

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry 12 (2004) 4633-4643

Bioorganic & Medicinal Chemistry

Syntheses and evaluation of antioxidant activity of sydnonyl substituted thiazolidinone and thiazoline derivatives

Mei-Hsiu Shih* and Fang-Ying Ke

Department of Chemical Engineering, Southern Taiwan University of Technology, 1 Nan-Tai St. Yung-Kang, Tainan 710, Taiwan, ROC

Received 26 May 2004; revised 25 June 2004; accepted 25 June 2004

Abstract—3-Aryl-4-formylsydnone 4'-phenylthiosemicarbazones (3a–d) and 3-aryl-4-formylsydnone thiosemicarbazones (3e–h), which are precursors of 3-aryl-4-heterocyclic sydnones, are prepared by the condensation of 3-aryl-4-formylsydnones (1a–d) with 4'-phenylthiosemicarbazide (2a) and thiosemicarbazide (2b), respectively. The thiosemicarbazones 3 reacted with cyclic reagents such as ethyl chloroacetate (4a), ethyl 2-chloroacetoacetate (4b) and 2-bromoacetophenone (4c) to produce heterocyclic substituted sydnone derivatives 5–7 that possess 4-oxo-thiazolidine and thiazoline groups. The antioxidant activity of synthesized compounds 5a–7h was evaluated. Among these compounds, 4-methyl-2-[(3-arylsydnon-4-yl-methylene)hydrazono]-2,3-dihydro-thiazole-5-carboxylic acid ethyl ester (6e–h) and 4-phenyl-2-[(3-arylsydnon-4-yl-methylene)hydrazono]-2,3-dihydro-thiazoles (7e–h) exhibit the potent DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, comparable to that of vitamin E. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Several sydnone derivatives have associated with a broad range of physiological activities, exhibiting antimicrobial, anti-inflammatory, analgesic and antipyretic properties.^{1–3} Hence, chemists have been enthusiastically pursuing the syntheses of these derivatives.⁴⁻⁶ Thiosemicarbazones have been reported to exhibit antituberculosis activity.^{7,8} Besides, thiazoles and their derivatives exhibit various biological activities such as antimicrobial, anti-inflammatory, antiviral, antituberculosis and cytotoxic activities, among others.^{9–18} Following reports of these activities, this study seeks to synthesize a series of novel thiazole derivatives that contain the sydnonyl moiety, with the aim of obtaining new biologically active compounds. In view of the continued interest in the development of simpler and more convenient synthetic routes for preparing heterocyclic systems,¹⁹⁻²⁷ an efficient and useful method is reported herein to synthesize some new sydnonyl-substituted thiazolidinones and thiazolines by the reaction of 3-aryl-4-formylsydnone 4'-

phenylthiosemicarbazones (3a-d) or 3-aryl-4-formylsydnone thiosemicarbazones (3e-h) with cyclic reagents such as ethyl chloroacetate (4a), ethyl 2-chloroacetoacetate 4b and 2-bromoacetophenone (4c). The scavenging effects of all of the synthesized compounds on the DPPH free radical are evaluated. Nowadays, antioxidants that exhibit DPPH radical scavenging activity are increasingly receiving attention. They have been reported to have interesting anticancer, antiageing and anti-inflammatory activities. To the authors' knowledge, no investigation of the radical scavenging effects of synthesized sydnone derivatives has yet been undertaken. Accordingly, a study of the syntheses of new sydnone derivatives with antioxidant activity would support the development of new drugs and improve the treatment of various diseases.

2. Results and discussion

2.1. Synthetic chemistry

Thiosemicarbazones exhibit various biological activities and are widely used in medicine, especially in the treatment of tuberculosis.^{7,8} Many compounds with a thiosemicarbazone moiety also exhibit biological

Keywords: 3-Aryl-4-formylsydnone thiosemicarbazones; Thiazolindinones; Thiazolines; Antioxidant activity.

^{*} Corresponding author. Tel.: +886-6-2533131x3723; fax: +886-6-2425741; e-mail: meihsius@mail.stut.edu.tw

^{0968-0896/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2004.06.033

activity.²⁸ Accordingly, 3-aryl-4-formylsydnone 4'-phenylthiosemicarbazones (**3a-d**) and 3-aryl-4-formylsydnone thiosemicarbazones (**3e-h**) were synthesized in good yields by the reactions of 3-aryl-4-formylsydnones (**1a-d**) with 4'-phenylthiosemicarbazide (**2a**) and thiosemicarbazide (**2b**), respectively (Scheme 1).

Thiazolidine-4-ones are well known for their pharmacological activities. Several substituted thiazolidinones have been found to possess hypnotic, anaesthetic, sedative, anticonvulsant and microbiological activities.^{29–31} In view of the various physiological activities of thiazolidinone derivatives, many thiazolidinone derivatives have been prepared. In this report, 3-aryl-4-formylsydnone 4'-phenyl thiosemicarbazones (**3a–d**) were used to react with ethyl chloroacetate (**4a**) in ethanol solution that contained sodium acetate/acetic acid buffer system, to produce 2-[(3-aryl-sydnon-4-ylmethylene)hydrazono]-3-phenyl-thiazolidin-4-ones (**5a–d**) in high yields (Scheme 2).

The sydnone ring is sensitive to acids such as hydrochloric acid, and sydnone compounds are sometimes decomposed during reaction and/or workup, so in the reaction, sodium acetate was used to scavenge the released hydrogen chloride that could cause the decomposition of sydnones. Acetic acid was used to catalyze the cyclization. Increasing the amount of acetic acid accelerated the reaction. Besides, acetic acid and sodium acetate form a buffer system to maintain the pH value of the reaction solution at 4.6-4.7 and avoid the decomposition of sydnones. Therefore, under optimal conditions, compounds **3a-d** reacted with ethyl chloroacetate in ethanol solution with a catalytic amount of acetic acid to yield the desired products 5a-d. All these products were spectroscopically characterized. Among the new products 5a-d, the orange crystal 5c was analytically pure and suitable for X-ray structure analyses. Figure 1 presents the molecular structure of compound 5c.

The pharmacological properties of thiazolines have been studied. Thus, some thiazoline derivatives show interesting anti-HIV or anticancer activities and can inhibit cell division.^{32–34} This paper presents a convenient strategy for synthesizing 4-methyl-5-ester-substituted thiazolines **6** and 4-phenyl-substituted thiazolines **7**. Cyclic reagents

Scheme 1. 1a: $Ar = C_6H_5$; 1b: $Ar = p-CH_3C_6H_4$; 1c: $Ar = p-CH_3OC_6H_4$; 1d: $Ar = p-C_2H_5OC_6H_4$.

Scheme 2. 3a: $Ar = C_6H_5$; 3b: $Ar = p-CH_3C_6H_4$; 3c: $Ar = p-CH_3OC_6H_4$; 3d : $Ar = p-C_2H_5OC_6H_4$.

Figure 1. Crystal structure of compound 5c.

such as ethyl 2-chloroacetoacetate (4b) and 2-bromoacetophenone (4c) were allowed to react with 3-aryl-4formylsydnone 4'-phenylthiosemicarbazones (3a–d) in buffer systems of sodium acetate and acetic acid, to produce the desired products 2-[(3-arylsydnon-4-ylmethylene)hydrazono]-4-methyl-3-phenyl-2,3-dihydro-thiazole-5carboxylic acid ethyl esters (6a–d) and 3,4-diphenyl-2-[(3-arylsydnon-4-ylmethylene)hydrazono]-2,3-dihydrothiazoles (7a–d) in good yields, too (Scheme 2).

All the reactions of compounds 3a-d with reagents 4a-c were initiated at room temperature and then heated until completion. The reaction time and reaction temperature of these cyclic reagents 4a-c with compounds 3 imply that the order of their reactivities is 4c > 4b > 4a. All these products were spectroscopically characterized. Among these new thiazoline derivatives 6a-7d, the orange crystals 6b and 7c were analytically pure and suitable for X-ray structure analyses. Figures 2 and 3 show the molecular structures of compounds 6b and 7c are given in Table 1.

Treatment of 3-aryl-4-formylsydnone thiosemicarbazones (3e-h) with reagents 4a-c in ethanol solution that contains sodium acetate and acetic acid buffer systems yielded the desired products 5e-h, 6e-h and 7e-h also in good yields (Scheme 3). The reaction time, the reaction temperature and the corresponding yields of the reaction 3a-h with reagents 4a-c imply that compounds 3e-h are more reactive than compounds 3a-d, because the steric effect of the phenyl group reduces the ability of compounds 3a-d to undergo nucleophilic cyclization, and the greater electron density on the NH₂ in compounds 3e-h than on the NH in compounds 3a-d increases the ability of compounds 3e-h to undergo nucleophilic cyclization.

