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ABSTRACT: A series of stellated metallo-supramolecular archi-
tectures has been assembled through three-component integrative 
self-sorting. Building on the complementary ligand pairing, the 
initial attempts to synthesize the hexagram complex from a com-
bination of X-shaped tetrakis- and V-shaped bis-terpyridine lig-
ands, and CdII ions, resulted in an unprecedented mixture of stel-
lated octanuclear and dodecanuclear metallocages, which were 
further isolated by column chromatography. To overcome the 
unexpected obstacle, the multivalent ligand design along with 
spontaneous heteroleptic complexation was applied to realization 
of the one-pot synthesis of the intricate topology. A centrally situ-
ated triangle served as a prop for quantitative formation of the six-
pointed stellated complex. Notably, in the absence of the triangu-
lar prop, a four-pointed star was produced. 

Metal-mediated self-assembly continues to spark the vibrant 
field of supramolecular chemistry, owing to its ability to deliver 
molecular architectures of aesthetic appeal.1 Over the last few 
years, more intricate coordination-driven self-assembled struc-
tures, such as sphere-in-sphere polyhedrons,2 multilayer poly-
gons,2b,3 and multicavity cages,4 have been documented. Concur-
rently, such molecules possess diverse potential functions in host-
guest chemistry,5 catalysis,6 drug delivery,7 stabilizing media,8 
etc. To achieve greater complexity and functionality of such mol-
ecules, chemists seek to incorporate more than one type of ligands 
through integrative self-sorting process. Although such self-
organizing events are ubiquitous in biological systems,9 it still re-
mains an arduous challenge to rational construction of artificial 
supramolecules of great intricacy, due to lack of efficient self-
assembly strategies. Few approaches, such as topological 
control,10 maximum site occupancy,11 steric control strategies,1b,12 
and charge separation,10,13 have been developed for spontaneous 
preparation of heteroleptic complexes. 

Tridentate 2,2':6',2"-terpyridine (tpy) ligands garnered immense 
attention in construction of supramolecular assemblies due to its 
coordinating ability towards a wide range of transition metal 
ions.1g,14 Metalloligands bearing robust <tpy-MII-tpy> junctures 
are often chosen as primary components for construction of tpy-
based heteroleptic supramolecular architectures.1g,15 However, 
multistep synthesis and difficulties in purification cannot be 
avoided. Aiming for more efficient self-assembly processes, re-
cently we emphasized the importance of ligand multivalency3b,16 
and developed complementary ligand pairing for one-pot synthe-
sis of tpy-based multicomponent metallo-supramoleular architec-
tures.12d,12f As compared with regular polygons and polyhedrons, 
construction of stellated metallo-supramolecules15a,17 is more  

Scheme 1. Self-Assembly of Stellated Metallocages [Cd8L1
2V4] 

and [Cd12L1
3V6] 

 
challenging because precise manipulation of non-covalent interac-
tions between molecular subunits is needed for such high level 
self-assembly. Herein, we report rational construction of a series 
of tpy-based stellated architectures, including two stellated metal-
locages, [Cd8L1

2V4] and [Cd12L1
3V6], a four-pointed star, 

[Cd12L2
2V4], and a six-pointed star, [Cd21L3

3V6], based on multi-
valent ligand design and spontaneous heteroleptic complexation. 

Towards the construction of star polygons, X-shaped ligand L1 
and 60°-bent bis-tpy ligand V were chosen to complex with CdII 
ions in a stoichiometric ratio of 1:1:3 (Scheme 1). The tetratopic 
ligand L1 was synthesized through the Suzuki-Miyaura coupling 
reaction (Scheme S1), whereas ligand V was obtained from the 
modified Kröhnke protocol and the subsequent Suzuki-Miyaura 
coupling reaction.12f 2,6-Dimethoxyphenyl groups were installed 
at terpyridyl 6,6"-positions of ligand V to meet the requirements 
for complementary ligand pairing.12d Nevertheless, the possible 
formation of [Cd12L1

4V4], [Cd15L1
5V5], and [Cd18L1

6V6] (Scheme 
1) was not observed from the above mentioned combination. ESI-
MS analysis revealed the unpredictable formation of a mixture of 
complexes [Cd8L1

2V4] and [Cd12L1
3V6] (Figure S27) and no sig-

nals of the expected complexes with a general formula, 
[Cd3nL1

nVn], were found. The mixture of [Cd8L1
2V4] and 

[Cd12L1
3V6] were again prepared from the required stoichiometric 

ratio of 1:2:4 (L1:V:Cd). Both the complexes were found to re-
main in a concentration-dependent equilibrium with [Cd12L1

3V6] 
as a major product (Figure S13). Furthermore, the diffusion-  
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Figure 1. a) 1H NMR spectra of L1, V, and [Cd12L1

3V6]. ESI-MS 
spectra of b) [Cd8L1

2V4] and c) [Cd12L1
3V6]. 

ordered spectroscopy (DOSY) NMR experiment (Figure S14) 
confirmed the existence of two species with distinct diffusion 
coefficients in solution. 

