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ABSTRACT
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A practical organocatalytic process for the synthesis of optically active, highly substituted
-N bond reduction reaction of prochiral ketone with nitrosobenzene in the

desymmetrization (ADS) of prochiral ketones. The ADS and O
presence of a catalytic amount of chiral amine or amino acid produced the tand
with good yields and excellent enantiomeric excesses.

o-hydroxy-ketones was achieved through asymmetric

em ADS/O —N bond reduced products as single diastereomers

The asymmetric desymmetrization (ADS) of highly substi-
tuted prochiral mesecompounds represents a powerful
synthetic tool for the expedient synthesis of two or more

addition of stoichiometric amounts of heteronucleophiles to
prochiral cyclic anhydrides using a catalytic chiral souce.

Here we describe a novel ADS of highly substituteese

contiguous stereogenic centers in a single operation. Theyetonest using organocatalytic highly diastereo- and enan-

ADS of mesecompounds by enzymatiand nonenzymatic

methods has proven to be a versatile and powerful strategy.

ADS of mesecompounds allows many stereocenters to be
established in a single symmetry-breaking transformation.
The most typical nonenzymatic ADS methods involve the

(1) (a) For an overview of enzymatic ADS, see: Wong, C.-H.; White-
sides, G. M. InEnzymes in Synthetic Organic ChemistBaldwin, J. E.,
Magnus, P. D., Eds.; Elsevier: Oxford, 1994. (b) Ga+drdiales, E.;
Alfonso, |.; Gotor, V.Chem. Re. 2005 105, 313-354.

(2) For a review of nonenzymatic ADS, see: Willis, M. €. Chem.
Soc., Perkin Trans. 1999 1765-1784.
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tioselectiveo-hydroxylation through tandem aminoxylation/
O—N bond heterolysis with nitrosobenzeeNitrosobenzene
2 plays a dual role: it furnishes chirathydroxy ketone$
through enantioselective oxidation of prochiral ketohesd
reduces G-N bonds to result ime-aminoxy product® under
amine3 or amino acid4 catalysis as shown in Scheme 1.

(3) For references to important ADS literature, see: (a) Spivey, A. C.;
Andrews, B. I.Angew. Chem., Int. EQR001, 40, 3131-3134. (b) Chen,
Y.; McDaid, P.; Deng, LChem. Re. 2003 103 2965-2983.



Scheme 1. Direct Organocatalytic Tandem Asymmetric Table 1. Optimization of Direct Organocatalytic Tandem ADS
Desymmetrization/©N Bond Heterolysis and O-N Bond Heterolysis of Highly Substituted Prochiral
Catalyst: Ph., .H Spirotrionela?
Chiral Amine 3 (or) o o Ph P
O Amino Acid4 HO o O. .N o e}
f N T 1 Aps ’ * N Ho
e 2. Heterolysis R "’Y‘;R RY %y “R e O  Catalyst o 3
X Vs X Ve 7 PIvS, 2ph ¢ P cu/pp + SN
o ”,/=o PH 1. ADS o =0 Bh
Catalysts Screened: o. .0 2. Heterolysis o__0
N~ - -
N N
H 3aH H 3b Hoa catalyst product
(20mol  solvent Ph—N=O T ¢ (5a)yield ee°
entry %) (0.3 M) (equiv) (°C) (h) (%) (%)
Our tandem approach complements previatesminoxyla-
tion of simple FI:F(:,tones cataFI) zed o rF())Iine4 ! 1 4 DMSO L5 25 54 3
_Simp catalyzed yp : _ 20 4 (bmimPFs 15 25 54 <2
We initiated our studies of the ADSAN bond reduction 3¢ 3b/TFA° DMSO 15 25 54 <2
reaction by screening a number of known and novel 4 4 CH5CN 15 95 24 49 >99
organocatalysts for the-hydroxylation of highly substituted 5 4 CHCl; 1.5 25 24 50 >99
spirotrionela® by nitrosobenzen@. Representative results 6 4 CH,Clp 15 25 24 60  >99
are shown in Table 1.-Proline 4 catalyzed the formation 7 3a CH,Cl 15 25 44 72 >99
of a-hydroxy ketonesa in very poor yields in DMSO and 8 ia g?%lf ;(5) 22 ;2 g; >33
. . . >
[bmim]PFs solvents (Table 1, entries 1 and 2). The bifunc- 22 .
ional catalyst diamin@b/TFAS also generate&a in ver 5a CH:Cl. 3.0 424 76 99
tiona y g y 115 4 CH,Cl, 0.5 4 24 30 >99

