd, CH2CH-CH); 
7.04-7.17 (m, aromatics). 13C NMR (C6D6, 30°C) " 6 24.2, 
24.5 (CHMe2) ; 27.8 (CHMe:) ; 33.0 (CH2) ; 99.1 (CH2- 
CH) ; 124.9 (CH2CH-CH) ; 159.2 (Nb-O-C). 

Recent work by our group has shown that mixed 
hydrido, aryloxide derivatives of the Group 5 
metals Nb and Ta will catalyse the regio- and stereo- 
selective hydrogenation of a variety of arene sub- 
strates. 1'2 As an extension of  this work we have 
attempted to isolate and study the chemistry of 
organometallic compounds that may be inter- 
mediates within the catalytic cycle. We wish to 
report here the characterization and reactivity of  
a series of 1,3-cyclohexadiene complexes of these 
metals. 

The sodium amalgam (2 Na per M) reduction of 
benzene solutions of  the di-chlorides [M(OAr)3CI2] 
(M = Nb, Ta;  OAr = 2,6-di-isopropylphen- 
oxide) 3'4 or [Nb(Omr)2C13] 2 in the presence of either 
1,3- or 1,4-cyclohexadiene leads to the compounds 
[M(Omr)3(q4-f6H8)] (M = Nb, l a ;  Ta, lb) and 
[Nb(Omr)2fl(r/4-C6H8)], 2 in moderate yield (Scheme 
1).:~ The solid state structures of la  (Fig. 1), iso- 
morphous lb  and 2 (Fig. 2) show the 1,3-cyclohexa 
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[M(OAr)3CI2 ] + 2 Na/Hg + 

[Nb(OAr)2CI3] + 2 Na/Hg 
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Scheme 1. Reagents and conditions: i, metal chloride (1.4 mmol), Na/Hg (4 mmol/5 mL), 1,3- 
cyclohexadiene (2.8 mmol), hexane (10 mL), 15 h; ii, la (0.085 M in C 6 D 6 )  , 1,3-cyclohexadiene 
(50 per Nb), ll0°C, 18 h; iii, la (0.1 mmol), 1,3-cyclohexadiene (5.0 mmol), H2 (900 psi), C6H6 
(3 mL), 25°C, 5 h; iv, 2 (0.1 retool), 1,3-cyclohexadiene (2.5 retool), H2 (100 psi), C6H6 (3 mL), 

25"C, 15 h. 
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Fig. 1. Molecular structure of la. Selected interatomic distances (.~) and angles (°) for la, isomorphous 
lb: M--O(1) 1.886(6), 1.888(3); M--O(2) 1.906(6), 1.889(3); M--O(3) 1.898(7), 1.902(3); 
M--C(41) 2.25(1), 2.243(5) ; M--C(42) 2.27(1), 2.310(5) ; M--C(43) 2.34(1), 2.366(4); M--C(44) 
2.40(1), 2.337(5); C(41)~C(42) 1.42(1), 1.433(7); C(42)--C(43) 1.37(2), 1.375(7); C(43)--C(44) 
1.38(2), 1.413(7); M--O(1)--C(II) 162.5(6), 164.8(3); M--O(2)--C(21) 150.8(6), 149.5(3); 
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C(5) C(6)-"~ C(62) ~ ,  ~ - 

c(63)~ c " ~ ccl0) | 

Fig. 2. Molecular structure of 2. Selected interatomic distance (~) and angles (:): Nb--CI 2.367(1), 
Nb--O(l)  1.897(2), Nb--C(10) 2.344(4), Nb--C(11) 2.326(5), C(10)--C(10)' 1.37(1), C(10)--C(11) 

1.388(7), Nb--O(1)--C(I)  151.9(2). 
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diene strongly bound to the metal.* The ligand is 
not symmetrically bound to the metal in 1 (Fig. 1) 
but in 2 there is a crystallographic mirror plane 
(Fig. 2). The solution N M R  spectra of  l a  and lb 
show only one set of  aryloxide ligand signals and 
only four proton and three carbon resonances for 
the C 6 H  8 group. Hence, rapid rotation of the 
bound cyclohexadiene about  the metal centre must 
be occurring on the N M R  time scale. The hydroly- 
sis of  I or 2 yields 2,6-di-isopropylphenol and one 
equivalent of  cyclohexene (~H NMR) .  