It is worth noting that the separation of [Cd8L1
2V4] and 

[Cd12L1
3V6] was successfully achieved by column chromatog-

raphy (Figures 1 and S15), which was mainly benefited from the 
relatively stable heteroleptic <tpy-CdII-tpy'> connectivity,12d,18 
and their chemical formulas were further identified by ESI-MS 
(Figures 1b and 1c). The signals of [Cd8L1

2V4] and [Cd12L1
3V6] in 

the 1H NMR spectra were properly assigned with the assistance of 
COSY and ROESY spectral data (Figures S17-S18 and S21-S22). 
The two distinct sets of terpyridyl 1H NMR signals strongly sup-
port the formation of heteroleptic complexes. The peaks corre-
sponding to protons e and g of ligand V in [Cd12L1

3V6] were split 
into two signals with equal intensity (Figure 1a). The variable-
temperature NMR (Figure S24) indicated the splitting for proton g 
becomes smaller at higher temperatures. Eventually, the 1H-1H 
exchange spectroscopy (EXSY) spectrum (Figure S25) verified 
that the peak splitting stems from a slow exchange rate of the 
methoxy groups, presumably due to the ion-dipole interactions 
between CdII and methoxy groups. The exchange rate (kex) was 
estimated to be 0.039 s-1 at 25 ˚C by varying mixing time (Figure 
S26).19 As expected, a single peak in the 113Cd NMR spectrum of 
[Cd12L1

3V6] corroborated the presence of one type of metal cen-
ters (Figure S23). 

Based on NMR analysis, the formation of possible isomers of 
[Cd8L1

2V4] and [Cd12L1
3V6] cannot be completely excluded. To 

clarify this issue, the computational and experimental results are 
discussed as follows. By rotating the ligand L1 by 90° in 
[Cd8L1

2V4], two possible isomers can be generated, i.e., eclipsed 
and staggered (Figure S30), and it was realized that the eclipsed 
isomer has a lower total energy after geometry optimization. 
Similarly, [Cd12L1

3V6] has two possible isomers consisting of two 
different kinds of cyclic tetramers as subunits. The subunit for 
isomer 1 is a puckered tetramer composed of four 60°-bent bis-tpy 
ligands, and that for isomer 2 is a rhombus composed of two 
120°-bent and two 60°-bent bis-tpy ligands (Scheme S5). The 
computational calculation suggested isomer 1 of [Cd12L1

3V6] is 
lower in total energy (Figure S31). In addition, by comparing the 

1H NMR spectra of [Cd12L1
3V6] and two subunits,12f it revealed 

that the signals from ligand V are much closer to those in the 
puckered tetrameric subunit (Figure S32), again supporting the 
formation of the proposed structure of [Cd12L1

3V6]. Furthermore, 
electrospray ionization-traveling wave ion-mobility spectrometry-
mass spectrometry (ESI-TWIM-MS)18,20 was used to gain more 
structural insights into stellated metallocages [Cd8L1

2V4] and 
[Cd12L1

3V6]. The narrow drift time distributions (Figures S45 and 
S46) were indicative of the absence of isomers, and the theoretical 
and experimental collision cross-sections (CCSs) were in accord 
with each other for both cases (Tables S1 and S2). 

Scheme 2. Self-Assembly of Four-Pointed Star [Cd12L2
2V4] 

 
The formation of the mixture of complexes [Cd8L1

2V4] and 
[Cd12L1

3V6] from X- and V-shaped ligands in combination with 
CdII prefers over the expected series of [Cd3nL1

nVn], possibly due 
to entropic reasons. Hence, to avoid such unpredictable smaller 
structures, ligand L2 was designed for the construction of stellated 
polygons (Scheme 2), with expectation that the intramolecular 
complexation3b between two X-shaped ligands could prevent the 
formation of undesired [Cd8L1

2V4]-type cages. Ligand L2  

 
Figure 2. a) 1H NMR spectra of L2, V, and [Cd12L2

2V4]. b) ESI-
MS spectrum and c) ESI-TWIM-MS plot of [Cd12L2

2V4]. 
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Scheme 3. Self-Assembly of Six-Pointed Star [Cd21L3
3V6] 

 
composed of two X-shaped tetravalent terpyridyl moieties con-
nected through C8 alkyl linkers was synthesized via the Mitsuno-
bu reaction of the corresponding hydroquinone precursor and the 
subsequent Suzuki-Miyaura coupling reactions of 4'-(4-
boronophenyl)-tpy with eight aryl-bromo positions (Scheme S2). 
However, a mixture of L2, V, and CdII ions in a molar ratio of 
1:2:6 led to the formation of four-pointed star complex 
[Cd12L2

2V4] (Scheme 2). ESI-MS analysis revealed the peaks 
corresponding to 8+ to 17+ charge states for [Cd12L2

2V4] and no 
signals resulting from the expected hexagram [Cd18L2

3V6] were 
found (Figure 2b). The broad 1H NMR signals in the aromatic 
region of [Cd12L2

