

Contents lists available at SciVerse ScienceDirect

# Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy



journal homepage: www.elsevier.com/locate/saa

# Experimental (FT-IR, FT-Raman, <sup>1</sup>H, <sup>13</sup>C NMR) and theoretical study of alkali metal syringates

# Renata Świsłocka\*

Division of Chemistry, Bialystok University of Technology, Zamenhofa 29, 15-435 Bialystok, Poland

### HIGHLIGHTS

## G R A P H I C A L A B S T R A C T

- Influence of alkali metals on the electronic system of the syringic was studied.
- Methods were applied: FT-IR, FT-Raman, and NMR quantummechanical calculations.
- Good correlation between experimental and calculated IR and NMR spectra was noted.
- Aromaticity indices, atomic charges, dipole moments and energies were calculated.

#### ARTICLE INFO

Article history: Received 12 February 2013 Received in revised form 27 March 2013 Accepted 1 April 2013 Available online 10 April 2013

Keywords: Syringic acid Alkali metal syringates Spectroscopic studies Structural data

## Introduction

In previous works [1–3] it was observed that the biological activity of benzoic acid derivatives depends on their molecular and electronic structure. Therefore, it may be possible to find compounds with no specific biological activity not by a process of trial and error, but based on strictly described dependencies between the structure and biological activity of compounds.

In the last years growing interest of benzoic acid derivatives as components of the diet is noticed, because these compounds have antioxidant properties, together with polyphenols and ascorbic

E-mail address: r.swislocka@pb.edu.pl



# ABSTRACT

In this work the influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid) was studied. This paper presents spectroscopic vibrations (FT-IR, FT-Raman) and NMR (<sup>1</sup>H and <sup>13</sup>C) study of the series of alkali metal syringates from lithium to cesium syringates. Characteristic shifts of band wavenumbers and changes in band intensities along the metal series were observed. Optimized geometrical structures of the studied compounds were calculated by the B3LYP method using the 6-311++G<sup>\*\*</sup> basis set. Aromaticity indices, atomic charges, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and NMR spectra were obtained. The calculated parameters were compared to experimental characteristics of studied compounds.

© 2013 Elsevier B.V. All rights reserved.

acid they protect the body against oxidative stress. Syringic acid is a hydroxylic acid vastly present in edible plants and fruits. In medicine it is used as a sedative and local anesthetic. 4-Hydroxy-3,5-dimethoxybenzoic acid has been demonstrated to exert antioxidant, antiproliferative, anitumor and antiendotoxic properties [4,5]. Phenolic compounds, a group of secondary plant metabolites, are important in the growth and the development of vascular plants. They give color to fruits and flowers, and are responsible for their sour and bitter taste. Syringic acid is one of the compounds included in the plants such as: cinnamon, basil, rosemary, clove, thyme, commonly used as a spice. [6]. An abundant source of syringic and other phenolic acids are cereal seeds, where these compounds locate mainly in the outer plies of grains.

<sup>\*</sup> Tel.: +48 85 7469796; fax: +48 85 7469781.

<sup>1386-1425/\$ -</sup> see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.saa.2013.04.016

Iwan et al. investigated properties of lanthanide(III) complexes with 4-hydroxy-3,5-dimethoxybenzoic acid. These compounds were characterized by elemental analysis, IR spectroscopy, X-ray diffraction patterns, solubility, and thermal studies [7]. Belkov et al. measured FT-IR spectra of benzoic, vanillic and syringic acids in CCl<sub>4</sub> solutions and in microcrystals [8]. Features of the formation of intra-and intermolecular hydrogen bonds were analyzed. Mechanisms of the intermolecular interactions are shown to be defined by the character of the substituents attached to the benzene ring in the para- and meta-positions relative to the carboxylic group [8]. Phelps and Young [9] investigated microbial metabolism of the plant phenolic compounds, viz. ferulic and syringic acids under anaerobic conditions. The results of this study indicated that these compounds can be easily decomposed by methanogenic, denitrifying and sulfonic bacterial strains. The effect of some metals on the electronic system of benzoic acid derivatives was investigated and also reported in our earlier papers [10–15].