poor yields in DMSO (Table 1, entry 3). In contrast to this

_ ; ; ; ; 2 Reactions were carried out in solvent (0.3 M) with indicated equivalents
result, L prollne 4 aﬁordeq sa a,s a smgle diastereomer in of nitrosobenzene relative to the prochiral ketdren the presence of 20
CH3CN with >99% enantiomeric excess (ee); however, the mol % catalyst® Yield refers to the column-purified productEe deter-

yield of 5awas moderate (42%, Table 1, entry 4). Interest- Mined by CSP-HPLC analysi$Unreacted prochiral ketortéa (80-85%)
was isolated®1:1 mixture of 3b and trifluoroacetic acid.Unreacted

ingly, L-proline Ca_talySiS ?n aprOtiC/_nonpd_ar solvents (CEICI  prochiral ketoneLa (30—40%) was isolatec? Aminoxy ketone6a (15%)
and CHCI,) provided5ain good yields with>99% ee and was isolated along with unreacted prochiral ketdag70%).
diastereomeric excess (de) (Table 1, entries 5 and 6).
Tetrazole-based cataly88’ also furnished thex-hydroxy
ketoneb5a in moderate to good yields with excellent ee and de (Table 1, entries 7 and 8). The optimal conditions for
L-proline 4 catalysis were £C in CH,Cl, with 3 equiv of

(4) (@) Zhong, G.Angew. Chem., Int. EQRR003 42, 4247-4250. (b) ; ; _ ; 0
Brown. S. P.. Broghu. M. P.. Sinz. C. J.. MacMillan. D. W. C. Am. n}trosobenzené and furnishedx-hydroxy ketoneésain 85%
Chem. S0c2003 125 10808-10809. (c) Momiyama, N.; Torii, H.; Saito,  Yield, >99% ee, and de (Table 1, entry®In these tandem
S.; Yamamoto, HProc. Natl. Acad. Sci. U.S.AR004 101, 5374-5378. r | n r W m n| n Z0X n-
(d) Bogevig, A.; Sundeen, H.; Cordova, Angew. Chem., Int. E2004 eactions, produdsa was acco . pa eq by.a s:azoxybe
43, 1109-1112. () Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Shoji, M. Z€ne 7 and unreacted prochiral spirotrionts, and no
Angew. Chem., Int. EQR004 43, 1112-1115. (f) Merino P.; Tejero, T. a_aminoxy ketoneba was observed (Tab|e 1)
Angew. Chem., Int. E@004 43, 2995-2997. (g) Hayashi, Y.; Yamaguchi,

J.; Hibino, K.; Shoji, M. Tetrahedron Lett2003 44, 8293-8296. (h) The proposed mechanism for stereospecific synthesis of
Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Hibino, K.; Shoji, 840rg. Chem. : : : - -
2004 69, 59665973, (i) Cadova, A.. Sunde, H.. Bagevig. A Johansson, chiral alcohol5a through reaction of prochiral spirotrione

M.; Himo, F. Chem. Eur. J2004 10, 3673-3684. (j Yamamoto, Y.; 1la and nitrosobenzen2 is illustrated in Scheme 2. Chiral
Momiyama, N.; Yamamoto, Hl. Am. Chem. So2004 126, 5962-5963. _ iino. _ ; ol
(k) Mathew, S_P.: Iwamura, H.: Blackmond, D. Sngew. Chemn., Int. Ed. L pyrrol|d|n§-te.traz-ole3a orL prollne 4 catalyze the. dia
2004 43, 3317-3321. () Wang, W.; Wang, J.; Hao, Li, Liao, L. stereospecific in situ generation of enamhé&om spirot-
Tetrahedron Lett2004 45, 7235-7238. (m) Hayashi, Y.; Yamaguchi, J.; i n ili S

Hibino, K.; Sumiya, T.; Urushima, T.; Shoji, M.; Hashizume, D.; Koshino, rlpne 1a SUbsequentReface)l n"_JCIeOph”IC addltlor_] to

H. Ady. Synth. Catal2004 346, 1435. (n) Cheong, P. H. Y.; Houk, K. N.  hitrosobenzeng furnishes thex-aminoxy ketonéa, which

J. Am. Chem. S02004 126, 13912-13913. immediately undergoes addition to excess nitrosoben2ene

(5) All prochiral spirotrioned were prepared using the newly developed . o
“organo-click chemistry” technique; see: Ramachary, D. B.; Barbas, C. followed by rearrangement of intermedidi2into a-hydroxy
F., lll. Chem. Eur. J2004 10, 5323-5331.

