3 H); ¹³C NMR (Me₂SO-d₆) 191.0 (acyl CO), 159.8 (enolic C), 135.0, 128.3, 116.1 (imidazole ring C's), 82.8 (vinylic C), 29.5 (CH₃); IR (Nujol) 1670 (s), 1660 (s, acyl C=O), 1230 cm⁻¹ (s, C=C). Anal. Calcd for $C_7H_7N_2NaO_2$: C, 48.27; H, 4.06; N, 16.09. Found: C, 48.11; H, 4.14; N, 16.09. The filtrate was analyzed by ¹H NMR

and found to contain imidazole.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

Phosphine-Functionalized Phosphazene Precursors: Synthesis and Metal Carbonyl Complexes¹

Aroop K. Roy,^{2a} Rahim Hani, Robert H. Neilson,* and Patty Wisian-Neilson^{2b}

Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129

Received July 24, 1986

Direct bromination of the benzyl- and allyl-substituted (silylamino)phosphines (Me₃Si)₂NPRR' (1a, R = Ph, R' = CH₂Ph; 1b, R = R' = CH₂Ph; 1c, R = Ph, R' = CH₂CH=CH₂; 1d, R = R' = CH₂CH=CH₂) affords the *P*-bromophosphoranimines $Me_3SiN=P(Br)RR'$ (2a-d) which, upon treatment with CF₃CH₂OH/Et₃N or LiOCH₂CF₃, are easily converted to the *N*-silyl-*P*-(trifluoroethoxy)phosphoranimines $Me_3SiN=P(OCH_2CF_3)RR'$ (3a-d). The latter compounds, as well as the simpler analogues $Me_3SiN=P$ - $(OCH_2CF_3)(R)Me$ (4, R = Me; 5, R = Ph), are smoothly deprotonated by *n*-BuLi in ether solution at -78 °C. Quenching of the resulting anions with Ph_2PCl or $(Me_2N)_2PCl$ yields the title compounds Me₃SiN=P(OCH₂CF₃)(R)CH(R')PPh₂ (6, R = Me, R' = H; 7, R = Ph, R' = H; 8a, R = R' = Ph; 8b, R = CH₂Ph, R' = Ph), Me₃SiN=P(OCH₂CF₃)(R)CH=CHCH₂PPh₂ (8c, R = Ph; 8d, R = CH₂CH=CH₂), and Me₃SiN=P(OCh₂CF₃)(Me)CH₂P(NMe₂)₂(9). The phosphine derivatives 6-9 as well as their new precursors 3a-d are obtained as distillable liquids, fully characterized by NMR spectroscopy (¹H, ¹³C, and ³¹P) and elemental analyses. Some rearrangements involving the C=C double bonds are noted for the allyl-substituted phosphoranimines 3c,d and their Ph_2P derivatives 8c,d. The phosphine ligands 6, 7, 8a, 8b, and 9 all react quantitatively with $Fe_2(CO)_9$ at room temperature to give the corresonding (phosphine)Fe(CO)₄ complexes 10–12, 14, and 15 as viscous liquids, characterized by NMR spectroscopy. Likewise, treatment of ligand 6 with $Cr(CO)_6$ in refluxing diglyme affords the chromium pentacarbonyl complex 13. These complexation reactions, which proceed cleanly without affecting the Me₃SiN=POCH₂CF₃ framework of the precursors, are viewed as model reactions for possible derivative chemistry of the poly(alkyl/ arylphosphazenes).

Introduction

The synthesis of poly(alkyl/arylphosphazenes), [NPRR'], has been accomplished by the thermal condensation polymerization of appropriate N-silyl-P-(trifluoroethoxy)phosphoranimines, $Me_3SiN=P(OCH_2CF_3)$ -RR', where R = R' = Me, Et, and Ph.³ Having characterized these simple polymers,⁴ we are currently investigating synthetic approaches to related systems with more diverse substituents attached to the backbone via phosphorus-carbon bonds. These new polymers could possess many useful characteristics including higher thermal stability and improved mechanical properties and, with the introduction of suitable ligating sites (e.g., -CH₂PPh₂) might also serve as supports for transition-metal catalysts.⁵

Toward these goals, we are studying three general methods of altering the substituents at phosphorus: (1) the synthesis of new (silylamino)phosphines,

(Me₃Si)₂NPRR', and N-silvlphosphoranimines, Me₂SiN= P(X)RR', containing more complex alkyl and/or aryl groups, (2) the functionalization of the substituents $(\mathbf{R}, \mathbf{R}')$ in the phosphazene precursors $Me_3SiN=P(OCH_2CF_3)RR'$ via deprotonation/substitution reactions,⁶ and (3) the application of similar derivative chemistry to the preformed poly(alkyl/arylphosphazenes). We have recently reported the preparation of a series of silvlated derivatives of the poly(alkyl/arylphosphazenes) by the latter approach.7

This paper is based on our initial results related to the first two of the above methods. Sepcifically, we report here: (a) the synthesis of several new N-silvlphosphoranimines containing various combinations of phenyl, benzyl, and allyl substituents on phosphorus; (b) the incorporation of phosphine substituents [Ph₂P or $(Me_2N)_2P$] into the N-silyl-P-(trifluoroethoxy)phosphoranimines by the second method; and (c) the coordination of the phosphine sites to simple metal carbonyls.

