J. Iran. Chem. Soc., Vol. 7, No. 1, March 2010, pp. 128-133.

# JOURNAL OF THE Iranian Chemical Society

# Oxidation of 2,6-Di-tert-butylphenol by Dioxygen Catalyzed by Tetrasodium Phthalocyaninatocobalt(II) Tetrasulfonate in Aqueous Micellar Media

M. Hassanein\*, M. Sakaran and S. Shendy

Chemistry Department, Faculty of Science, Tanta University, Tanta 3152, Egypt

(Received 14 August 2008, Accepted 14 February 2009)

The oxidation of 2,6-di-tert-butylphenol by dioxygen has been investigated in aqueous micellar aggregates of cetyltrimethylammonium bromide (CTAB) using tetrasodium phthalocyaninatocobalt(II) tetrasulfonate (CoPcTsNa<sub>4</sub>) as catalyst. The CTAB/CoPcTsNa<sub>4</sub> system showed enhanced catalytic activity in the oxidation of 2,6-di-tert-butylphenol compared to that observed in the oxidation reaction in the absence of CTAB. 2,6-Di-tert-butyl-1,4-benzoquinone and 3,5,3',5'-tetra-tert-butyl-4,4-diphenoquinone were identified as reaction products. The initial rate constants of auto-oxidation reaction was found to increase with increasing the pH range from 7.0 to 13.0. The rate constants  $k_{obs}$  of auto-oxidation reaction showed linear dependence on catalyst concentration. The rate of auto-oxidation reaction was found to fit a Michealis-Menten kinetic model for the saturation of catalyst sites with increasing 2,6-di-tert-butylphenol concentration and dioxygen pressure. Tetrasodium phthalocyaninatocobalt(II) tetrasulfonate in aqueous micellar solution of CTAB was found to be mainly monomeric.

Keywords: Oxidation, Dioxygen, Cobaltphthalocyanine, 2,6-Di-tert-butyl-phenol, Surfactant, Catalysis

## **INTRODUCTION**

The enhancement of the rate of organic reactions by colloidal assemblies such as aqueous micelles has attracted considerable interest in recent years. The unique ability of micelles to solubilize organic substrates in water and to catalyze chemical reactions, forms the basis for their use as a medium for investigating organic and bioorganic processes [1-7].

The oxidation of phenols with transition metal dioxygen carriers [8-10] is of industrial and biological importance, because it involves metal dioxygen adduct as an intermediate in the oxidation process, and serves as an appro-priate model for the reaction of oxygenized enzymes [11]. Because of their cheap and facile preparation in a large scale and their relatively high chemical and thermal stability, metallophthalocyanines are attractive as potential catalysts for the oxidation of organic compounds [12-32].

Examples are oxidation of alkenes [13,14], aromatic compounds [15], ascorbic acid [16], thiols [17-24] and phenols [25-32].

The objective of the present work is to investigate the oxidation of 2,6-di-tert-butylphenol by dioxygen catalyzed by tetrasodium phthalocyaninato-cobalt(II) tetrasulfonate (1) in aqueous micellar media.

## **EXPERIMENTAL**

#### **Materials and Reagents**

2,6-Di-tert-butylphenol (Aldrich) was recrystallized from n-hexane. Tetrasodium phthalocyaninatocobalt(II) tetrasulfonate (CoPcTSNa<sub>4</sub>) was prepared and purified as reported by Weber and Busch [33]. Hexadecyltrimethylammonium bromide (Aldrich), sodium dodecylsulfate 98% (Aldrich) and triton X-100 (Merck) were used as received. Water used in the reaction was double distilled (deionized water).

<sup>\*</sup>Corresponding author. E-mail: mthassanein@yahoo.com

### Apparatus

The UV-Vis absorption spectra of the catalyst was recorded on Shimadzu 3101 Pc UV-Vis Spectrophotometer.