(6) The 3b/trifluoroacetic acid (TFA) catalyst system was shown to be
highly effective in the asymmetric aldol and Michael reactions. Due to the (7) (a) Cobb, A. J. A;; Shaw, D. M.; Ley, S. \Bynlett2004 558-560.
insolubility of salt 3b/TFA in other solvents, we used only DMSO as a  (b) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, Ahgew.
solvent in our tandem ADS/ON bond heterolysis studies. For details of Chem., Int. Ed2004 43, 1983-1986. (c) Cobb, A. J. A,; Shaw, D. M;
catalyst3b/TFA in asymmetric catalysis, see: (a) Mase, N.; Thayumanavan, Longbottom, D. A.; Gold, J. B.; Ley, S. \Org. Biomol. Chem2005 3,

R.; Tanaka, F.; Barbas, C. F., IDrg. Lett.2004 6, 2527-2530. (b) Mase, 84—96. (d) Hartikka, A.; Arvidsson, Pletrahedron: Asymmet3004 15,

N.; Tanaka, F.; Barbas, C. F., [Ikngew. Chem., Int. EQ004 43, 2420~ 1831-1834. (e) Cobb, A. J. A,; Longbottom, D. A.; Shaw, D. M.; Ley, S.
2423. (c) Mase, N.; Tanaka, F.; Barbas, C. F.,@ltg. Lett.2003 5, 4369- V. Chem. Commur2004 16, 1808-1809. (f) Thayumanavan, R.; Tanaka,
4372. (d) Ramachary, D. B.; Anebouselvy, K.; Chowdari, N. S.; Barbas, F.; Barbas, C. F., lllOrg. Lett.2004 6, 3541-3544. (g) For application
C. F., lll. J. Org. Chem2004 69, 5838-5849. (e) Nakadai, M.; Saito, S.; in total synthesis of BIRT-377, see: Chowdari, N. S.; Barbas, C. F., Ill.
Yamamoto, HTetrahedror2002 58, 8167-8177. (f) Sakthivel, K.; Notz, Org. Lett.2005 7, 867—-870.

W.; Bui, T.; Barbas, C. F., lllJ. Am. Chem. So2001, 123 5260-5267. (8) Relative stereochemistry of produsa was established by NMR
(g9) Notz, W.; Sakthivel, K.; Bui, T.; Zhong, G.; Barbas, C. F., lll.  analysis of the 3,5-dinitrobenzoate derivativesaf(eq S1, see Supporting
Tetrahedron Lett2001 42, 199-201. Information).
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Table 2. Direct Organocatalytic Tandem Aminoxylation and-& Bond Heterolysis of Cyclohexanoné8a/l?
o
9 3a or4
+ N
fﬁ Ph’

x AR

13a:X=CH, 2 14a/b 15a/b 16alb
13b: X = C(OCH,CH,0)

Catalyst

Ph—N=0 T t yield (%)b ee (%)c
entry substrate catalyst solvent (equiv) (°C) (h) 14a/b 15a/b 16a/b 16a/b
14 13a 3a DMSO 0.33 25 1 50 20 6 99
2 13a 4 CH.Cly 3.0 25 1 2 43 99
3 13a 4 CHCl, 3.0 4 24 5 75 99
4 13b 4 CH.Cl, 3.0 4 30 40 98

a Reactions were carried out in solvent (0.3 M) with indicated equivalents of nitrosobenzene relative to the cyclohexanone in the presence of 30 mol %
catalyst.P Yield refers to the column-purified productEes of product were determined by CSP-HPLC analysis of the 3,5-dinitrobenzoate derivative of
16a/h. 9 Performed with 5 mol %-pyrrolidine-tetrazole3a.