Results and Discussion

N-Silylphosphoranimines. The (silylamino)phosphines 1a-d used in this study were prepared as described

Taken in part from: Roy, A. K. Ph.D. Dissertation, Texas Christian University, Fort Worth, TX, 1984.
 (2) (a) Present address: Michigan Molecular Institute, Midland, MI.

⁽b) Southern Methodist University.

^{(3) (}a) Wisian-Neilson, P.; Neilson, R. H. Inorg. Chem. 1980, 19, 1875. (b) Wisian-Neilson, P.; Neilson, R. H. Inorg, Synth., in press. (c) Wi-sian-Neilson, P.; Neilson, R. H. J. Am. Chem. Soc. 1980, 102, 2848. (d) Neilson, R. H.; Wisian-Neilson, P. J. Macromol. Sci., Chem. 1981, A16, 425

⁽⁴⁾ Neilson, R. H.; Hani, R.; Wisian-Neilson, P.; Meister, J. J.; Roy, A. K.; Hagnauer, G. L. Macromolecules, in press.
 (5) Transition-metal derivatives of aryloxy- and amino-substituted

poly(phosphazenes) have been studied. See, for example: Allcock, H. R. ACS Symp. Ser. 1983, No. 232, 49.

^{(6) (}a) Wettermark, U.G. Ph.D. Dissertation, Texas Christian University, Fort Worth, TX, 1986. (b) Wettermark, U. G.; Wisian-Neilson, P.; Scheide, G. M.; Neilson, R. H. Organometallics, in press. (7) Wisian-Neilson, P.; Ford, R. R.; Neilson, R. H.; Roy, A. K. Macromolecules 1986, 19, 2089.

earlier⁸ according to the Wilburn method⁹ in which the chlorophosphines $(Me_3Si)_2NP(R)Cl$ (R = Ph, Cl), prepared from (Me₃Si)₂NLi and RPCl₂, are treated with either allyl or benzyl Grignard reagent. As in the case for other (silylamino)phosphines,^{3a} compounds 1a-d undergo a smooth and essentially quantitative oxidation reaction with bromine to yield the N-silyl-P-bromophosphoranimines 2a-d (eq 1). Subsequent treatment of 2 with CF_3CH_2OH/Et_3N (2a-c) or LiOCH₂CF₃ (2d) affords the corresponding Nsilyl-P-(trifluoroethoxy)phosphoranimines 3a-d (eq 2) in ca. 50-75% yields.

, R = Ph, R' = CH₂Ph; b, R = R' = CH₂Ph; c, R = Ph, R' = CH₂CH=CH₂; d, R = R' = CH₂CH == CH₂

Previous studies involving N-silyl-P-bromophosphoranimines^{3a} have shown that, besides being extremely moisture-sensitive, these compounds are thermally unstable, with the degree of instability increasing with the bulk of the substituents on phosphorus. Thus, the bromophosphoranimines prepared in this study were not purified by distillation; instead, they were characterized by NMR (¹H, ¹³C, and ³¹P) spectroscopy (Table I) and used without further purification for the preparation of the N-silyl-P-(trifluoroethoxy)phosphoranimines 3a-d. In all cases, complete conversion of the phosphine 1 to the bromophosphoramine 2 was observed by ³¹P NMR spectroscopy. In the synthesis of the allyl derivatives 2c,d, it is interesting to note that, when a 1:1 stoichiometry is used, the bromination occurs exclusively at the phosphorus center, leaving the C=C bond intact. This selectivity is important because it makes possible the preparation of poly(alkyl/arylphosphazenes) that contain allyl or vinyl¹⁰ side groups for cross-linking purposes.

The bromophosphoranimines 2a-c reacted smoothly with CF₃CH₂OH/Et₃N to provide the trifluoroethoxy derivatives 3a-c in good yields (eq 2). Under the same conditions, however, 3d was formed in low and inconsistent yields and often decomposed to unidentified substances upon attempted distillation. For 2d, therefore, $LiOCH_2CF_3$ was used, and the (trifluoroethoxy)phosphoranimine 3d could then be isolated in 50% yield with no decomposition problems.

The N-silvl-P-(trifluoroethoxy)phosphoranimines 3a-d are all colorless, distillable liquids that gave satisfactory microanalytical data (Table II). These compounds are also moisture-sensitive, although much less so than their bromo precursors. They can be stored for long periods of time under an inert atmosphere. The phosphoranimines **3a-d** were characterized by NMR (¹H, ¹³C, and ³¹P) spectroscopy, with all of the chemical shifts and coupling constants being in accord with the proposed structures. Because of the general complexity of the phenyl and vinyl regions of the ¹H and ¹³C NMR spectra, only the data most useful for characterization purposes is listed in Table I. By recording spectra on a high-field instrument (300-MHz ¹H) and by using heteronuclear ${}^{1}H/{}^{13}C$ chemical shift correlation experiments, it is possible to completely assign both the ¹H and ¹³C NMR spectra. Such data, for example, are summarized in Table III for compound 3c.