## **Autoxidation Reactions**

Oxidations of 2,6-di-tert-butylphenol were performed as previously [28] by stirring of 100 ml of an aqueous mixture containing 5 volume% methanol in a 250 ml round bottomed flask attached to a gas burette. The pH was adjusted for universal buffer mixture. All reactions were carried out at 40 °C at constant oxygen pressure. Lower partial pressures of dioxygen were obtained by use of oxygen/nitrogen mixture at 1 atm total pressure. After the completion of the reaction the mixture was extracted by diethyl ether. The extract was analyzed quantitatively with preparative layer chromatography, PLC (PSC-GF<sub>254</sub> Silica gel plates, Merk) plates, 2 mm thickness, 20 cm × 20 cm using petroleum ether and ethyl acetate (volume ratio 9.5:0.5) as eluent. The products were identified by comparison with authentic samples. All kinetic runs were duplicate and were reproducible within 5%.

## **RESULTS AND DISCUSSION**

#### **Oxidation of 2,6-Di-tert-butylphenol**

The catalytic activity of tetrasodium phthalocyaninatocobalt(II) tetrasulfonate (Scheme 1) was investigated in the auto-oxidation of 2,6-di-tert-butylphenol in aqueous micellar aggregates. The oxidation reaction was followed by measuring dioxygen uptake. Gas burette measurements of dioxygen consumption, as the reaction proceeded, showed that after an induction period, the volume of dioxygen consumed was linear with time, indicating a zero-order dependence on substrate concentration.

The data summarized in Table 1 show the enhanced catalytic activity of CoPcTSNa<sub>4</sub> in the presence of surfactant aggregates in the auto-oxidation of 2,6-di-tert-butyl-phenol compared to that observed in the absence of surfactant. The rate acceleration of the oxidation reaction in the presence of surfactant aggregates could be attributed to the high local concentration of 2,6-di-tert-butylphenol and the catalyst CoPcTSNa<sub>4</sub> in the pseudo phase in the micelle compared with the bulk solution [4,7]. The higher rate of auto-oxidation reaction of 2,6-di-tert-butylphenol catalyzed by CoPcTSNa<sub>4</sub> in the presence of CTAB (Table 1), is also due to the reduction of the repulsive forces between the active species phthalocyaninatocobalt(II) tetrasulfonate and 2,6-di-



tert-butylphenoxide anions by binding them at the surface of the cationic micelle.

The auto-oxidation of 2,6-di-tert-butylphenol in aqueous micellar solution of CTAB gave 90% conversion of 2,6-di-tert-butylphenol within 5 h to 3,5,3',5'-tetra-tert-butyl-4,4-diphenoquinone **2** and 2,6-di-tert-butyl-1,4-benzoquinone **3** (Table 2). The oxidation reaction in the absence of CTAB gave only 20% conversion of 2,6-di-tert-butylphenol under the same reaction conditions. Data illustrated in Table 2 show that micelle could also affect the product distribution of the auto-oxidation reaction of 2,6-di-tert-butylphenol. The oxidative coupling product **2** was the major product in the oxidation reaction catalyzed by aqueous CoPcTSNa<sub>4</sub> in the absence of CTAB. The yield of 2,6-di-tert-butyl-1,4-benzoquinone **3** increased in the reaction catalyzed by

Table 1. Auto-oxidation of 2,6-Di-tert-butylphenolCatalyzed by Tetrasodium phthalocyanato-cobalt (II) Tetrasulfonate in Aqueous MicellarMedia<sup>a</sup>

| Surfactants      | $10^{6}$ k ·    |  |
|------------------|-----------------|--|
| Surractants      | $(M \min^{-1})$ |  |
|                  | 0.96            |  |
| $CTAB^{b}$       | 4.70            |  |
| SDS <sup>c</sup> | 1.60            |  |
| Triton X-100     | 1.30            |  |

<sup>a</sup>All experiments were carried out at 40 °C and oxygen pressure of 0.9 atm. with magnetic stirring of 1.5 mmol of 2,6-di-tert-butylphenol in 100 ml distilled water containing  $4 \times 10^{-5}$  M of CoPcTSNa<sub>4</sub>. The pH of the reaction was adjusted to 11.0 using universal buffer mixture. <sup>b</sup>hexadecyltrimethylammonium bromide. <sup>c</sup>sodium dodecyl sulfate.