2V4] could be attributed to the overlapping of 
signals for six different types of terpyridyl entities (Figures 2a and 
S33), and all the signals were carefully assigned with the help of 
COSY and ROESY spectra (Figures S35 and S36). Besides, the 
DOSY NMR experiment (Figure S34) indicated that all the rele-
vant signals have the same diffusion coefficient (D = 1.6 × 10−10 
m2s−1), implying the exclusive formation of [Cd12L2

2V4]. As ex-
pected, the 113Cd NMR spectrum showed four distinct CdII envi-
ronments (Figure S37), where two signals at δ 262.9 and 265.6 
ppm are corresponding to homoleptic <tpy-CdII-tpy> moieties and 
two overlapped signals at δ 246.3 and 246.5 ppm are derived from 
heteroleptic <tpy-CdII-tpy'> connections. Moreover, the ESI-
TWIM-MS structural analysis of [Cd12L2

2V4] exhibited an aver-
age experimental CCS of 1864.8±32.3 Å2, which is in good 
agreement with the theoretical values (Figure 2c and Table S3). 

Building on the self-assembly result of four-pointed star 
[Cd12L2

2V4], it was conceived that the presence of a centrally 
located stable triangle might lead to formation of the target  

 
Figure 3. a) 1H NMR spectra of L3, V, and [Cd21L3

3V6]. b) ESI-
MS spectrum and c) ESI-TWIM-MS plot of [Cd21L3

3V6]. 

hexagram-type architecture. Therefore, the ligand L2 was further 
modified by attaching a 60°-bent V-shaped bis-tpy moiety as the 
precursor for the central triangle. A mixture of L3, V, and 
Cd(NO3)2 in a stoichiometric ratio of 1:2:7 was heated at 80 °C 
for 72 h in CHCl3/MeOH (1:1, v/v), and then excess NH4PF6 was 
added to exchange counterions from NO3

− to PF6
− (Scheme 3). 

The 1H NMR of the resultant complex in CD3CN revealed seven 
sets of terpyridyl signals, a preliminary indication towards the 
formation of the expected complex [Cd21L3

3V6] (Figures 3a and 
S39). Notably, the characteristic resonances from ligand V were 
split into two signals after complexation, strongly supporting the 
formation of two kinds of heteroleptic coordination bonds in the 
periphery. The DOSY NMR experiment (Figure S40) depicted the 
existence of a single species with a diffusion coefficient of 1.4 × 
10−10 m2s−1 in CD3CN. All the 1H NMR signals of the complex 
were carefully assigned according to the COSY and ROESY spec-
tra (Figures S41 and S42). Furthermore, the 113Cd NMR spectrum 
of the complex (Figure S43) showed five signals affirming the 
construction of [Cd21L3

3V6]. The three downfield signals located 
at δ 268.2, 269.2 and 269.6 ppm originated from the central ring-
in-ring part of [Cd21L3

3V6], belonging to homoleptic <tpy-CdII-
tpy> units. On the other hand, the upfield signals situated at δ 
242.3 and 244.2 ppm are assigned to the heteroleptic <tpy-CdII-
tpy'> connections in the peripheral stellated part of [Cd21L3

3V6]. 
Eventually, the ESI-MS spectrum of the complex unequivocally 
confirmed the chemical composition of six-pointed star 
[Cd21L3

3V6] showing twelve major peaks with the charge states 
from 11+ to 22+ ions (Figure 3b), which were isotopically re-
solved and found to be consistent with the calculated isotopic 
distributions (Figure S44). The narrow drift time distributions for 
the 14+ to 22+ species observed in the ESI-TWIM-MS plot (Fig-
ure 3c) verified the absence of other isomers. The average CCS of 
3056.2±39.2 Å2 derived from the corresponding drift times is 
consistent with the theoretical values obtained from the annealing 
simulation (Table S4). Moreover, the AFM and TEM images of 
[Cd21L3

3V6] (Figures S49 and S50) displayed an average height of 
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1.34±0.06 nm and an average diameter of 6.00±0.11 nm, respec-
tively, which agree well with the dimensions of the molecular 
model (Figure S48). 

In summary, the quantitative self-assembly of the stellated 
metallo-supramolecular architectures, four-pointed star 
[Cd12L2

2V4] and six-pointed star [Cd21L3
3V6], were successfully 

accomplished through multivalent ligand design and complemen-
tary ligand pairing in a one-pot manner. The centrally situated 
60°-bent bis-tpy in ligand L3 was found to be the fundamental 
unit that controls and stabilizes the hexagram-type architecture, by 
providing rigidity through the formation of an inner triangle. The 
intricate metallo-supramolecular architectures were characterized 
thoroughly by 1H NMR, 113Cd NMR, DOSY, ESI-MS, TWIM-
MS, AFM, and TEM. Additionally, the high stability of heterolep-
tic <tpy-CdII-tpy'> allowed the separation of stellated metallocag-
es [Cd8L1

2V4] and [Cd12L1
3V6] by column chromatography from 

their mixture. The presented self-assembly methodology is ex-
pected to provide access to rational construction of metallo-
supramolecules with enhanced topological diversity and complex-
ity. 
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