An interesting observation was made with the allylsubstituted compounds 3c and 3d. The ³¹P NMR spectra of both the crude and distilled product 3c indicate the presence of a small amount of a second compound with a chemical shift close to that of the major product. The ¹H and ¹³C NMR spectra exhibit minor resonances in regions expected for a terminal CH₃ group of an allyl substituent (ca. 2.0 and 20.0 ppm, respectively). Since a good elemental analysis was obtained for the distilled product, it is reasonable to assign these minor NMR signals to an isomer (3e) of the major product in which the terminal 2-3 C=C bond rearranges to the 1-2 position (eq 3). Such

rearrangements of allylphosphoranimines have been observed before¹¹ and are thought to be acid catalyzed (e.g., by HBr or Et_3 NHBr). We noted that the relative amount of the 1-2 isomer 3e increased on prolonged storage of the sample, especially when the container was occasionally opened to the atmosphere. The acid-catalyzed nature of this rearrangement was confirmed by an NMR tube experiment in which a small crystal of Me₃NHCl was added to a solution of 3c. After the solution was left standing for 20 h at room temperature, the ¹H NMR integration showed that the 3c:3e ratio decreased from ca. 25:1 to ca. 3:1

Phosphine Derivatives. The chemistry in this phase of our study is based on an earlier report by Schmidbaur¹² in which the permethylated N-silylphosphoranimine (eq 4) was deprotonated by treatment with n-BuLi. The re-

sulting carbanion could then be quenched, for example, by Me₃SiCl. Similar deprotonation/substitution reactions have been carried out on methyl-substituted cyclic phosphazenes (e.g., [Me₂PN]₃) by Paddock and co-workers.¹³ On the other hand, Allcock¹⁴ has reported that phosphazenes bearing trifluoroethoxy groups react with n-BuLi and various electrophiles (RX) to form vinyl derivatives (i.e., $P-O-CR=CF_2$). It seemed likely, therefore, that this type of deprotonation/substitution chemistry could lead to some complicated product mixtures when applied to trifluoroethoxy-substituted phosphoranimines such as 3a-d.

In addition to 3a-d, two other N-silyl-P-(trifluoroethoxy)phosphoranimines, $Me_3SiN = P(OCH_2CF_3)(R)Me$ (4, R = Me; 5, R = Ph), with simpler substituents on phosphorus, were utilized in this work. Upon treatment with

⁽⁸⁾ Ford, R. R.; Goodman, M. L.; Neilson, R. H.; Roy, A. K.; Wetter-mark, U. G.; Wisian-Neilson, P. Inorg. Chem. 1984, 23, 2063.
 (9) Neilson, R. H.; Wisian-Neilson, P. Inorg. Chem. 1982, 21, 3568.

⁽¹⁰⁾ Neilson, R. H.; Waters, K., unpublished results.

⁽¹¹⁾ Morton, D. W.; Neilson, R. H. Organometallics 1982, 1, 623.
(12) Schmidbaur, H.; Jonas, G. Chem. Ber. 1967, 100, 1120.
(13) Gallicano, K. D.; Oakley, R. T.; Paddock, N. L.; Sharma, R. D.

Can. J. Chem. 1981, 59, 2654. (14) Allcock, H. R.; Suszko, P. R.; Evans, T. L. Organometallics 1982,