ketone5aandtrans-azoxybenzeng.® The key intermediate |||

?i)was isolated when 0.5 equiv 2fwas used (Table 1, entry Table 4. Chemically Diverse Libraries af-Hydroxy Ketone3

entry substrate product yield %)° e (%)°

Scheme 2. Proposed Reaction Mechanism 1 76 99
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o
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This method forin situ reduction of G-N bonds was
further applied to simple ketones and aldehydes. As shown
in Tables 2 and 3, simple ketones and aldehydes were ° ¢ Hn @ 3l ) %

ne coza N cozsn
Q. 51) sf
. . . . 6d 5 -
Table 3. Direct Organocatalytic Tandem Aminoxylation and @ ¢ @ @ @ :
O—N Bond Heterolysis of 3-Phenyl Propartal Me°2° °°2Me MeOzC CoMe
a. 51)
o o 1. Catalyst OH O,NHPh ¢ >99 (cis)
1 3aor4 7° 26
+ N + >99 (trans)
Ph/\)J\H Ph/ TBH‘l» Ph \/k/OH Ph\/'\/OH @ @ @ @
17 2 18 19 MeO,C COzMe 1g MeOZC COMe 5g
(3eq)
a All reactions were carried out in GE&l, (0.3 M) with 3.0 equiv of
yield (%) ee (%) nitrosobenzene relative to the prochiral ketodes-g in the presence of
20 mol %L-proline at 4°C and were complete in 48 RYield refers to
catalyst ~ solvent T(°C) t(h) 18 19 18 the column-purified product Ees of product were determined by CSP-
HPLC analysisd Reaction was performed at 24 for 7 days under
4 CHsCN 4 18 20 >99 L-proline catalysis® Reaction was performed at 24 for 69 h under
3a CH3CN 24 1.5 35 35 >99 L-Pyrrolidine-tetrazole3a catalysis.

Org. Lett., Vol. 7, No. 8, 2005 1579



transformed into enantiomerically pucehydroxy ketones
16aand16bor 1,2-diols18in moderate to good yields using Scheme 3. Application of ADS/O-N Bond Heterolysis
3 equiv of nitrosobenzene under organocatalysis. The Products
intermediacy of aminoxylated products is supported in the
heterolysis of the ©N bond ofl4afollowing treatment with
2 (eq S2, see Supporting Information). °
The scope of the diastereo- and enantioselective tandem
ADS/O—N bond reduction was investigated. A series of
1,2,3-trisubstituted prochiral spirotrionés—g® were reacted o
with excess nitrosobenzen2 catalyzed by 20 mol % L
L-proline4 at 4°C in CH,Cl, (Scheme 1 and Table 4). With
one exception, the hydroxy-spirotriongsvere obtained as
single diastereomers with good yields and excellent ees. The dzefggf/ ko
reaction of prochiral ketonelf with nitrosobenzene2 '
furnished the hydroxy-keton®f as single isomer, in good [a]p® = +20.8°
yield and excellent ee (Table 4, entry 5). Interestingly, ketone (€=0.312, CHCl3)
1g did not furnish the expected hydroxy-ketokg under
these conditions; however, ketoBgwas generated in 1.5:1

dr with very poor yields at 24C after a longer reaction o W« 0 o
SOR%O.
o 222 O

time (Table 4, entry 6). Undar-pyr-tetrazole3a catalysis

at 24°C, a moderate yield ddg was obtained with 1.5:1 dr
and>99% ee of each isomer (Table 4, entry 7). L-Selectride
reduction of5b furnished the chiral diol20and21in a 5:1
ratio with 91% yield (Scheme 3). Chiral hydroxy-ketosie 6 undergo G-N bond reduction witt? to yield a-hydroxy
will serve as a suitable synthon for the synthesis of endothelin ketoness. Further work is in progress to utilize this novel
receptor antagonist2'® as shown in Scheme 3. ADS/O—N bond reduction reaction.

In summary, we have developed methods for the ADS
and O-N bond reduction of prochiral ketonet with
nitrosobenzen® under amino acid catalysis. The tandem
reaction proceeds in good yield with99% ee and>99%

de usingL-proline as the catalyst. Furthermore, we have  gypporting Information Available: Experimental pro-
demonstrated that the situ-generatedx-aminoxy ketones  cedures, compound characterization, and analytical délta (

NMR, 3C NMR, and HRMS) for all new compounds. This
material is available free of charge via the Internet at

Endothelin receptor antagonist10
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(9) For preparation of azoxybenzerdrom reaction of nitrosobenzene
2 with phenylhydroxylamine, see: Becker, A. R.; Sternson, LJAOrg.

Chem.198Q 45, 1708-1710. http://pubs.acs.org.
(10) Xiang, J. N.; Nambi, P.; Ohlstein, E. H.; Elliott, J. Bioorg. Med.
Chem.1998§ 6, 695-700. OL050246E
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