Among the cyclic reagents **4a–c**, 2-bromoacetophenone (**4c**) is the most reactive compound with thiosemicarbazones **3**. The reactions of **4c** with **3e–h** must be performed in an ice-cooled system to prevent the decomposition of sydnone compounds during the reaction. The reactions were initially also controlled by the successive addition of reagent **4c**, sydnones, sodium ace-

Figure 2. Crystal structure of compound 6b.

Figure 3. Crystal structure of compound 7c.

tate and acetic acid in that order, but still, the starting materials **3e-h** were unavoidably decomposed. Many tests established that sodium acetate and acetic acid should be first added to the ice-cooled solution of sydnone **3**. Then, cyclic reagent **4c** was slowly added to the buffer solution and the mixture was stirred to precipitate the desired material. Consequently, under optimal experimental conditions, compounds **3e-h** reacted with 2-bromoacetophenone (**4c**) in ethanol to generate products **7e-h** in high yields (Scheme 3).

2.2. Scavenging effect of antioxidant activity on DPPH radical

The model of the scavenging of the stable DPPH radical is extensively used to evaluate antioxidant activities in less time than other methods. DPPH is a stable free radical that can accept an electron or hydrogen radical and thus be converted into a stable, diamagnetic molecule. DPPH has an odd electron and so has a strong absorption band at 517 nm. When this electron becomes paired

Compound	5c	6b	7c
Diffractometer	Rigaku AFC7S	Rigaku AFC7S	Rigaku AFC7S
Formula	$C_{19}H_{15}N_5O_4S$	$C_{23}H_{21}N_5O_4S$	$C_{25}H_{19}N_5O_3S$
Formula weight	409.42	463.51	469.52
Crystal system	Monoclinic	Triclinic	Orthorhombic
Crystal colour, habit	Orange, plate	Orange, prism	Red, prism
Space group	Cc (#9)	P1(#2)	$Pca2_{1}$ (#29)
<i>a</i> (Å)	24.775(4)	10.165(2)	24.48(1)
b (Å)	5.325(4)	12.394(2)	5.593(4)
<i>c</i> (Å)	14.157(6)	10.026(2)	16.52(1)
α (°)		90.97(1)	
β (°)	97.17(2)	110.47(1)	
γ (°)		73.86(1)	
$V(\text{\AA}^3)$	1853(1)	1132.2(3)	2262(2)
Ζ	4	2	4
$D_{\rm calc} ({\rm gcm^{-3}})$	1.467	1.360	1.378
F_{000}	848.00	484.00	976.00
$\mu (Mo K_{\alpha}) (cm^{-1})$	2.13	1.83	1.82
Crystal size (mm)	$0.20 \times 0.60 \times 0.80$	$0.20 \times 0.60 \times 0.70$	0.35×0.55×0.65
Temperature (K)	293	293	293
Scan type	ω –2 $ heta$	ω –2 $ heta$	ω –2 $ heta$
$2\theta_{\max}$ (°)	52.0	52.0	52.1
Reflections measured	2087	4722	2592
Unique reflections	2035 ($R_{\rm int} = 0.015$)	4457 ($R_{\rm int} = 0.017$)	
No. observations $[I > 3.00\sigma(I)]$	1451	3218	1281
No. variables	262	298	307
Residuals: R; Rw	0.039; 0.057	0.044; 0.064	0.060; 0.082
GoF	1.53	1.82	1.82

Table 1. Crystal data of compounds 5c, 6b and 7c

Scheme 3. 3e: $Ar = C_6H_5$; 3f: $Ar = p-CH_3C_6H_4$; 3g: $Ar = p-CH_3OC_6H_4$; 3h: $Ar = p-C_2H_5OC_6H_4$.

off, the absorption decreases stoichiometrically with respect to the number of electrons taken up. Such a change in the absorbance produced in this reaction has been widely applied to test the capacity of numerous molecules to act as free radical scavengers. The scavenging effect of the synthesized compounds **5a**–**7h** on the DPPH radical was evaluated according to the methods of Shimada et al.,³⁵ Leong and Shui³⁶ and Braca et al.³⁷ Various concentrations of the test compound in 1.5mL methanol were added to a 1.5mL (0.2mM) solution of DPPH radical in methanol (final concentration of DPPH was 0.1mM). The mixture was shaken

vigorously and allowed to stand for 30 min or more; absorbance at 517 nm was determined by a Hitachi U-2001 spectrophotometer, and the percentage of activity was calculated. Vitamin E was used as a reference compound. All tests and analyses were undertaken on three replicates and the results averaged. The tests reveal that the reaction with DPPH is in a time-dependent fashion and that the more the concentration of the tested compound the higher the radical scavenging activity it is. However, compounds **5a–h** with 4-oxo-thiazolidine moiety exhibited 50–60% radical scavenging activity after standing 3 h (10–20% in 30 min) at a final concentration of 0.1 mM. Compounds 6a-d and 7a-d with 3-phenyl-2,3-dihydrothiazole moiety showed 10–15% and 0–5% radical scavenging activity (in 30 min incubation), respectively. In contrast, compounds **6e-h** and **7e-h** with 2,3-dihydrothiazole moiety scavenge DPPH radical very fast and the incubated time only takes 10min to reach equilibrium. Compounds 6e-h and 7e-h exhibited very good radical scavenging activity 90-98% at a final concentration of 0.1 mM. The radical scavenging effects for each of the compounds 5a-7h (0.1 mM) incubated 30min with DPPH at 0.1mM concentration are shown in Figure 4. The profiles of the scavenging effect of compounds 6e-h and 7e-h on DPPH are comparable to that of vitamin E, and are presented in Figures 5 and 6, respectively. In this study, compounds 6e-h and 7e-h exhibited strong activity, perhaps due to the presence of the functional group N–H in the 2,3-dihydrothiazole moiety, which can donate hydrogen atoms. After donating a hydrogen atom, compounds 6e-h and 7e-h with 2,3-dihydrothiazole moiety exist in radical form, and the electron conjugation effect in the structure stabilizes the radical so that it does not become involved in a destructive biochemical reaction.

Figure 4. Scavenging activity of compounds **5a**–**7h** (0.1 mM) incubated 30 min with DPPH at 0.1 mM concentration.

Figure 5. Scavenging activity of compounds 6e-h on DPPH radical.

Figure 6. Scavenging activity of compounds 7e-h on DPPH radical.

3. Conclusion

In summary, various biologically active compounds that contain a thiazolindinone or thiazoline moiety have been discovered or chemically synthesized. This work describes an efficient method of obtaining sydnonyl-substituted thiazolindinones or thiazolines. Applying this method to the cyclization of 3-aryl-4-formylsydnone 4'-phenylthiosemicarbazones (3a-d) or 3-aryl-4-formylsydnone thiosemicarbazones (3e-h) with ethyl chloroacetate (4a), ethyl 2-chloroacetoacetate (4b) and 2bromoacetophenone (4c) provides access to the target compounds, such as thiazolidin-4-ones 5a-h, 4-methyl-2,3-dihydro-thiazole-5-carboxylic acid ethyl esters 6a-h and 4-phenyl-2,3-dihydro-thiazoles 7a-h. Among these, compounds 6e-h, 7e-h exhibit a potent DPPH radical scavenging activity, which is comparable to that of vitamin E. The 2,3-dihydrothiazole moiety of compounds **6e-h** and **7e-h** plays an important role in the scavenging radical activity.