 Table 2. Oxidation of 2,6-Di-tert-butylphenol Catalyzed by

 Tetrasodium Phthalocyanatocobalt(II) Tetrasulfonate

 in Presence of CTAB<sup>a</sup>

| Phenol conversion | Reaction time | Selectivity (%) <sup>b</sup> |        |
|-------------------|---------------|------------------------------|--------|
| (%) <sup>b</sup>  | (h)           |                              |        |
|                   |               | DPQ <sup>c</sup>             | $BQ^d$ |
| 20 <sup>e</sup>   | 5             | 70                           | 30     |
| 90                | 5             | 40                           | 60     |

<sup>a</sup>All experiments were carried out under experimental conditions as reported in Table 1 in presence of  $12 \times 10^{-4}$  M solution of CTAB. <sup>b</sup>%Conversion and selectivity are based on isolated products after completion of the reaction. <sup>c</sup>DPQ: 3,5,3',5'-tetra-tert-butyl-4,4'-diphenoquinone. <sup>d</sup>BQ: 2,6-di-tert-butyl-1,4-benzoquinone. <sup>e</sup>Reaction carried out in absence of CTAB.

#### CoPcTSNa<sub>4</sub>/CTAB system.

Previous results had indicated that CoPcTSNa<sub>4</sub>/CTAB system was the best catalyst; it was therefore further investigated at various reaction conditions.

# Effect of [CTAB] on the Auto-oxidation of 2,6-Ditert-butylphenol

Data illustrated in Fig. 1 show the effect of concentration



Fig. 1. Effect of concentration of CTAB on the autooxidation of 2,6-di-tert-butylphenol catalyzed by cobalt(II) phthalocyanine complex 1 in aqueous micellar solution of CTAB. All reactions were carried out under conditions reported in Table 1.



Fig. 2. Effect of pH on the auto-oxidation of 2,6-di-tertbutylphenol catalyzed by cobalt(II) phthalocyanine complex 1 in aqueous micellar solution of CTAB. All reactions were carried out under conditions reported in Table 1. The pH of the reaction mixture was adjusted using universal buffer mixtures.

of hexadecyltrimethylammonium bromide on the rate constant  $k_{obs}$  of the auto-oxidation of 2,6-di-tert-butylphenol catalyzed by CoPcTSNa<sub>4</sub>. The oxidation rate increases as the CTAB concentration increases and reaches a maximum and then decreases. Similar results were reported previously [4,34].

# Effect of pH on the Auto-oxidation of 2,6-Di-tertbutylphenol

The auto-oxidation of 2,6-di-tert-butylphenol was studied in the pH range 7.0-13.0, using universal buffer mixture. The zero-order rate constant  $k_{obs}$  was found to

increase with increasing the pH value of the reaction medium (Fig. 2). This indicates that 2,6-di-tert-butyl-phenoxide anion is the active species.

# Effect of Concentration of CoPcTSNa<sub>4</sub> on the Autooxidation of 2,6-Di-tert-butylphenol

The dependence of the rate constant  $k_{obs}$  of the autooxidation of 2,6-di-tert-butylphenol on the concentration of CoPcTSNa<sub>4</sub> in aqueous micellar solution of hexadecyltrimethylammonium bromide was investigated in the concentration range  $0.5 \times 10^{-5}$  to  $5 \times 10^{-5}$  M (Fig. 3). The rate constants  $k_{obs}$  increased linearly with increasing the concentration of CoPcTSNa<sub>4</sub>.

# Effect of Concentration of 2,6-Di-tert-butylphenol on the Rate of Auto-oxidation

The effect of concentration of 2,6-di-tert-butylphenol on the rate constants  $k_{obs}$  of the auto-oxidation reaction has been investigated in the concentration range  $0.5 \times 10^{-3}$  M to  $4 \times 10^{-3}$  M. The initial rate constants  $k_{obs}$  of 2,6-di-tertbutylphenol consumption depend on the initial concentration of 2,6-di-tert-butylphenol as shown in Fig. 4. A linear double reciprocal Lineweaver-Burk (Fig. 5) shows that the data fit a Michaelis-Menten kinetic model for the saturation of the catalyst sites with increasing 2,6-di-tert-butylphenol concentration.