^{1, 1443.}

	· · · · · · · · · · · · · · · · · · ·		¹ H NMR	¹⁸ C NMR		31P NMR
compd	signal	δ	$J_{ m PH}$	δ	$J_{ m PC}$	δ
Ph I Me ₃ SiN <u>P</u> Br I CH ₂ Ph	$rac{Me_3Si}{CH_2}$	0.35 3.86	0.6 15.3	2.72 49.02	4.9 75.7	7.34
2a CH ₂ Ph Me ₃ SiN <u>P</u> -Br CH ₂ Ph	${ m Me_3Si} \ { m CH_2}$	0.02 3.58	12.6	2.50 46.64	5.5 70.2	9.02^{b}
2b Pn Me ₃ SiN==PBr CH ₂ CH===CH ₂	Me_3Si PCH_2 $CH=CH_2$ $CH=CH_2$	0.15 3.23 5.6-6.1 ^d 4.8-5.2 ^d	0.6 15.6 (7.2)°	2.70 47.07 e 121.20	5.5 76.9	5.22
2c CH2CH==CH2 Me3SIN=====Br H2CH==CH2 2d	$\begin{array}{c} Me_{3}Si \\ PCH_{2} \\ CH = CH_{2} \\ CH = CH_{2} \end{array}$	$\begin{array}{c} 0.37 \\ 2.72 \\ 5.6-6.1^{d} \\ 4.9-5.3 \end{array}$	0.6 15.0 (7.2, 1.2)°	$2.72 \\ 44.04 \\ 127.98 \\ 121.13$	6.1 72.6 10.4 14.6	14.81
Ph Me ₃ SiN===POCH ₂ CF ₃ CH ₂ Ph	${f Me_3Si}\ { m PCH}_2$	0.08 3.31	0.6 17.4	3.68 40.94	3.1 92.8	18.17
3a CH2Ph H POCH2CF3 CH2Ph	Me₃Si PCH₂	-0.02 3.08	15.6	3.60 39.13	3.1 87.3	23.40
3b CH2CH==CH2 Me3SIN=POCH2CF3 CH2CH==CH2 3d ⁶	$\begin{array}{c} Me_3Si\\ PCH_2\\ CH = CH_2\\ CH = CH_2\\ CH = CH_2 \end{array}$	0.27 2.40 5.5-6.0 ^d 4.9-5.2 ^d	17.4 (7.2, 1.2) ^c	3.59 36.57 128.71 119.92	3.1 88.5 9.2 13.4	27.85
Me 	Me ₃ Si	0.05		3.60	3.1	30.38 (P ¹)
Me ₃ SiN=POCH ₂ CF ₃ CH ₂ Ph ₂ P ²	PMe PCH_2	1.44 2.59	14.4 (P ¹) 1.2 (P ²) 15.6 (P ¹)	18.44 33.46	90.9 (P ¹) 3.0 (P ²) 93.4 (P ¹)	-26.26 (P*) (55.5)
6 Ph	Ma Si	0.19		9 74	$30.5 (P^2)$	17.67 (D l)
Me ₃ SiN====P ¹ OCH ₂ CF ₃ CH ₂	PCH_2	2.82	15.3 (P ¹)	33.62	2.4 95.8 (P ¹)	$-27.88 (P^2) (57.4)$
Ph2 P ²					31.1 (P ²)	
Ph 1 Me ₃ SIN===POCH ₂ CF ₃ PhCH	${ m Me}_3{ m Si}$	0.38		3.70	2.4	14.91 (P^1) -9.95 (P^2) (65.0) 18.54 (P^1)
Ph ₂ P ² 8 a	СН	$3.2 - 3.8^d$		49.93	94.6 (P ¹) 29.3 (P ²)	-0.49 (r -) (02.3)
CH2Ph I Me3SiN <u>P</u> OCH2CF3 PhCH	${ m Me}_3{ m Si}$	0.12		3.53	2.4	20.04 (P^1) -9.74 (P^2) (62.3) 24.05 (P^1) -7.44 (P^2) (52.1)
Ph ₂ ² 8b	PCH₂ CH	$2.1-3.4^d$ $2.1-3.4^d$		39.88 49.08	86.7 (P ¹) 88.5 (P ¹) 28.7 (P ²)	-7.44 (F) (55.1)
	${ m Me}_3{ m Si}$	0.25		3.6	3.1	11.45 (P^1) -15 70 (P^2) (4 9)/
CHICH-CH2 Ph2P ²	P^2CH_2	3.13	7.8 (P ²) (1.2, 1.2) ^c	34.25	20.1 (P ¹) 18.3 (P ²)	20110 (2) (20)
8c CH ₂ CH=CH ₂	Me ₃ Si	0.27		3.64	3.1	$17.83 (P^1)$
Me3SIN PUCH 2CF3	${ m P^1CH_2} { m P^2CH_2}$	$2.1-2.8^d$ $2.1-2.8^d$		$38.03 \\ 34.19$	93.4 (P ¹) 18.3 (P ¹)	-10.00 (F ⁻) (4.8) [/]

Phosphine-Functionalized Phosphazene Precursors

		¹ H N	¹ H NMR		NMR	³¹ P NMR
compd	signal	δ	$J_{\rm PH}$	δ	$J_{ m PC}$	δ
Me 1 MeaSIN=POCH2CFa	Me ₃ Si	-0.10		3.37	3.7	$31.34 (P^1)$ $82.69 (P^2) (74.2)^f$
CH ₂	P ¹ Me	1.50	13.5 (P ¹)	17.87	91.6 (P^1) 4 9 (P^2)	
(Me₂N)₂Þ [≮] 9	P^1CH_2	$2.1 - 2.4^{d}$		32.85	90.3 (P^1) 25.6 (P^2)	
	Me_2N	2.69	$15.5 (P^2)$	38.39	$15.3 (P^2)$	
Me │ Me₃SIN=POCH₂CF₃	$\rm Me_3Si$	-0.05		3.02	2.9	20.97 (\mathbf{P}^1) 60.44 (\mathbf{P}^2) (14.6) ^{f}
(QH₂	PMe	1.43	$14.4 (P^1)$	20.11	88.9 (P ¹)	
Ph2P2	CH_2	3.12	$15.6 (P^{1})$	36.55	92.8 (P^1)	
- Fe(CO)4	CO		10.8 (P ²)	213.14	$17.6 (P^2)$ 18.6 (P ²)	
Me I ₁	$\rm Me_3Si$	0.01		3.29	3.1	21.41 (P^1)
Me ₃ SiN===P'OCH ₂ CF ₃	PMo	1.63	$14.9 (P^1)$	19.62	88 7 (P ¹)	149.74 (P*) (6.1)
CH2	PCH ₂	g	14.2 (1)	39.92	$93.8 (P^1)$	
(Me2 N)2P2	2	8			$27.5 (P^2)$	
FeiCO14	NMe_2	2.65	10.7 (P ¹)	38.58	4.6 (P ¹)	
11			$20.5 (P^2)$		18.9 (P ²)	
	CO			213.6	20.4	
Ph , MeaSiN_POCHaCFa	Me_3Si	-0.20		3.24		8.16 (\mathbf{P}^1) 60.71 (\mathbf{P}^2) (14.6) ^{f}
CH2	PCH_2	3.3 ^d		36.45	101.5 (P ¹) 17.5 (P ²)	
Ph 2 P Fe(CO)4	CO			213.26	18.7 (P ²)	
12						
Me ₁ Me₃SiN===P ¹ OCH₂CF₃	Me ₂ Si	-0.16	_	3.18	3.9	22.97 (\mathbf{P}^{1}) 41.92 (\mathbf{P}^{2}) (17.1) ^{f}
CH2	Me	0.95	$13.8 (P^1)$	19.89	87.8 (P ¹)	
Ph2P2	PCH_2	2.91	$15.0 (P^{1})$	35.63	91.8 (P^1)	
Cr(CO)5	CO		6.6 (P ²)	216.49	$13.7 (P^2)$	
Ph	Me₃Si	0.14		2.93	2.0	11.71 (\mathbf{P}^1)
Me3SIN POCH2CF3	5					81.64 (P ²) (26.9) ^f
Ръсн						$17.21 (P^1)$
Ph2P	011	0015		F0.05		84.94 (\mathbf{P}^2) (22.5) ^{<i>t</i>}
Fe(CO)4	СН	3.3-4.5		53.05	96.7 (P) 7 8 (D ²)	
14	СО			212.69	$16.6 (P^2)$	
CH₂Ph	Me Si	-0.23		2.83	29	17.50 (P ¹)
Me-SIN-POCH-CE	1416301	-0.20		2.00	2.7	$82.98 (P^2) (1.91)^{f}$
						24.97 (P ¹)
						86.64 (P ²) (28.3) ^f
Ph2 P- Fe(CO)	P^1CH_2	$2.5 - 3.8^{d}$		40.87	85.9 (P ¹)	
16	CH	$2.5 - 3.8^{d}$		54.42	82.0 (P^1)	
15	со			212.66	8.8 (P ²) 17.6 (P ²)	