4. Experimental

4.1. General

All melting points were determined on an England Electrothermal Digital Melting Point apparatus and are uncorrected. IR spectra were recorded on a MATT-SON/SATELLITE 5000 FT-IR spectrophotometer. Mass spectra were measured on a VG Quattro GC/ MS/MS/DS spectrometer. ¹H NMR spectra were run on a Bruker AMX-200 NMR spectrometer, using TMS as an internal standard. ¹³C NMR spectra were carried out with complete ¹H decoupling and assignments were made through additional DEPT experiments. Elemental analyses were taken with a Heraeus CHN-O-Rapid Analyzer or Elementar Vario EL-III Analyzer. X-ray spectra were performed on a Rigaku AFC7S diffractometer. 3-Phenyl-4-formylsydnone (**1a**), 3-(4-methylphenyl)-4-formylsydnone (**1b**), 3-(4-methoxyphenyl)-4-formylsydnone (**1c**) and 3-(4-ethoxyphenyl)-4formylsydnone (1d) were prepared according to the literature. 19

4.2. Syntheses of 3-aryl-4-formylsydnone 4'-phenyl thiosemicarbazones (3a–d)

To a solution of 3-phenyl-4-formylsydnone (1a, 570 mg, 3.0 mmol) in absolute ethanol (20 mL), 4-phenyl-thiosemicarbazide (2a, 526 mg, 3.15 mmol) was slowly added. The mixed solution was heated at 45 °C for 2–3 days and then cooled. The precipitating solid was collected by filtration and recrystallized from dichloro-methane/ethanol to afford 815 mg (80%) of 3-phenyl-4-formylsydnone 4'-phenylthiosemicarbazone 3a as yellow powder. The chemical and physical spectral characteristics of these products 3a-d are given below.

4.2.1. 3-Phenyl-4-formylsydnone 4'-phenylthiosemicarbazone (3a). Yellow powder from CH₂Cl₂/EtOH; yield 80%; mp 170–171 °C; IR (KBr) 3322, 3148, 2986, 1776, 1590, 1533, 1515, 1260, 1203 cm⁻¹; ¹H NMR (DMSOd₆): δ 7.14–7.89 (m, 11H), 8.66 (s, 1H), 11.93 (s, 1H); FABMS⁺ m/z (%): 340 (M⁺+H, 100), 339 (M⁺, 17); Anal. Calcd for C₁₆H₁₃N₅O₂S: C, 56.63; H, 3.86; N, 20.64. Found: C, 56.55; H, 3.84; N, 20.57.

4.2.2. 3-(4-Methylphenyl)-4-formylsydnone 4'-phenyl-thiosemicarbazone (3b). Yellow powder from CH₂Cl₂/EtOH; yield 83%; mp 177–178 °C; IR (KBr) 3286, 3224, 1743, 1599, 1543, 1515, 1257, 1194 cm⁻¹; ¹H NMR (DMSO- d_6): δ 2.22 (s, 3H), 7.13–7.39 (m, 5H), 7.48 (d, J=8.2Hz, 2H), 7.73 (d, J=8.2Hz, 2H), 7.84 (s, 1H), 8.40 (s, 1H), 11.96(s, 1H); FABMS⁺ m/z (%): 354 (M⁺+H, 100), 353 (M⁺, 18); Anal. Calcd for C₁₇H₁₅N₅O₂S: C, 57.78; H, 4.28; N, 19.82. Found: C, 57.66; H, 4.29; N, 19.84.

4.2.3. 3-(4-Methoxyphenyl)-4-formylsydnone 4'-phenyl-thiosemicarbazone (3c). Yellow needles from CH₂Cl₂/ EtOH; yield 90%; mp 176–177 °C; IR (KBr) 3292, 3214, 3064, 1740, 1605, 1533, 1515, 1260, 1188 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 3.69 (s, 3H), 7.18–7.40 (m, 7H), 7.79 (d, *J*=9.0 Hz, 2H), 7.84 (s, 1H), 8.57 (s, 1H), 11.95 (s, 1H); FABMS⁺ *m*/*z* (%): 370 (M⁺+H, 100), 369 (M⁺, 15); Anal. Calcd for C₁₇H₁₅N₅O₃S: C, 55.27; H, 4.09; N, 18.96. Found: C, 55.25; H, 4.09; N, 18.99.

4.2.4. 3-(4-Ethoxyphenyl)-4-formylsydnone 4'-phenyl-thiosemicarbazone (3d). Yellow needles from CH₂Cl₂/EtOH; yield 82%; mp 176–177 °C; IR (KBr) 3294, 3214, 3064, 2988, 2932, 1740, 1596, 1533, 1515, 1257, 1185 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 1.25 (t, *J*=7.0 Hz, 3H), 3.90 (q, *J*=7.0 Hz, 2H), 7.15–7.43 (m, 7H), 7.76 (d, *J*=9.0 Hz, 2H), 7.83 (s, 1H), 8.49 (s, 1H), 11.95 (s, 1H); FABMS⁺ *m*/*z* (%): 384 (M⁺ + H, 100), 383 (M⁺, 18); Anal. Calcd for C₁₈H₁₇N₅O₃S: C, 56.38; H, 4.47; N, 18.27. Found: C, 56.25; H, 4.43; N, 18.32.

4.3. Syntheses of 3-aryl-4-formylsydnone thiosemicarbazones (3e-h)

To a solution of 3-phenyl-4-formylsydnone (**1a**, 570 mg, 3.0 mmol) in absolute ethanol (20 mL), thiosemicarbaz-

ide (**2b**, 287mg, 3.15mmol) was slowly added. The mixed solution was heated at $45 \,^{\circ}$ C for 2–3 days and then cooled. The precipitating solid was collected by filtration and recrystallized from dichloromethane/ethanol to afford 624mg (79%) of 3-phenyl-4-formylsydnone thiosemicarbazone (**3e**) as yellow crystal. The chemical and physical spectral characteristics of these products **3e–h** are given below.

4.3.1. 3-Phenyl-4-formylsydnone thiosemicarbazone (3e). Yellow crystals from CH₂Cl₂/EtOH; yield 79%; mp 188–190 °C; IR (KBr) 3406, 3262, 3154, 1737, 1599, 1521, 1263 cm⁻¹; ¹H NMR (DMSO- d_6): δ 6.33 (s, 1H), 7.91–7.63 (m, 6H), 8.28 (s, 1H), 11.50 (s, 1H); FABMS⁺ *mlz* (%): 264 (M⁺+H, 100), 263 (M⁺, 19); Anal. Calcd for C₁₀H₉N₅O₂S: C, 45.62; H, 3.45; N, 26.60. Found: C, 45.51; H, 3.47; N, 26.53.

4.3.2. 3-(4-Methylphenyl)-4-formylsydnone thiosemicarbazone (3f). Yellow powder from CH₂Cl₂/EtOH; yield 71%; mp 190–192 °C; IR (KBr) 3430, 3310, 3178, 3040, 2998, 1755, 1605, 1539, 1263 cm⁻¹; ¹H NMR (DMSO- d_6): δ 2.43 (s, 3H), 6.34 (s, 1H), 7.51(d, J=8.4Hz, 2H), 7.68 (d, J=8.4Hz, 2H), 7.72 (s, 1H), 8.29 (s, 1H), 11.47 (s, 1H); FABMS⁺ m/z (%): 278 (M⁺+H, 100), 277 (M⁺, 17); Anal. Calcd for C₁₁H₁₁N₅O₂S: C, 47.64; H, 4.00; N, 25.25. Found: C, 47.50; H, 4.11; N, 25.11.

4.3.3. 3-(4-Methoxyphenyl)-4-formylsydnone thiosemicarbazone (3g). Yellow powder from CH₂Cl₂/EtOH; yield 80%; mp 197–198 °C; IR (KBr) 3422, 3346, 3166, 3010, 2842, 1749, 1605, 1590, 1524, 1263 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 3.86 (s, 3H), 6.48 (s, 1H), 7.22 (d, *J*=9.1 Hz, 2H), 7.73 (s, 1H), 7.74 (d, *J*=9.1 Hz, 2H), 8.32 (s, 1H), 11.49 (s, 1H); FABMS⁺ *m*/*z* (%): 294 (M⁺+H, 100), 293 (M⁺, 18); Anal. Calcd for C₁₁H₁₁N₅O₃S: C, 45.05; H, 3.78; N, 23.88. Found: C, 44.85; H, 3.80; N, 23.80.

4.3.4. 3-(4-Ethoxyphenyl)-4-formylsydnone thiosemicarbazone (3h). Yellow needles from CH₂Cl₂/EtOH; yield 78%; mp 191–192°C; IR (KBr) 3394, 3232, 3154, 2988, 1734, 1593, 1527, 1254 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 1.36 (t, *J*=7.1 Hz, 3H), 4.13 (q, *J*=7.1 Hz, 2H), 6.47 (s, 1H), 7.20 (d, *J*=8.9 Hz, 2H), 7.72 (d, *J*=8.9 Hz, 2H), 7.73 (s, 1H), 8.33 (s, 1H), 11.47 (s, 1H); FABMS⁺ *m*/*z* (%): 308 (M⁺+H, 100), 307 (M⁺, 25); Anal. Calcd for C₁₂H₁₃N₅O₃S: C, 46.90; H, 4.26; N, 22.79. Found: C, 46.75; H, 4.26; N, 22.78.