# Effect of Partial Pressure of Dioxygen on the Autooxidation of 2,6-Di-tert-butylphenol

The effect of partial pressure of dioxygen on the autooxidation of 2,6-di-tert-butylphenol in aqueous micelle of CTAB was investigated by using oxygen/nitrogen mixture to obtain reduced partial pressure of 1 atm total pressure on the reaction mixture. The data illustrated in Figs. 6 and 7 show that the observed rate constants  $k_{obs}$  depend on the partial pressure of dioxygen for saturation of catalyst site.

The oxidation of phenols by dioxygen catalyzed by cobalt(II) phthalocyanine complexes represents a typical example for a reaction involving the activation of dioxygen by transition metal cation [26]. Metal-bound oxygen is an active species in the auto-oxidation of phenols catalyzed by cobalt(II) phthalocyanine [26].

Metal phthalocyanine complexes are generally known to exist as dimmers in equilibrium with monomers in aqueous solutions. Their UV-Vis spectra thus consists of two peaks in the Q band region. The lower energy absorption band near 670 nm is associated with the monomeric species while



**Fig. 3.** Dependence of rate constant on catalyst **1** concentration. For reaction conditions see footnote (a) of Table 1.



**Fig. 4.** Dependence of rate auto-oxidation on 2,6-di-tertbutylphenol concentration. For reaction conditions see footnote (a) of Table 1.



Fig. 5. Linweaver-Burk plot for the data in Fig. 4.

the high energy absorption band near 620 nm is due to the dimeric species [30]. The spectroscopic data illustrated in Fig. 8 show that aqueous CoPcTSNa<sub>4</sub> in the presence of CTAB under reaction conditions is present mainly in the monomeric form. The surfactant promoted site isolation of the CoPcTSNa<sub>4</sub> prevents the formation of inactive  $\mu$ -oxo



Fig. 6. Dependence of rate of auto-oxidation of 2,6-di-tertbutylphenol catalyzed by cobalt(II) phthalocyanine complex 1 in aqueous micellar aggregates of CTAB on partial pressure of dioxygen. For reaction conditions see footnote a of Table 1.



Fig. 7. Linweaver-Burk plot for the data in Fig. 6.

dimers. The monomeric CoPcTS-dioxygen adduct (Scheme 2) is therefore the active species in the oxidation reaction of 2,6-di-tert-butyl-phenol in the presence of cationic surfactant CTAB.

In the literature, there is a general consensus that, the phenoxy radical is the first intermediate in the mechanism of the formation of coupled product 2 and the oxygen insertion product 3 in the oxidation of substituted phenols catalyzed by dioxygen-cobalt complexes [26-28,35]. The coupling product 2 in the oxidation reaction is formed by dimerization of the phenoxy radical (Scheme 3). The oxygen insertion product 2,6-di-tert-butyl-1,4-benzo-quinone 3 is formed through the cobalt(III) complex (Scheme 3).





Scheme 2



Fig. 8. Electronic absorption spectra of CoPcTSNa<sub>4</sub> 1: a) electronic absorption spectra of CoPcTSNa<sub>4</sub> in water.
b) Spectrum obtained after addition of CTAB. c) Spectrum obtained in presence of surfactant in pH 11.