Table I (Continued)

^a Chemical shifts relative to Me_4Si for ¹H and ¹³C spectra and to H_3PO_4 for ³¹P spectra; coupling constants in Hz. Solvents: ¹H, CH₂Cl₂; ¹³C and ³¹P, CDCl₃, unless otherwise noted. ^b Benzene solution. ^cJ_{HH} values in parentheses. ^d Complex multiplet. ^eObscured by phenyl signal. ^fJ_{PP} values in parentheses. ^dObscured by Me₂N signal.

1 equiv of *n*-BuLi at -78 °C in ether solution, followed by the addition of Ph₂PCl, compounds 4 and 5 were converted to the novel phosphinomethyl derivatives 6 and 7 (eq 5)

in 60 and 46% yields, respectively. Thus, in this system, deprotonation of the P-Me rather than the P-OCH₂CF₃ substituent is the preferred mode of reactivity. This observation has significant implications because it makes possible the synthesis of an extremely broad spectrum of functionalized precursors to new poly(alkyl/aryl-phosphazenes).

In order to complete the series of Ph_2P -substituted phosphoranimines, the trifluoroethoxy compounds 3a-dwere also allowed to react with *n*-BuLi and Ph_2PCl (eq 6 and 7). The phosphinomethyl derivatives 8a-d were thus obtained in ca. 70-80% yields. By means of a similar procedure, the bis(dimethylamino)phosphine derivative 9 was prepared from the dimethylphosphoranimine 4 (eq 8).

The syntheses of these phosphine derivatives 6-9 were generally routine, but a few special comments should be made. First, although many of them are extremely high boiling liquids (ca. 130–200 °C (0.05 mm), sometimes with wide bp ranges, they all are remarkably stable to distillation and afford satisfactory elemental analyses (Table II).

Second, the NMR spectral data (Table I) provide confirmation of the proposed structures. For example, the ³¹P NMR spectrum of 6 consists of a doublet at -26.3 ppm, attributed to the Ph₂P- phosphorus and another doublet at 30.3 ppm for the central P(V) phosphorus ($J_{pp} = 55.5$ Hz). Surprisingly, the Ph₂P- phosphorus does not show a two-bond coupling to the CH₂ protons, although a four-bond coupling (1.2 Hz) to the CH₃ protons is observed in the ¹H NMR spectrum of 6. Moreover, the central CH₂ group appears as a doublet of doublets in the ¹³C NMR spectrum with one large (93.4 Hz) and one small (30.5 Hz) coupling to the P(V) and P(III) centers, respectively. Many of these spectral features are consistently found throughout the series of compounds 6–9.

Third, as might have been expected, the benzyl-substituted derivatives 8a,b were obtained as mixtures of diastereomers due to the presence of chiral centers at both the P(V) phosphorus and the adjacent CH(Ph)PPh₂ carbon. This is confirmed by the presence of two pairs of doublets in the ³¹P NMR spectra (Figure 1a) of these compounds.