4.4. Syntheses of 2-[(3-arylsydnon-4-ylmethylene) hydrazono]-3-phenyl-thiazolidin-4-ones (5a–d)

To a solution of ethyl chloroacetate (4a, 184 mg, 1.50 mmol) in absolute ethanol (5 mL), were slowly added 3-phenyl-4-formylsydnone 4'-phenyl-thiosemicarbazone (3a, 339 mg, 1.00 mmol) and sodium acetate (246 mg, 3.00 mmol). Acetic acid (0.5 mL) was added to the above solution as a catalyst. The mixed solution was heated to 80 °C for around 40 h until the reaction was completed. The system was then allowed to attain room temperature. The precipitated solid was collected by filtration and washed with ice-cold water

4639

and cold ethanol. The collected solid was recrystallized from acetone/ethanol to yield 235 mg (62%) of 2-[(3-phe-nylsydnon-4-ylmethylene)hydrazono]-3-phenyl-thiazol-idin-4-one (**5a**) as yellow powder. The chemical and physical spectral characteristics of these products **5a**-**d** are given below.

4.4.1. 2-[(3-Phenylsydnon-4-ylmethylene)hydrazono]-3phenyl-thiazolidin-4-one (5a). Yellow powder from CH₃COCH₃/EtOH; yield 62%; mp 210–211°C; IR (KBr) 3058, 2974, 1764, 1721, 1607, 1547, 1241 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 4.01 (s, 2H), 7.20–7.35 (m, 2H), 7.37–7.55 (m, 3H), 7.68 (s, 1H), 7.70–7.90 (m, 5H); ¹³C NMR (DMSO-*d*₆): δ 32.56, 105.39, 125.72, 128.33, 128.94, 129.28, 130.24, 132.65, 133.87, 135.00, 142.52, 164.95, 166.77, 172.24; FABMS⁺ *m*/*z* (%): 380 (M⁺+H, 100), 379 (M⁺, 14), 349 (M⁺–NO, 21), 321 (M⁺–NO–CO, 27); Anal. Calcd for C₁₈H₁₃N₅O₃S: C, 56.99; H, 3.45; N, 18.46. Found: C, 57.00; H, 3.46; N, 18.47.

4.4.2. 2-{[3-(4-Methylphenyl)sydnon-4-ylmethylene]-hydrazono}-3-phenyl-thiazolidin-4-one (5b). Yellow powder from CH₃COCH₃/EtOH; yield 68%; mp 202–203 °C; IR (KBr) 3057, 2980, 1761, 1717, 1606, 1547, 1243 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 2.41 (s, 3H), 4.03 (s, 2H), 7.16–7.49 (m, 7H), 7.62 (s, 1H), 7.66 (d, *J*=8.3 Hz, 2H); ¹³C NMR (DMSO-*d*₆): δ 21.10, 32.53, 105.33, 125.41, 128.28, 128.85, 129.20, 130.54, 131.18, 134.99, 142.67, 142.89, 164.61, 166.60, 172.17; FABMS⁺ *m*/*z* (%): 394 (M⁺+H, 100), 393 (M⁺, 15), 363 (M⁺–NO, 17), 335 (M⁺–NO–CO, 22); Anal. Calcd for C₁₉H₁₅N₅O₃S: C, 58.01; H, 3.84; N, 17.80. Found: C, 58.00; H, 3.98; N, 17.54.

4.4.3. 2-{[3-(4-Methoxyphenyl)sydnon-4-ylmethylene]-hydrazono}-3-phenyl-thiazolidin-4-one (5c). Orange crystals from CH₃COCH₃/EtOH; yield 58%; mp 203–204°C; IR (KBr) 3054, 2977, 1757, 1717, 1610, 1550, 1252 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 3.84 (s, 3H), 4.03 (s, 2H), 7.19 (d, $J=9.0\,\text{Hz}, 2\text{H}$, 7.26–7.32 (m, 2H), 7.34–7.57 (m, 3H), 7.62 (s, 1H), 7.72 (d, J=9.0 Hz, 2H); ¹³C NMR $(DMSO-d_6)$: δ 32.58, 56,05, 105.43, 115.30, 126.21, 127.24, 128.34, 128.94, 129.29, 135.04, 142.87, 162.12, 164.72, 166.60, 172.25; FABMS⁺ m/z (%): 410 (M⁺+H, 100), 409 (M⁺, 14), 379 (M⁺-NO, 19), 351 (M⁺-NO-CO, 25); Anal. Calcd for C₁₉H₁₅N₅O₄S: C, 55.74; H, 3.69; N, 17.11. Found: C, 55.76; H, 3.73; N, 17.11. X-ray analytical data are listed in Table 1. Further details have been deposited at the Cambridge Crystallographic Data Center and allocated the deposition number CCDC 216222.

4.4.4. 2-{[3-(4-Ethoxyphenyl)sydnon-4-ylmethylene]-hydrazono}-3-phenyl-thiazolidin-4-one (5d). Yellow crystals from CH₃COCH₃/EtOH; yield 52%; mp 204–205°C; IR (KBr) 3055, 2980, 1754, 1716, 1609, 1551, 1249 cm⁻¹; ¹H NMR (DMSO- d_6): δ 1.34 (t, J=7.1Hz, 3H), 4.04 (s, 2H), 4.11 (q, J=7.1Hz, 2H), 7.15 (d, J=9.0Hz, 2H), 7.27–7.31 (m, 2H), 7.39–7.50 (m, 3H),

7.63 (s, 1H), 7.69 (d, J=9.0 Hz, 2H); ¹³C NMR (DMSO- d_6); δ 14.60, 32.53, 64.05, 105.37, 115.59, 125.99, 127.19, 128.30, 128.87, 129.22, 135.00, 142.84, 161.36, 164.66, 166.52, 172.18; FABMS⁺ m/z (%): 424 (M⁺+H, 100), 423 (M⁺, 10), 393 (M⁺–NO, 17), 365 (M⁺–NO–CO, 32); Anal. Calcd for C₂₀H₁₇N₅O₄S: C, 56.73; H, 4.05; N, 16.54. Found: C, 56.53; H, 4.08; N, 16.41.

4.5. Syntheses of 2-[(3-arylsydnon-4-ylmethylene)hydrazono]-4-methyl-3-phenyl-2,3-dihydro-thiazole-5-carboxylic acid ethyl ester (6a–d)

To a solution of ethyl 2-chloroacetoacetate (4b, 247 mg, 1.50 mmol) in absolute ethanol (4 mL), 3-phenyl-4-formylsydnone 4'-phenylthiosemicarbazone (3a, 339 mg, 1.00 mmol) and sodium acetate (246 mg, 3.00 mmol) were slowly added. Acetic acid (0.5mL) was added to the above solution as a catalyst. The mixed solution was heated at 80 °C for about 20h and then allowed to attain room temperature. The precipitating solid was collected by filtration and washed with ice-cold water and cold ethanol. The collected solid was recrystallized from acetone/ethanol to yield 211 mg (47%) of 4methyl-3-phenyl-2-[(3-phenylsydnon-4-ylmethylene)hydrazono]-2,3-dihydro-thiazole-5-carboxylic acid ethyl ester (6a) as yellow crystalline. The chemical and physical spectral characteristics of these products 6a-d are given below.

4.5.1. 4-Methyl-3-phenyl-2-[(3-phenylsydnon-4-ylmethylene)hydrazono]-2,3-dihydro-thiazole-5-carboxylic acid ethyl ester (6a). Yellow crystals from CH₃COCH₃/ EtOH; yield 47%; mp 223–224°C; IR (KBr) 3074, 2976, 1752, 1694, 1594, 1523, 1491, 1305, 1248 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 1.30 (t, *J*=7.1Hz, 3H), 2.13 (s, 3H), 4.24 (q, *J*=7.1Hz, 2H), 7.30–7.60 (m, 6H), 7.62–7.82 (m, 5H); ¹³C NMR (DMSO-*d*₆): δ 13.86, 14.42, 60.91, 103.70, 106.07, 125.66, 128.70, 129.63, 129.87, 130.23, 132.39, 134.01, 135.84, 137.59, 147.38, 161.40, 164.86, 168.85; FABMS⁺ *m*/*z* (%): 450 (M⁺+H, 100), 449 (M⁺, 32), 419 (M⁺–NO, 59); Anal. Calcd for C₂₂H₁₉N₅O₄S: C, 58.79; H, 4.26; N, 15.58. Found: C, 58.82; H, 4.39; N, 15.63.