Scheme 3

## REFERENCES

- J.H. Fendler, E.J. Fendler, Catalysis in Micellar and Macromolecular Systems, Academic Press, New York, 1975.
- [2] J.H. Fendler, Membrane Mimetic Chemistry, John Wiley & Sons Inc., 1982.
- [3] A. Inada, K.Y. Nakamura, Y. Morita, Chem. Pharm. Bull. 36 (1988) 462.
- [4] N. Al-Awadi, A. Williams, J. Org. Chem. 55 (1999) 2001.
- [5] D. Monti, A. Pastorini, G. Mancini, S. Borocci, P. Tagliatesta, J. Mol. Catal. A: Chem. 179 (2002) 125.
- [6] M. Li, H. Fu, M. Yang, H. Zheng, Y. He, H. Chen, X. Li, J. Mol. Catal. A: Chem. 235 (2005) 130.
- [7] D.M. Vriezema, M.C. Aragnes, J.A. Elemans, J.J. Comelissen, A.E. Rowan, R.J. Nolta, Chem. Rev. 105 (2005) 1445 (and references therein).
- [8] E. Tarnaud, A. Gaudemer, M. Frostin-Rio, C. Bied-Charreton, J. Mol. Catal. 72 (1992) 181.
- [9] M. Hassanein, F.I. Abdel-Hay, T. El-Hefnawy El-Esawy, Eur. Polym. J. (1994) 669.
- [10] M. Hassanein, S. Gerges, M. Abdo, S. El-Khalafy, 268 (2007) 24.
- [11] L.Vaska, Acc. Chem. Res. 9 (1976) 175.
- [12] D. Wöhrle, O. Suvorova, R. Gerdes, O. Bartels, L. Lapok, N. Baziakina, S. Makarov, A. Soldek, J.

Porphyrins Phthalocyanines 8 (2004) 1020.

- [13] N. Safari, F. Bahadoran, J. Mol. Catal. A: Chem. 171 (2001) 115.
- [14] N. Steletho, T. Nyokong, J. Mol. Catal. A: Chem. 209 (2004) 51.
- [15] A.B. Sorokin, S. Mangematin, C. Pergrale, J. Mol. Catal. A: Chem. 182-183 (2002) 267 and references therein.
- [16] Y. Ogata, K. Marumo, T. Kawan, Chem. Pharm. Bull. 17 (1969)1194.
- [17] N. Rajendiran, J. Santhanalakshmi, J. Mol. Catal. A: Chem. 245 (2006) 185.
- [18] N.N. Kundo, N.P. Keier, Z. Fiz. Khim. 42 (1968) 707.
- [19] P.K. Leung, M.R. Hoffmann, Environ. Sci. Technol. 22 (1988) 275.
- [20] K.H. van Streun, W.J. Belt, E.T. Schipper, P. Piet, A.L. German, J. Mol. Catal. 71(1992) 245.
- [21] M. Hassanein, W.T. Ford, J. Org. Chem. 54 (1989) 3106.
- [22] T. Buck, H. Bohlen, D.Wöhrle, G. Schulz-Ekoff, A. Andreev, J. Mol. Catal. 80 (1993) 253.
- [23] V. Iliev, A. Ileva, L. Bulyarska, J. Mol. Catal. A: Chem. 126 (1997) 99.
- [24] M. Hassanein, H. El-Hamshary, N. Salahuddin, A. Abu El-fotoh, J. M. Catal. A: Chem. 234 (2005) 45.
- [25] V.N. Nemykin, A.E. Polshyna, S.A. Borisenkova, V.V. Strelko, J. Mol. Catal. A: Chem. 264 (2007) 103.
- [26] V.M. Kothari, J.T. Tazuma, J. Catal. 41 (1976) 180.
- [27] H. Türk, W.T. Ford, J. Org. Chem. 53 (1988) 460.
- [28] M. Hassanein, A. Selim, H. El-hamshary, Macromol. Chem. Phys. 195 (1994) 3845.
- [29] A. Sorokin, B. Meunier, Chem. Eur. J. 2 (1996) 1308.
- [30] B. Agboola, K.I. Ozoemena, T. Nyokong, J. Mol. Catal. A: Chem. 227 (2005) 209.
- [31] H. Türk, Y. Cimen, J. Mol. Catal. A: Chem. 234 (2005) 19.
- [32] N. Rajendiran, J. Santhanalakshmi, J. Mol. Catal. A: Chem. 245 (2006) 185.
- [33] J.H. Weber, H.D. Busch, Inorg. Chem. 4 (1965) 469.
- [34] G.P. Panigrahi, J. Panda, Proc. Indian Acad. Sci. (Chem. Sci.) 112 (2000) 615.
- [35] M. Hassanein, S.A. Aly, Y.A. Abbas, S. El-sigeny, Makromol. Chem. 194 (1993) 1817 (and references therein).