Fourth, the ambident anions generated from the allylsubstituted phosphoranimines 3c,d react with Ph₂PCl to form derivatives 8c,d in which the Ph₂P group is attached to the terminal carbon of the allylic side chain. This is inferred mainly from the observation of much smaller four-bond coupling constants (ca. 5 Hz) between the phosphorus nuclei. No indication of the formation of the isomeric P(V)-C-P(III) compounds, with their predictably larger two-bond P-P couplings, was obtained. There was, however, clear evidence of partial rearrangement of the C = C double bonds (eq 9) when these products were distilled. These rearrangements become quite evident when the ³¹P and ¹³C NMR spectra of the crude and the distilled products are compared. The distilled products, while yielding satisfactory elemental analyses, each exhibit a second pair of doublets in the ³¹P NMR spectra which are attributed to the isomers 8e and 8f, respectively. Furthermore, while the Ph₂PCH₂ allylic carbon in 8c shows almost equal couplings to both the P(III) and P(V)phosphorus centers, the $P^{V}CH_{2}$ allylic carbon in 8e shows a characteristically large (ca. 90 Hz) one-bond coupling to P(V) and a small (ca. 11 Hz) three-bond coupling to P(III). A similar rearrangement for the diallyl derivative 8d,f is observed. The fact that a doublet (at 19.9 ppm, $J_{\rm pc}$ = 20.8

Hz) for a terminal CH_3 group appears in the ¹³C NMR spectrum of the distilled product indicates that both C=C double bonds have shifted in this case.

Unlike the rearrangement of their allylic precursors 3cand 3d, the double bond shifts in these PPh₂ derivatives are probably not acid catalyzed. Instead, we speculate that traces of LiCl or perhaps *n*-BuLi might be responsible for the partial isomerization which occurred at the very high distillation temperatures.

Metal Carbonyl Complexes. In order to assess the potential of these phosphine-functionalized phosphazene precursors as ligands for transition metals, we have carried out a preliminary study of the reactivity of compounds 6–9 with $Fe_2(CO)_9$ and, in one case, with $Cr(CO)_6$. In addition to being interesting ligands themselves, these "monomers" can serve as models for poly(alkyl/arylphosphazenes) bearing pendant phosphine substituents. The iron and chromium carbonyls were chosen because of their availability and because their structural simplicity should facilitate the characterization of these model complexes by NMR spectroscopy.

When the phosphine derivatives 6 and 9 of the dimethyl precursor 4 were treated with 1 equiv of $Fe_2(CO)_9$ in either hexane or benzene solution at room temperature (eq 10), the corresponding $Fe(CO)_4$ complexes 10 and 11 were formed quantitatively. The *P*-phenyl analogue 7 reacted in a similar fashion to afford the $Fe(CO)_4$ derivative 12. Also, the chromium pentacarbonyl complex 13 was prepared by the reaction (eq 11) of 6 and $Cr(CO)_6$ in refluxing diglyme.

Upon removal of solvents and unreacted metal carbonyls, these complexes were isolated as orange/brown (10-12) or red/brown (13) oils that resisted all attempts at crystallization from a variety of solvents. Attempted

Table II. Preparative and Analytical Data

		bp. °C	anal.ª			
compd	yield, %	(p, \mathbf{mmHg})	С	Н		
3a	70	92-112 (0.05)	56.27 (56.09)	6.25 (6.02)		
3b	57	102-104 (0.04)	57.40 (57.13)	6.32 (6.31)		
3c	75	56-60 (0.05)	49.57 (50.14)	6.23 (6.31)		
3d	50	52-55 (1.3)	43.94 (44.14)	7.36 (7.07)		
6	60	100-130 (0.05)	52.58 (52.89)	6.24 (6.07)		
7	46	164-178 (0.4)	59.58 (58.41)	6.03 (5.72)		
8 a	80	175-185 (0.05)	63.33 (63.26)	5.48 (5.66)		
8 b	79	175-195 (0.05)	64.09 (63.80)	5.88 (5.87)		
8c	71	158-172 (0.05)	60.26 (60.11)	5.83 (5.82)		
8 d	73	134-147 (0.02)	57.30 (57.13)	6.42 (6.25)		
9	64	89-95 (0.6)	35.73 (36.16)	7.92 (7.72)		
10	ь		44.84 (46.09)	4.23 (4.37)		
11	ь		34.11 (33.78)	5.49 (5.29)		

 a Calculated values in parentheses. b Ca. 100% yield of unpurified product.

Figure 1. Phosphorus-31 NMR spectra: (a) ligand 8a; (b) Fe-(CO)₄ complex 14.

purification of 10 by distillation led to decomposition of the complex, with a small amount of the free ligand 6 being the only distillable product. Nevertheless, the "crude" complexes were readily characterized by NMR spectroscopy (Table I) and, in the case of 10 and 11, by reasonably good elemental analyses.

The reactions of the benzyl- and allyl-substituted analogues 8a-d with $Fe_2(CO)_9$ were also studied. With the diastereomeric phenyl/benzyl (8a) and dibenzyl (8b) ligands, the expected diastereomeric $Fe(CO)_4$ complexes 14 and 15 were obtained. These derivatives also could not

be crystallized, but their structures are readily assigned on the basis of NMR spectral data (Table I). The phenyl/allyl (8c) and diallyl (8d) ligands, on the other hand, provided mixtures of what are suspected to be isomeric $Fe(CO)_4$ complexes (derived from 8c/8e and 8d/8f, respectively) even when the crude unrearranged ligands were used.