4.5.2. 4-Methyl-3-phenyl-2-{[3-(4-methylphenyl)sydnon-4-ylmethylenelhydrazono}-2,3-dihydro-thiazole-5-carboxylic acid ethyl ester (6b). Orange crystals from CH₃COCH₃/EtOH; yield 40%; mp 240-241°C; IR (KBr) 3074, 2975, 1762, 1707, 1601, 1523, 1492, 1304, 1260 cm^{-1} ; ¹H NMR (DMSO-*d*₆): δ 1.28 (t, *J*=7.2 Hz, 3H), 2.13 (s, 3H), 2.42 (s, 3H), 4.24 (q, J = 7.2 Hz, 2H), 7.30–7.56 (m, 8H), 7.63 (d, J=8.3 Hz, 2H); ¹³C NMR $(DMSO-d_6)$: δ 13.97, 14.53, 21.14, 60.96, 103.67, 106.03, 125.40, 128.75, 129.68, 129.92, 130.60, 131.49, 135.92, 137.81, 142.75, 147.49, 161.49, 164.90, 168.67; FABMS⁺ m/z (%): 464 (M⁺+H, 100), 463 (M⁺, 25), 433 (M⁺–NO, 47); Anal. Calcd for $C_{23}H_{21}N_5O_4S$: C, 59.60; H, 4.57; N, 15.11. Found: C, 59.65; H, 4.64; N, 15.15. X-ray analytical data are listed in Table 1. Further details have been deposited at the Cambridge Crystallographic Data Center and allocated the deposition number CCDC 216223.

4.5.3. 4-Methyl-3-phenyl-2-{[3-(4-methoxyphenyl)syd-non-4-ylmethylene]hydrazono}-2,3-dihydro-thiazole-5carboxylic acid ethyl ester (6c). Orange crystals from CH₃COCH₃/EtOH; yield 45%; mp 220–221 °C; IR (KBr) 3068, 2978, 1761, 1693, 1593, 1522, 1493, 1303, 1250 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 1.28 (t, *J*=7.1 Hz, 3H), 2.14 (s, 3H), 3.85 (s, 3H), 4.24 (q, *J*=7.1 Hz, 2H), 7.18 (d, *J*=9.1 Hz, 2H), 7.25–7.60 (m, 6H), 7.69 (d, *J*=9.1 Hz, 2H); ¹³C NMR (DMSO-*d*₆): δ 13.95, 14.45, 56.00, 60.96, 103.67, 106.09, 115.30, 126.40, 127.18, 128.76, 129.69, 129.94, 135.92, 138.05, 147.47, 161.51, 162.04, 164.86, 168.62; FABMS⁺ *m*/*z* (%): 480 (M⁺+H, 100), 479 (M⁺, 30), 449 (M⁺–NO, 40); Anal. Calcd for C₂₃H₂₁N₅O₅S: C, 57.61; H, 4.41; N, 14.60. Found: C, 57.66; H, 4.44; N, 14.63.

4.5.4. 4-Methyl-3-phenyl-2-{[3-(4-ethoxyphenyl)sydnon-4-vlmethylenelhydrazono}-2.3-dihydro-thiazole-5-carboxylic acid ethyl ester (6d). Yellow powder from CH₃COCH₃/EtOH; yield 42%; mp 232-233 °C; IR (KBr) 3070, 2994, 1762, 1686, 1592, 1510, 1475, 1370, 1315 cm⁻¹; ¹H NMR (DMSO- d_6): δ 1.28 (t, J=7.1 Hz, 3H), 1.35 (t, J=7.0 Hz, 3H), 2.15 (s, 3H), 4.12 (q, $J=7.0\,\text{Hz}, 2\text{H}), 4.24$ (q, $J=7.1\,\text{Hz}, 2\text{H}), 7.16$ (d, J=9.1 Hz, 2H), 7.37–7.53 (m, 6H); 7.68 (d, J=9.1 Hz, 2H); ¹³C NMR (DMSO- d_6): δ 13.91, 14.40, 14.59, 60.88, 64.01, 103.61, 106.03, 115.58, 126.15, 127.14, 128.72, 129.62, 129.87, 135.88, 138.08, 147.40, 161.30, 161.44, 164.73, 168.52; FABMS⁺ m/z (%): 494 (M⁺+H, 100), 493 (M⁺, 31), 463 (M⁺-NO, 41); Anal. Calcd for C₂₄H₂₃N₅O₅S: C, 58.41; H, 4.70; N, 14.19. Found: C, 58.57; H, 4.73; N, 14.22.

4.6. Syntheses of 3,4-diphenyl-2-[(3-arylsydnon-4-ylmethylene)hydrazono]-2,3-dihydro-thiazole (7a–d)

To a solution of 2-bromoacetophenone (4c, 219mg, 1.10 mmol) in absolute ethanol (5 mL), were slowly added 3-phenyl-4-formylsydnone 4'-phenvlthiosemicarbazone (3a, 339 mg, 1.00 mmol) and sodium acetate (246mg, 3.00mmol). Acetic acid (0.2mL) was added to the above solution as a catalyst. The mixed solution was heated at 50 °C for about 10h until the reaction was completed. The system was then allowed to attain room temperature. The precipitating solid was collected by filtration and washed with ice-cold water and cold ethanol. The collected solid was recrystallized from acetone/ethanol to afford 250 mg (57%) 3,4-diphenyl-2-[(3-phenylsydnon-4-ylmethylene)hyof drazono]-2,3-dihydro-thiazole (7a) as orange powder. The chemical and physical spectral characteristics of these products 7a-d are given below.

4.6.1. 3,4-Diphenyl-2-[(3-phenylsydnon-4-ylmethylene)hydrazono]-2,3-dihydro-thiazole (7a). Orange powder from CH₃COCH₃/EtOH; yield 57%; mp 229–230 °C; IR (KBr) 3052, 1747, 1588, 1512, 1490, 1258 cm⁻¹; ¹H NMR (DMSO- d_6): δ 6.62 (s, 1H), 7.05–7.40 (m, 10H), 7.52 (s, 1H), 7.60–7.85 (m, 5H); ¹³C NMR (DMSO- d_6): δ 102.53, 106.28, 125.67, 128.24, 128.35, 128.47, 128.64, 128.75, 129.06, 130.17, 130.59, 132.34, 134.12, 135.67, 137.32, 139.85, 165.09, 171.19; FABMS⁺ *m/z* (%): 440 (M⁺+H, 100), 439 (M⁺, 33), 409 (M⁺–NO, 46); Anal. Calcd for $C_{24}H_{17}N_5O_2S$: C, 65.59; H, 3.90; N, 15.93. Found: C, 65.52; H, 4.03; N, 15.96.

4.6.2. 3,4-Diphenyl-2-{[3-(4-methylphenyl)sydnon-4-yl-methylene]hydrazono}-2,3-dihydro-thiazole (7b). Orange crystals from CH₃COCH₃/EtOH; yield 48%; mp 241–242 °C; IR (KBr) 3091, 1746, 1583, 1511, 1492, 1260 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 2.42 (s, 3H), 6.64 (s, 1H), 7.05–7.40 (m, 10H), 7.48 (d, *J*=8.4Hz, 2H), 7.49 (s, 1H), 7.65 (d, *J*=8.4Hz, 2H); ¹³C NMR (DMSO-*d*₆): δ 21.14, 102.61, 106.33, 125.42, 128.27, 128.39, 128.49, 128.67, 128.79, 129.10, 130.58, 130.63, 131.47, 135.94, 137.38, 139.87, 142.67, 164.90, 171.22; FABMS⁺ *m*/*z* (%): 454 (M⁺+H, 100), 453 (M⁺, 29), 423 (M⁺–NO, 66); Anal. Calcd for C₂₅H₁₉N₅O₂S: C, 66.21; H, 4.22; N, 15.44. Found: C, 66.15; H, 4.30; N, 15.43.