Thermolysis of  compounds  I and 2 (110'~C, C6D6,  

sealed 5 mm N M R  tube) leads to the formation of 
benzene, cyclohexene and cyclohexane along with 
unidentified metal products. Solutions of  l a  cat- 
alyse the disproportionation of  1,3-cyclohexadiene 
to cyclohexene and benzene (1 : 1 ratio) with only 
trace amounts  of  cyclohexane being formed. A 

* Crystal  data. For la at 20°C: NbO3C4:H59. 
M = 704.84, space group P2~/c (No. 14), a = 11.562(1), 
b = 16.117(2), c = 21.914(3) &, /~ = 103.69(1) °, 
V= 3967(2)/~3, Dc = 1.180 g c m  -3, Z = 4. Of the 5409 
unique reflections collected (4.0 ° ~< 20 ~< 45.0 '~) with Mo- 
K~ (2 = 0.71073 ]~) the 2161 with I > 3a(I) were used in 
the final least squares refinement to yield R = 0.045 and 
R,, = 0.051. For lb at - 57°C : TaO3C42Hs9. M = 792.88, 
space group P21/c (No. 14), a = 11.452(2), b = 16.175(3), 
c=21.765(3) /~, /~=103.52(1) °, V=3919(2) /~3, 
Dc = 1.343 g c m  -3, Z = 4. Of the 5324 unique reflections 
collected (4.ff ~ ~< 20 ~< 45.0 °) with Mo-K, (2 = 0.71073 
/k) the 4076 with I > 3~r(1) were used in the final least- 
squares refinement to yield R = 0.022 and R~ = 0.027. 
For 2 at 20"C : NbCIO2C30H42. M = 563.03, space group 
P ..... (No. 62), a = 12.237(1), b = 21.633(1), 
c = 10.883(2) ,&, V = 2881.0(9) /~3, De = 1.298 g cm 3, 
Z =  4. Of the 4690 unique reflections collected 
(4.0 ° ~< 20 ~< 60 ~') with Mo-K~ (,~ = 0.71073 &) the 2050 
with I >  3~r(l) were used in the final least-squares 
refinement to }ield R = 0.037 and R~ = 0.043. 

0.085 M solution of  l a  in C6D6 completely dis- 
proportionates 50 equivalents of  1,3-cyclohexa- 
diene in 18 h at 110~C, with less than 3% (~H N M R )  
cyclohexane being formed. I n contrast the tantalum 
compounds lb  and niobium monochloride 2 will 
disproportionate < 5  equivalents under the same 
conditions. 

Both cyclohexene and 1,3-cyclohexadiene 
undergo hydrogenation catalysed by la  and 2 but 
with differing selectivities. Hydrogenation (benzene 
solvent, 900 psi of  H:) of 50 equivalents of  cyclo- 
hexene or 1,3-cyclohexadiene by la  is complete 
after 5 h at 25°C. Analysis ( N M R  and GC) of 
the reaction mixture during hydrogenation of 1,3- 
cyclohexadiene failed to detect significant amounts 
of  cyclohexene. Carrying out the reaction in C,D6 
under only 1 atm of H2 in a 5 mm N M R  tube 
showed the slow conversion of 1,3-cyclohexadiene 
to cyclohexane with only trace amounts of  
cyclohexene detected. This result implies that either 
cyclohexene is not released from the metal during 
hydrogenation of 1,3-cyclohexadiene by la  or else 
cyclohexene is hydrogenated at a much faster.rate 
than 1,3-cyclohexadiene. This reactivity was further 
interrogated by carrying out the partial hydro- 
genation of a 50 : 50 mixture of  cyclohexene and 
1,3-cyclohexadiene in C6D6 solvent by la  using D2 
as reagent gas. Analysis of  the product mixture 
by GC/MS after 20% reaction showed that the 
cyclohexane originated entirely from the 1,3- 
cyclohexadiene with none of  the initial cyclohexene 
undergoing hydrogenation. The lack of any detect- 
able deuterium incorporation into either the unre- 
acted cyclohexene or 1,3-cyclohexadiene indicates 
that 1,3-cyclohexadiene is irreversibly hydro- 
genated to cyclohexane by solutions of  l a  without 
release of  any intermediate cyclohexene. 

In contrast, the hydrogenation of 1,3-cyclohexa- 
diene by 2 was found to produce cyclohexene. Only 
when all of  the 1,3-cyclohexadiene was converted 
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to cyclohexene was the latter slowly hydrogenated 
to cyclohexane. This selectivity difference may be 
attributable to the chemistry of  the as yet unisolated 
intermediate cyclohexene complexes [Nb(OAr)a(q2- 
C6H10)] and [Nb(OAr)2CI(r/2-C6H~0)]. The tris- 
phenoxide complex apparently undergoes hydro- 
genation at a rate faster than exchange with either 
free cyclohexene or 1,3-cyclohexadiene, while the 
mono-chloride complex must undergo substitution 
by 1,3-cyclohexadiene to regenerate 2 at a rate 
faster than hydrogenation. 

Acknowledgement--We thank the Department of Energy 
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