The influence of alkali metals (lithium, sodium, potassium, rubidium and cesium) on the electronic system of the syringic acid was investigated. In the present work many different analytical methods, which complement one another, were used: FT-IR, FT-Raman, <sup>1</sup>H and <sup>13</sup>C NMR spectra and quantum mechanical calculations (geometry of the structure, atomic charges, theoretical spectra of IR and NMR). Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G<sup>\*\*</sup> basis set. Atomic charges, aromaticity indices, energies and dipole moments were calculated. The calculated parameters were compared to the experimental characteristics of the studied compounds.

#### **Experimental and computational methods**

All reagents used were of analytical grade from Sigma–Aldrich. Lithium, sodium, potassium, rubidium and cesium syringates were prepared by dissolving the powder of syringic acid in water solution of the appropriate metal hydroxide in a stoichiometric ratio of 1:1. The mixed solution was left at the 70 °C until the sample crystallized in the solid-state. Then, the remaining solvent was removed by drying in convection dryer at 105 °C for 24 h. Obtained complexes were anhydrous in the IR spectra of solid state samples the lack of bands characterized for crystallizing water was observed. Spectrum was registered after drying.

The FT-IR spectra of 4-hydroxy-3,5-dimethoxybenzoic acid and its salts were recorded with an Equinox 55, BRUKER FT-IR spectrometer. Samples in the solid state were measured in KBr matrix pellets which were obtained with hydraulic press under 739 MPa pressure. Raman spectra of solid samples in capillary tubes were recorded in the range 4000–400 cm<sup>-1</sup> with a FT-Raman accessory of the Perkin Elmer System 2000. The resolution of the spectrometer was 1 cm<sup>-1</sup>. The NMR spectra of DMSO saturated solution were recorded with a NMR AC 200 F, Bruker unit at room temperature. TMS was used as an internal reference.

To calculate the optimized geometrical structures of studied compounds a Density Functional Theory (DFT) in B3LYP/6-311++G(d,p) level was used. Theoretical calculations were performed using the GAUSSIAN 09 [16] package of programs running on a PC computer. The theoretical IR and NMR (<sup>1</sup>H and <sup>13</sup>C) spectra were obtained.

# **Results and discussion**

### Vibrational spectra

The wavenumbers, intensities and assignments of the bands occurring in the FT-IR and FT-Raman spectra of syringic acid and synthesized alkali metal syringates are presented in Tables 1 and 2, respectively. Complete assignments of all bands require application of both IR and Raman methods supported by theoretical calculations [16] and literature data [8,9,17]. Bands are numbered along with the notation used by Varsányi [18]. The calculated wavenumbers were obtained by B3LYP method and 6-311++G\*\* basis set. Experimental FT-IR and FT-Raman spectra of syringic acid were recorded and presented in Fig. 2.

Characteristic vibration bands of the carboxylic group are present in the spectra of 4-hydroxy-3,5-dimethoxybenzoic acid. There are very intense, broad stretching bands: v(C=O): 1699 cm<sup>-1</sup> (IR), 1698 cm<sup>-1</sup> (R), 1771 cm<sup>-1</sup> (theoret.), v(C=OH): 1265 cm<sup>-1</sup>

Table 1

Wavenumbers (cm<sup>-1</sup>), intensities and assignments of bands occurring in the experimental FT-IR, FT-Raman and theoretical FT-IR spectra of syringic acid. The theoretical wavenumbers were calculated in B3LYP/6-311++C\*\* level.