4.6.3. 3,4-Diphenyl-2-{[3-(4-methoxyphenyl)sydnon-4-yl-methylene|hydrazono}-2,3-dihydro-thiazole (7c). Orangered crystal from CH₃COCH₃/EtOH; yield 51%; mp 222–223 °C; IR (KBr) 3062, 1746, 1590, 1510, 1491, 1259 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 3.86 (s, 3H), 6.66 (s, 1H), 7.01–7.46 (m, 12H), 7.51 (s, 1H), 7.72 (d, J=8.9 Hz, 2H); ¹³C NMR (DMSO-*d*₆): δ 56.00, 102.56, 106.36, 115.25, 126.46, 127.18, 128.24, 128.38, 128.47, 128.64, 128.78, 129.08, 130.62, 136.11, 137.38, 139.84, 161.92, 164.89, 171.10; FABMS⁺ *m/z* (%): 470 (M⁺+H, 100), 469 (M⁺, 37), 439 (M⁺–NO, 68); Anal. Calcd for C₂₅H₁₉N₅O₃S: C, 63.95; H, 4.08; N, 14.92. Found: C, 63.75; H, 4.16; N, 14.82. X-ray analytical data are listed in Table 1. Further details have been deposited at the Cambridge Crystallographic Data Center and allocated the deposition number CCDC 216224.

4.6.4. 3,4-Diphenyl-2-{[3-(4-ethoxyphenyl)sydnon-4-yl-methylene]hydrazono}-2,3-dihydro-thiazole (7d). Red crystal from CH₃COCH₃/EtOH; yield 48%; mp 203–204°C; IR (KBr) 3063, 1752, 1590, 1512, 1491, 1260 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 1.35 (t, *J*=7.0Hz, 3H), 4.12 (q, *J*=7.0Hz, 2H), 6.64 (s, 1H), 7.05–7.45 (m, 12H), 7.51 (s, 1H), 7.69 (d, *J*=8.9Hz, 2H); ¹³C NMR (DMSO-*d*₆): δ 14.64, 64.04, 102.55, 106.35, 115.60, 126.28, 127.17, 128.24, 128.37, 128.47, 128.63, 128.77, 129.08, 130.62, 136.12, 137.37, 139.84, 161.20, 164.89, 171.08; FABMS⁺ *m*/*z* (%): 484 (M⁺+H, 100), 483 (M⁺, 35), 453 (M⁺–NO, 50); Anal. Calcd for C₂₆H₂₁N₅O₃S: C, 64.58; H, 4.38; N, 14.48. Found: C, 64.42; H, 4.41; N, 14.43.

4.7. Syntheses of 2-[(3-arylsydnon-4-ylmethylene)hydrazono]thiazolidin-4-ones (5e-h)

To a solution of ethyl chloroacetate (4a, 184 mg, 1.50 mmol) in absolute ethanol (5 mL), 3-phenyl-4-formylsydnone thiosemicarbazone (3e, 263 mg, 1.00 mmol) and sodium acetate (246 mg, 3.00 mmol) were slowly added. Acetic acid (150 μ L) was added to the above solution as a catalyst. The mixed solution was heated at 80 °C for about 35 h until the reaction was completed. The system was allowed to attain room temperature. The precipitating solid was collected by filtration and washed with ice-cold water and cold ethanol. The collected solid was recrystallized from acetone/ethanol to afford 240 mg (79%) of 2-[(3-phenyl-sydnon-4-ylmethyl-ene)hydrazono]thiazolidin-4-one **5e** as yellow needles. The chemical and physical spectral characteristics of these products **5e-h** are given below.

4.7.1. 2-[(3-Phenylsydnon-4-ylmethylene)hydrazono]-thiazolidin-4-one (5e). Yellow needles from CH₃COCH₃/ EtOH; yield 79%; mp 215–217°C; IR (KBr) 2995, 2956, 2774, 1785, 1727, 1628, 1249 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 3.76 (s, 2H), 7.55–7.86 (m, 6H), 11.88 (s, 1H); ¹³C NMR (DMSO-*d*₆): δ 33.24, 105.33, 125.69, 130.12, 132.50, 134.10, 141.24, 165.29, 166.26, 174.12; FABMS⁺ *m*/*z* (%): 304 (M⁺ + H, 100), 303 (M⁺, 18), 273 (M⁺–NO, 26), 245 (M⁺–NO–CO, 18); Anal. Calcd for C₁₂H₉N₅O₃S: C, 47.52; H, 2.99; N, 23.09. Found: C, 47.70; H, 3.08; N, 22.90.

4.7.2. 2-{[3-(4-Methylphenyl)sydnon-4-ylmethylene]hydrazono}thiazolidin-4-one (5f). Yellow needles from CH₃COCH₃/EtOH; yield 72%; mp 226–227°C; IR (KBr) 2996, 2947, 2776, 1782, 1729, 1627, 1251 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 2.43 (s, 3H), 3.82 (s, 2H), 7.49 (d, *J*=8.4Hz, 2H), 7.68 (d, *J*=8.4Hz, 2H), 7.81 (s, 1H), 11.92 (s, 1H); ¹³C NMR (DMSO-*d*₆): δ 21.14, 33.29, 105.29, 125.41, 130.46, 131.47, 141.41, 142.75, 165.06, 166.24, 174.21; FABMS⁺ *m*/*z* (%): 318 (M⁺+H, 100), 317 (M⁺, 20), 287 (M⁺–NO, 33), 259 (M⁺–NO–CO, 52); Anal. Calcd for C₁₃H₁₁N₅O₃S: C, 49.21; H, 3.49; N, 22.07; S, 10.10. Found: C, 49.13; H, 3.54; N, 22.08; S, 10.09.

4.7.3. 2-{[3-(4-Methoxyphenyl)sydnon-4-ylmethylene]hydrazono}thiazolidin-4-one (5g). Yellow needles from CH₃COCH₃/EtOH; yield 67%; mp 216–217°C; IR (KBr) 2988, 2945, 2767, 1783, 1723, 1626, 1252 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 3.80 (s, 2H), 3.84 (s, 3H), 7.19 (d, *J*=9.0 Hz, 2H), 7.72 (d, *J*=9.0 Hz, 2H), 7.79 (s, 1H), 11.89 (s, 1H); ¹³C NMR (DMSO-*d*₆): δ 33.29, 56.05, 105.33, 115.18, 126.48, 127.21, 141.58, 162.03, 165.09, 166.17, 174.27; FABMS⁺ *m*/*z* (%): 334 (M⁺+H, 100), 333 (M⁺, 19), 303 (M⁺–NO, 20), 275 (M⁺–NO–CO, 25); Anal. Calcd for C₁₃H₁₁N₅O₄S: C, 46.84; H, 3.33; N, 21.01. Found: C, 46.69; H, 3.46; N, 20.91.

4.7.4. 2-{[3-(4-Ethoxypheny])sydnon-4-ylmethylene]hydrazono}thiazolidin-4-one (5h). Yellow needles from CH₃COCH₃/EtOH; yield 82%; mp 223–224°C; IR (KBr) 2986, 2946, 2770, 1780, 1724, 1630, 1251 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 1.34 (t, *J*=7.0Hz, 3H), 3.80 (s, 2H), 4.12 (q, *J*=7.0Hz, 2H), 7.17 (d, *J*=8.9Hz, 2H), 7.70 (d, *J*=8.9Hz, 2H), 7.79 (s, 1H), 11.90 (s, 1H); ¹³C NMR (DMSO-*d*₆): δ 14.64, 33.29, 64.10, 105.32, 115.56, 126.31, 127.21, 141.62, 161.33, 165.11, 166.29, 174.27; FABMS⁺ *m*/*z* (%): 348 (M⁺+H, 100), 347 (M⁺, 18), 317 (M⁺–NO, 24); Anal. Calcd for C₁₄H₁₃N₅O₄S: C, 48.41; H, 3.77; N, 20.16. Found: C, 48.20; H, 3.88; N, 19.94.

4.8. Syntheses of 4-methyl-2-[(3-arylsydnon-4-ylmethylene)hydrazono]-2,3-dihydro-thiazole-5-carboxylic acid ethyl ester (6e–h)

To a solution of ethyl 2-chloroacetoacetate (4b, 247 mg, 1.50 mmol) in absolute ethanol (5 mL), 3-phenyl-4-formylsydnone thiosemicarbazone (3e, 263 mg, 1.00 mmol) and sodium acetate (246 mg, 3.00 mmol) were slowly added. Acetic acid (200 µL) was added to the above solution as a catalyst. The mixed solution was heated at 80 °C for about 24 h until the reaction was completed. The system was then allowed to attain room temperature. The precipitating solid was collected by filtration and washed with ice-cold water and cold ethanol. The collected solid was recrystallized from dichloromethane/ethanol to afford 254 mg (68%) of 4-methyl-2-[(3phenylsydnon-4-ylmethylene)hydrazono]-2,3-dihydrothiazole-5-carboxylic acid ethyl ester (6e) as yellow powder. The chemical and physical spectral characteristics of these products **6e-h** are given below.