All of the metal complexes prepared in this study showed the characteristic downfield shift (ca. 50–90 ppm) of the ^{31}P NMR signal of the phosphine (-PR₂) ligand

upon coordination to the metal center.¹⁵ The ³¹P NMR spectra of the free ligand and the metal complex are well-illustrated by those of the phenyl/benzyl compounds **8a** and **14**, shown in Figure 1. In this case, the diastereomeric nature of both the ligand and the complex are readily apparent. The ¹³C NMR spectra of the metal complexes **10–15** are generally quite similar to those of the uncomplexed ligands except for the appearance of a doublet in the carbonyl region (ca. 212–216 ppm). These data clearly confirm coordination of the metal carbonyl moiety to the pendant phosphine site with no significant interference with the Me₃SiN=P-OCH₂CF₃ backbone of the molecule.

Conclusion. This study has resulted in three major findings. First, the range of new precursors to poly(alkyl/arylphosphazenes) has been broadened to include benzyl- and, more importantly for future studies, allylsubstituted phosphoranimines. Second, the facile deprotonation/substitution reactions of the N-silyl-P-(trifluoroethoxy)phosphoranimines, shown here leading to the phosphine-functionalized derivatives, promises to extend even further the synthetic potential of the condensation route to poly(phosphazenes). Third, the preparation of several metal carbonyl complexes of these "monomer" ligands indicates that similar coordination chemistry should be possible on the preformed poly(alkyl/arylphosphazenes). Investigations of the scope of this type of derivative chemistry and its application to the polymeric analogues are currently in progress in our laboratories.

Experimental Section

Materials and General Procedures. The following reagents were obtained from commercial sources and used without further purification: bromine, CF₃CH₂OH, n-BuLi (hexane solution), PCl₃, Ph₂PCl, Me₃SiNMe₂, Cr(CO)₆, and Fe₂(CO)₉. Ether, hexane, benzene, diglyme, and Et₃N were distilled from CaH₂ and stored over molecular sieves prior to use. The (silylamino)phosphines⁸ **1a-d** and the N-silyl-P-(trifluoroethoxy)phosphoranimines^{3a,b} 4 and 5 were prepared according to the published procedures. The chlorophosphine (Me₂N)₂PCl was prepared in ca. 90% yield by treating PCl₃ with 2 equiv of Me₃SiNMe₂ in ether solution at 0 °C and was characterized by NMR spectroscopy. Proton NMR spectra were recorded on a Varian EM-390 spectrometer; ¹³C and ³¹P NMR spectra, with ¹H decoupling, were obtained in the FT mode on a JEOL FX-60 instrument. Some high-field ¹H and ¹³C NMR spectra (e.g., Table III), including the two-dimensional spectra (see text), were recorded on a Varian XL-300 spectrometer. Elemental analyses were performed by Schwarzkopf Microanalytical Laboratory, Woodside, NY. The following procedures are typical of those used for the preparation of the new compounds in this study. All reactions and other manupulations were carried out under an atmosphere of dry nitrogen or under vacuum.

Preparation of Me₃SiN=P(Br)(CH₂Ph)Ph (2a). A 500-mL, 2-necked flask, equipped with a N₂ inlet, magnetic stirrer, and an addition funnel, was charged with the phosphine 1a (typically 0.15-0.25 mol) and benzene (100-150 mL). The solution was cooled to 0 °C, and an equimolar amount of bromine in benzene (100-150 mL) was added dropwise to the stirred reaction mixture. After the mixture was allowed to warm to room temperature and was stirred for 1 h, the solvent and Me₃SiBr were removed under reduced pressure. The liquid product was characterized by NMR spectroscopy (Table II), showing it to be free of Me₃SiBr, and then used without further purification to prepare 3a. Compounds 2b-d were prepared in a similar fashion.

Preparation of Me₃SiN= $P(OCH_2CF_3)(CH_2Ph)Ph$ (3a). A 2-L, 3-necked flask, equipped with a N₂ inlet, an addition funnel, and a mechanical stirrer, was charged with the *P*-bromophosphoranimine 2a (typically, 0.20 mol), benzene (350 mL), and Et₃N (0.20 mol). The solution was cooled to 0 °C, and CF₃CH₂OH (0.20 mol) was added slowly from the addition funnel to the stirred

⁽¹⁵⁾ Tolman, C. A. Chem. Rev. 1977, 77, 313.