4.8.1. 4-Methyl-2-[(3-phenylsydnon-4-ylmethylene)-hydrazono]-2,3-dihydro-thiazole-5-carboxylic acid ethyl ester (6e). Yellow powder from CH₂Cl₂/EtOH; yield 68%; mp 197–198°C; IR (KBr) 3194, 3074, 2982, 2931, 1760, 1673, 1555, 1272 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 1.27 (t, *J*=7.2 Hz, 3H), 2.38 (s, 3H), 4.16 (q, *J*=7.2 Hz, 2H), 7.57–7.83 (m, 6H), 12.30 (s, 1H); FABMS⁺ *m*/*z* (%): 374 (M⁺+H, 100), 373 (M⁺, 31), 343 (M⁺–NO, 28); Anal. Calcd for C₁₆H₁₅N₅O₄S: C, 51.47; H, 4.05; N, 18.76; S, 8.60. Found: C, 51.28; H, 4.19; N, 18.56; S, 8.47.

4.8.2. 4-Methyl-2-{[3-(4-methylphenyl)sydnon-4-ylmethylene]hydrazono}-2,3-dihydro-thiazole-5-carboxylic acid ethyl ester (6f). Yellow powder from CH₂Cl₂/EtOH; yield 55%; mp 186–188 °C; IR (KBr) 3171, 3049, 2984, 2927, 1759, 1704, 1580, 1267 cm⁻¹; ¹H NMR (DMSO- d_6): δ 1.25 (t, J=7.2Hz, 3H), 2.38 (s, 3H), 2.45 (s, 3H), 4.17 (q, J=7.2Hz, 2H), 7.50 (d, J=8.2Hz, 2H), 7.63–7.67 (m, 3H), 12.29 (s, 1H); FABMS⁺ m/z (%): 388 (M⁺+H, 100), 387 (M⁺, 25), 357 (M⁺–NO, 31); Anal. Calcd for C₁₇H₁₇N₅O₄S: C, 52.70; H, 4.42; N, 18.08. Found: C, 52.59; H, 4.51; N, 18.07.

4.8.3. 4-Methyl-2-{[3-(4-methoxyphenyl)sydnon-4-yl-methylene]hydrazono}-2,3-dihydro-thiazole-5-carboxylic acid ethyl ester (6g). Yellow needles from CH₂Cl₂/EtOH; yield 62%; mp 191–192 °C; IR (KBr) 3160, 2930, 2908, 2841, 2821, 1756, 1701, 1578, 1256 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 1.24 (t, *J*=7.2Hz, 3H), 2.39 (s, 3H), 3.86 (s, 3H), 4.16 (q, *J*=7.2Hz, 2H), 7.21 (d, *J*=9.1Hz, 2H), 7.65 (s, 1H), 7.71 (d, *J*=9.1Hz, 2H), 12.28 (s, 1H); FABMS⁺ *m/z* (%): 404 (M⁺+H, 100), 403 (M⁺, 28), 373 (M⁺–NO, 32); Anal. Calcd for C₁₇H₁₇N₅O₅S: C, 50.61; H, 4.25; N, 17.36. Found: C, 50.60; H, 4.33; N, 17.31.

4.8.4. 4-Methyl-2-{[3-(4-ethoxyphenyl)sydnon-4-ylmethylene]hydrazono}-2,3-dihydro-thiazole-5-carboxylic acid ethyl ester (6h). Yellow needles from CH₂Cl₂/EtOH; yield 73%; mp 194–195 °C; IR (KBr) 3148, 2982, 2905, 1768, 1715, 1266 cm⁻¹; ¹H NMR (DMSO- d_6): δ 1.24 (t, J=7.2 Hz, 3H), 1.36 (t, J=6.9 Hz, 3H), 2.39 (s, 3H), 4.13 (q, J=6.9 Hz, 2H), 4.16 (q, J=7.2 Hz, 2H), 7.19 (d, J=9.0 Hz, 2H), 7.65 (s, 1H), 7.70 (d, J=9.0 Hz, 2H), 12.29 (s, 1H); FABMS⁺ m/z (%): 418 (M⁺+H, 100), 417 (M⁺, 26), 387 (M⁺–NO, 35); Anal. Calcd for C₁₈H₁₉N₅O₅S: C, 51.79; H, 4.59; N, 16.78. Found: C, 51.62; H, 4.60; N, 16.70.

4.9. Syntheses of 4-phenyl-2-[(3-arylsydnon-4-ylmethylene)hydrazono]-2,3-dihydro-thiazoles (7e-h)

To an ice cooled solution of 3-phenyl-4-formylsydnone thiosemicarbazone (**3e**, 263 mg, 1.00 mmol) in absolute ethanol (5mL), sodium acetate (246 mg, 3.00 mmol) was slowly added. Acetic acid (150 μ L) was added as a catalyst. 2-Bromoacetophenone (**4c**, 209 mg, 1.05 mmol) was slowly added to the above solution over 30 min. The mixed solution was stirred at 0 °C for about 15h until the reaction was completed. The precipitating solid was collected by filtration and washed with ice-cold water and cold ethanol. The collected solid was recrystallized from acetone/ethanol to yield 247 mg (68%) of 4-phenyl-2-[(3-phenylsydnon-4-ylmethylene)hydrazono]-2,3-dihydro-thiazole (**7e**) as yellow powder. The chemical and physical spectral characteristics of these products **7e–h** are given below.

4.9.1. 4-Phenyl-2-[(3-phenylsydnon-4-ylmethylene)hydrazono]-2,3-dihydro-thiazole (7e). Yellow powder from CH₃COCH₃/EtOH; yield 68%; mp 165–166°C; IR (KBr) 3210, 1728, 1566, 1422, 1265 cm⁻¹; ¹H NMR (DMSO- d_6): δ 7.23–7.40 (m, 4H), 7.67–7.84 (m, 8H), 12.17 (s, 1H); ¹³C NMR (DMSO- d_6): δ 104.35, 105.89, 125.64, 125.69, 126.71, 127.74, 128.75, 130.18, 132.39, 134.19, 134.61, 150.58, 165.29, 167.47; FABMS⁺ *m*/*z* (%): 364 (M⁺+H, 100), 363 (M⁺, 28), 333 (M⁺–NO, 29); Anal. Calcd for C₁₈H₁₃N₅O₂S: C, 59.49; H, 3.61; N, 19.27; S, 8.80. Found: C, 59.60; H, 3.68; N, 19.33; S, 8.87.

4.9.2. 4-Phenyl-2-{[3-(4-methylphenyl)sydnon-4-ylmethylene]hydrazono}-2,3-dihydro-thiazole (7f). Yellow powder from CH₃COCH₃/EtOH; yield 65%; mp 167–168 °C; IR (KBr) 3212, 1729, 1562, 1423, 1261 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 2.46 (s, 3H), 7.27 (s, 1H), 7.30–7.45 (m, 3H), 7.52 (d, *J*=8.4 Hz, 2H), 7.65 (s, 1H), 7.69 (d, *J*=8.4 Hz, 2H), 7.72–7.80 (m, 2H), 12.13 (s, 1H); ¹³C NMR (DMSO-*d*₆): δ 21.15, 104.43, 105.89, 125.44, 125.64, 126.87, 127.73, 128.77, 130.55, 131.63, 134.65, 142.61, 150.58, 165.11, 167.50; FABMS⁺ *m/mz* (%): 378 (M⁺+H, 100), 377 (M⁺, 31), 347 (M⁺–NO, 31); Anal. Calcd for C₁₉H₁₅N₅O₂S: C, 60.47; H, 4.01; N, 18.56; S, 8.50. Found: C, 60.46; H, 4.07; N, 18.58; S, 8.53.

4.9.3. 4-Phenyl-2-{[3-(4-methoxyphenyl)sydnon-4-yl-methylene|hydrazono}-2,3-dihydro-thiazole (7g). Orange crystals from CH₂Cl₂/EtOH; yield 80%; mp 160–162 °C; IR (KBr) 3189, 1752, 1572, 1250 cm⁻¹; ¹H NMR (DMSO- d_6): δ 3.88 (s, 3H), 7.24 (d, J=8.9 Hz, 2H), 7.27–7.47 (m, 4H), 7.66 (s, 1H), 7.71–7.82 (m, 4H), 12.14 (s, 1H); ¹³C NMR (DMSO- d_6): δ 56.06, 104.34, 105.87, 115.22, 125.62, 126.66, 127.01, 127.17,

127.70, 128.72, 134.63, 150.55, 161.94, 165.14, 167.47; FABMS⁺ m/z (%): 394 (M⁺+H, 100), 393 (M⁺, 19), 363 (M⁺-NO, 34); Anal. Calcd for C₁₉H₁₅N₅O₃S: C, 58.01; H, 3.84; N, 17.80; S, 8.15. Found: C, 57.87; H, 3.90; N, 17.65; S, 8.16.

4.9.4. 4-Phenyl-2-{[3-(4-ethoxyphenyl)sydnon-4-ylmethyl-ene]hydrazono}-2,3-dihydro-thiazole (7h). Yellow powder from CH₃COCH₃/EtOH; yield 68%; mp 164–165 °C; IR (KBr) 3192, 1721, 1556, 1244 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 1.38 (t, *J*=7.0Hz, 3H), 4.16 (q, *J*=7.0Hz, 2H), 7.21 (d, *J*=9.0Hz, 2H), 7.27 (s, 1H), 7.29–7.50 (m, 3H), 7.65 (s, 1H), 7.72 (d, *J*=9.0Hz, 2H), 7.76–7.90 (m, 2H), 12.13 (s, 1H); ¹³C NMR (DMSO-*d*₆): δ 14.65, 64.11, 104.33, 105.88, 115.63, 125.65, 126.50, 127.04, 127.19, 127.73, 128.75, 134.64, 150.61, 161.23, 165.17, 167.50; FABMS⁺ *m*/*z* (%): 408 (M⁺+H, 100), 407 (M⁺, 22), 377 (M⁺–NO, 31); Anal. Calcd for C₂₀H₁₇N₅O₃S: C, 58.96; H, 4.21; N, 17.19; S, 7.90. Found: C, 59.00; H, 4.28; N, 17.20; S, 7.95.

4.10. Scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical^{35–37}

The scavenging effect of the synthesized compounds **5a**–**7h** on the DPPH radical was evaluated according to the methods of Shimada et al.,³⁵ Leong and Shui³⁶ and Braca et al.³⁷ Various concentrations of the test compound in 1.5mL methanol were added to a 1.5mL (0.2mM) solution of DPPH radical in methanol (final concentration of DPPH was 0.1mM). The mixture was shaken vigorously and allowed to stand for 30min; absorbance at 517nm was determined (Hitachi U-2001 spectrophotometer), and the percentage of activity was calculated. Vitamin E was used as a reference compound. All tests and analyses were undertaken on three replicates and the results averaged.

Scavenging activity $(\%) = \{[(Ab+As)-Am]/Ab\} \times 100\%;$ Ab: absorbance of 0.1 mM DPPH methanol solution at 517 nm; As: absorbance of various concentration solution of test compound at 517 nm; Am: absorbance of mixture methanol solution at 517 nm.

Acknowledgements

Financial support of this work by the National Science Council of the Republic of China (NSC-93-2113-M-218-001) and Southern Taiwan University of Technology is highly appreciated.

References and notes

- Imashiro, Y.; Masuda, K. Japan Patent 6,932,411, 1969; Chem. Abstr. 1970, 72, 111482q.
- Saito, Y.; Kamitani, T. Japan Patent 7,021,710, 1970; Chem. Abstr. 1970, 73, 87926k.
- Masuda, K.; Okutani, T. Japan Patent 7,020,903, 1970; Chem. Abstr. 1970, 74, 87928n.
- 4. Satyanarayana, K.; Rao, M. N. A. J. Pharm. Sci. 1995, 84(2), 263.
- 5. Satyanarayana, K.; Rao, M. N. A. Eur. J. Med. Chem. 1995, 30, 641.

- 6. Kavali, J. R.; Badami, B. V. IL Farmaco 2000, 55, 406.
- Shukla, H. K.; Desai, N. C.; Astik, R. R.; Thaker, K. A. J. Indian Chem. Soc. 1984, 168.
- Desai, N. C.; Shukla, H. K.; Parekh, B. R.; Thaker, K. A. J. Indian Chem. Soc. 1984, 455.
- Oh, C. H.; Cho, H. W.; Baek, D.; Cho, J. H. Eur. J. Med. Chem. 2002, 37, 743.
- Holla, B. S.; Malini, K. V.; Rao, B. S.; Sarojini, B. K.; Kumari, N. S. *Eur. J. Med. Chem.* **2003**, *38*, 313.
- Kritsanida, M.; Mouroutsou, A.; Marakos, P.; Pouli, N.; Papakonstantinou-Garoufalias, S.; Pannecouque, C.; Witvrouw, M.; Clercq, E. D. *IL Farmaco* 2002, *57*, 253.
- Andreani, A.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M. *Eur. J. Med. Chem.* 2001, 36, 743.
- Foroumadi, A.; Asadipour, A.; Mirzaei, M.; Karimi, J.; Emami, S. IL Farmaco 2002, 57, 765.
- Gu, X. H.; Wan, X. Z.; Jiang, B. Bioorg. Med. Chem. Lett. 1999, 9, 569.
- 15. Jiang, B.; Gu, X. H. Bioorg. Med. Chem. 2000, 8, 363.
- Bolos, C. A.; Papazisis, K. T.; Kortsaris, A. H.; Voyatzi, S.; Zambouli, D.; Kyriakidis, D. A. J. Inorg. Biochem. 2002, 88, 25.
- Tapia, R. A.; Alegria, L.; Pessoa, C. D.; Salas, C.; Cortés, M. J.; Valderrama, J. A.; Sarciron, M. E.; Pautet, F.; Walchshofer, N.; Fillion, H. *Bioorg. Med. Chem.* 2003, 11, 2175.
- Ijichi, K.; Fujiwara, M.; Nagano, H.; Matsumoto, Y.; Hanasaki, Y.; Ide, T.; Katsuura, K.; Takayama, H.; Shirakawa, S.; Aimi, N.; Shigeta, S.; Konno, K.; Matsushima, M.; Yokota, T.; Baba, M. *Antiviral Res.* 1996, *31*, 87.
- 19. Yeh, M. Y.; Tien, H. J.; Huang, L. Y.; Chen, M. H. J. Chin. Chem. Soc. 1983, 30, 29.

- 20. Tien, H. J.; Yeh, M. Y.; Wu, C. H.; Chen, H. T. J. Chin. Chem. Soc. 1984, 31, 191.
- 21. Yeh, M. Y.; Tien, H. J. J. Chin. Chem. Soc. 1986, 33, 83.
- 22. Yeh, M. Y.; Chan, F. F.; Tien, H. J.; Fuchigami, T.; Nonaka, T. J. Chin. Chem. Soc. **1989**, *36*, 143.
- Shih, M. H.; Lu, L. H.; Yeh, M. Y. J. Chin. Chem. Soc. 2001, 48, 883.
- Shih, M. H.; Her, K. H.; Yeh, M. Y. J. Chin. Chem. Soc. 2001, 48, 1143.
- Shih, M. H.; Lee, M. J.; Yeh, M. Y. J. Chin. Chem. Soc. 2002, 49, 361.
- 26. Shih, M. H. Tetrahedron 2002, 58, 10437.
- 27. Shih, M. H. Synthesis 2004, 26.
- Marusawa, H.; Setoi, H.; Kuroda, A.; Sawada, A.; Seki, J.; Motoyama, Y.; Tanaka, H. *Bioorg. Med. Chem.* **1999**, 7, 2635.
- 29. Mucchi, L.; Vecchia, F. D. J. Heterocycl. Chem. 1982, 19, 557.
- 30. Shah, S. J.; Shah, S. R.; Desai, N. C.; Thaker, K. A. J. Indian Chem. Soc. **1984**, 61, 648.
- Dave, M. P.; Patel, J. M.; Langalia, N. A.; Thaker, K. A. J. Indian Chem. Soc. 1984, 61, 891.
- 32. Boyce, R. J.; Mulqueen, G. C.; Pattenden, G. Tetrahedron Lett. 1994, 35, 5705.
- 33. Wipf, P.; Fritch, P. C. Tetrahedron Lett. 1994, 35, 5397.
- Lai, J. Y.; Yu, J.; Mekonnen, B.; Falck, J. R. Tetrahedron Lett. 1996, 37, 7167.
- 35. Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. J. Agric. Food Chem. **1992**, 40, 945.
- 36. Leong, L. P.; Shui, G. Food Chem. 2002, 76, 69.
- 37. Braca, A.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. J. *Ethnopharmacol.* **2002**, *79*, 379.