Table III. Complete NMR Spectroscopic Data^{a,b} for Phosphoranimine 3c

	signal	¹ H NMR			¹³ C NMR	
		δ	$J_{ m PH}$	J _{HH}	δ	$J_{ m PC}$
*	Me ₃ Si	0.08			3.76	2.9
3	$\mathrm{PC}\check{\mathrm{H}}_{a,b}$	2.80	18.4	7.6 (H_a/H_c) 1.4 (H_a/H_{da})	38.76	92.4
Me3SIN POCH2CF3	OCH_2	4.00 4.35	8.8 8.8	$12.0 (8.8)^{\circ}$ 12.0 (8.8)	60.35	$5.6 (37.8)^d$
H _a	=CH _c	5.70	6.0	$16.6 (H_c/H_d) 10.3 (H_c/H_e) 7.6 (H_c/H_e)$	128.13	9.3
3c	$=CH_2: H_d$	5.02	5.3	17.0 (H_d/H_c) 1.4 (H_d/H_c)	120.08	12.4
	H _e	5.11	4.2	10.3 $(H_{e}/H_{c})^{(H_{e}/H_{c})}$ 1.4 (H_{e}/H_{e})		
	Ph: H_{3-5}	7.5 (m)		· · · a,u	C_1 132.36	128.5
	H_{26}	7.8 (m)			C ₂₆ 131.86	9.9
	2,0				Č₄ 131.83	1.8
					C ₃₅ 128.48	12.8
	CF_{2}				123.83	9.6 $(277.8)^d$

^a See footnote a, Table I. ^{b 31}P NMR: δ 19.38. ^c $J_{\rm FH}$ values in parentheses. ^d $J_{\rm FC}$ values in parentheses.

reaction mixture. After the mixture was stirred for ca. 4 h at room temperature, hexane (200 mL) was added and the solids were allowed to settle. The mixture was filtered under N_2 , and the solids were washed with several 50-mL portions of hexane. Solvent removal followed by distillation through a 10-cm column afforded **3a** as a colorless liquid. Compounds **3b** and **3c** were prepared by a similar procedure.

Preparation of Me₃SiN=P(OCH₂CF₃)(CH₂CH=CH₂)₂ (3d). In a 500-mL, 3-necked flask, equipped with a N₂ inlet, a magnetic stirrer, and an addition funnel, LiOCH₂CF₃ was prepared by the slow addition of *n*-BuLi (0.20 mol, 2.6 M in hexane) to CF₃CH₂OH (0.20 mol, 16.3 mL) in ether (250 mL) at 0 °C. After being stirred for ca. 30 min at room temperature, the solution was transferred slowly via a double-ended needle to a 1-L flask containing a magnetically stirred solution of the *P*-bromophosphoranimine 2d (0.20 mol) in ether (150 mL) at 0 °C. The reaction mixture was stirred at room temperature overnight, hexane (100 mL) was added, and the mixture was filtered. The solids were washed with hexane, and the solvents were removed under reduced pressure. Distillation through a 10-cm column afforded 3d as a colorless liquid.

Preparation of Me₃SiN=P(OCH₂CF₃)(Ph)CH(Ph)PPh₂ (8a). A 250-mL, 3-necked flask, equipped with a N₂ inlet, a magnetic stirrer, and a septum, was charged with the N-silyl-P-(trifluoroethoxy)phosphoranimine 3a (typically, 25 mmol) and ether (60 mL). The solution was cooled to -78 °C, and an equimolar quantity of n-BuLi was added via syringe. After the mixture was stirred for ca. 30 min, Ph₂PCl (25 mmol) was added and the mixture was allowed to warm to room temperature and was stirred overnight. After the addition of hexane (ca. 50 mL), the mixture was filtered and the solids were washed with hexane. Following solvent removal, distillation through a short-path apparatus gave 8a as a viscous, pale yellow liquid. The other diphenylphosphine derivatives 6, 7, and 8b-d were prepared from the appropriate precursors by similar procedures. In the preparation of 9, $(Me_2N)_2PCI$ was used in place of Ph₂PCl; otherwise the procedure was unchanged.

Preparation of [Me₃SiN=P(OCH₂CF₃)(Me)CH₂PPh₂]Fe-(CO)₄ (10). A 50-mL flask, equipped with a N₂ inlet and a magnetic stirrer, was charged with the ligand 6 (2.16 g, 5.00 mmol), Fe_2(CO)_9 (1.84 g, 5.05 mmol), and hexane (20 mL). The mixture was stirred overnight at room temperature and then filtered under N₂. Hexane and Fe(CO)_5 were removed from the filtrate under reduced pressure and moderate heat (ca. 50 °C). The remaining orange/brown oil was identified as 10 by NMR spectroscopy and elemental analysis (Tables I and II). The other Fe(CO)_4 complexes 11, 12, 14, and 15 were prepared by similar procedures.

Preparation of [Me₃SiN=P(OCH₂CF₃)(Me)CH₂PPh₂]Cr-(CO)₅ (13). A 50-mL flask, equipped with a N₂ inlet, a reflux condenser, and a magnetic stirrer, was charged with the ligand 6 (1.72 g, 4.00 mmol), Cr(CO)_6 (1.76 g, 8.00 mmol), and diglyme (15 mL). The mixture was heated at reflux for 2 h, during which time some Cr(CO)_6 that accumulated in the condenser was washed down with ca. 5 mL of diglyme. After being cooled to room temperature, the flask was placed in a -78 °C bath in order to precipitate the excess Cr(CO)_6. The mixture was filtered while cold, and the solid was washed with cold diglyme (20 mL) in two portions. The solvent and a small amount of residual Cr(CO)_6 were removed under high vacuum. The remaining red/brown oil was identified as 13 by NMR spectroscopy (Table I).

Acknowledgment. We thank the U. S. Army Research Office and the Robert A. Welch Foundation for generous financial support of this research.