| Syringic ac          | ıd          |                    |         |                                |                  |
|----------------------|-------------|--------------------|---------|--------------------------------|------------------|
| IR                   | Calc.       |                    | Raman   | Assignment                     | No. <sup>a</sup> |
| Exp.                 | Theoret.    | Int. <sub>IR</sub> | Exp.    |                                |                  |
| 3374 vs <sup>b</sup> | 3776        | 100.79             |         | $v^{c}(OH)$                    |                  |
| 3248 s               | 3762        | 146.30             |         | v(OH) <sub>ar</sub>            |                  |
| 3084 m               | 3238        | 1.73               | 3084 w  | v(CH)                          | 20a              |
| 3030 m               | 3223        | 2.86               | 3034 w  | v(CH)                          | 20b              |
| 2988 w               | 3193        | 2.06               |         | v(CH)                          |                  |
| 2972 m               | 3140; 3137  | 18.02; 20.15       | 2973 vw | $v_{as}(CH_3)$                 |                  |
| 2941 m               | 3081; 3065  | 27.68; 35.34       | 2945 w  | $v_{as}(CH_3)$                 |                  |
| 2845 m               | 3018; 3006  | 44.60; 52.82       | 2833 vw | $v_s(CH_3)$                    |                  |
| 1699 vs              | 1771        | 419.15             | 1698 vs | v(C=0)                         |                  |
| 1618 s               | 1645        | 161.29             |         | v(CC)                          | 8a               |
| 1595 sh              | 1624        | 35.13              | 1594 s  | v(CC)                          | 8b               |
| 1522 s               | 1543        | 116.29             | 1521 w  | v(CC)                          | 19a              |
| 1460 vs              | 1505; 1504  | 35.77; 42.22       | 1468 w  | $\delta_{as}(CH_3)$            |                  |
|                      | 1492; 1491  | 9.94; 10.06        | 1444 w  | $\delta_{as}(CH_3)$            |                  |
| 1420 s               | 1454        | 133.28             | 1424 w  | v(CC)                          | 19b              |
| 1373 vs              | 1417        | 63.87              | 1371 m  | v(CC)                          | 14               |
| 1321 s               | 1489; 1483  | 63.01; 0.90        | 1322 m  | $\delta_s(CH_3)$               |                  |
| 1265 m               | 1379        | 403.56             | 1261 w  | $\nu C - (OH)$                 |                  |
| 1246 s               |             |                    | 1239 w  | v(CH)                          | 2                |
| 1206 vs              | 1329        | 14.70              | 1198 s  | β( <b>OH</b> )                 |                  |
|                      | 1303        | 90.50              |         | $\beta(OH)_{ar}$               |                  |
|                      | 1272        | 33.46              |         | v(CO)                          |                  |
|                      | 1239        | 283.62             |         | β(CH)                          | 3                |
|                      | 1211; 1206  | 4.51; 5.23         |         | $\rho(CH_3)$                   |                  |
|                      | 1171        | 375.52             |         | β(CH)                          | 9a               |
|                      | 1169; 1168  | 0.37; 0.89         |         | $\rho(CH_3)$                   |                  |
|                      | 1144        | 402.02             | 1154 w  | ν <b>Ο</b> –(CH <sub>3</sub> ) |                  |
|                      | 1116        | 88.06              |         | β(CH)                          | 18b              |
| 1177 vs              | 1064        | 4.31               |         | ν <b>Ο</b> –(CH <sub>3</sub> ) |                  |
| 1113 vs              | 943         | 5.26               | 1116 vw | v(CH)                          | 13               |
| 1040 m               |             |                    | 1033 m  | $\delta_{as}(CH_3)$            |                  |
| 908 m                | 918         | 26.91              | 909 w   | v(CH)                          | 7b               |
| 864 m                | 877         | 17.33              | 882 vw  | γ(CH)                          | 11               |
| 841 w                | 865         | 4.93               |         | $\gamma$ (CH)                  | _                |
| 804 m                | 808         | 23.51              | 804 m   | v(CH)                          | 7a               |
| 770 s                | 810         | 26.09              |         | $\alpha(CCC)$                  | 12               |
|                      | 763         | 8.08               | 50.4    | $\gamma(CH)$                   | 5                |
| /3/ W                | 665         | /4.01              | /34 vw  | $\beta(C=0)$                   |                  |
| 689 s                | 593         | 6.56               | 689 W   | $\varphi(\mathcal{U})$         | 4                |
| 6/1 m                | //6         | 51.35              | 676 W   | $\gamma(C=0)$                  |                  |
| 581 m                | 580         | 37.28              | 581 W   | γ(UH)                          | 104              |
| 530 W                | <b>FF</b> 1 | 1.00               | 546 W   | $\varphi(\mathbf{CC})$         | 16D<br>Ch        |
| 488 W                | 551         | 1.90               | 490 W   | $\alpha(CC)$                   | 6D<br>160        |
| 400 VW               | 520         | 42.22              |         | $\psi(\mathbf{C}\mathbf{C})$   | 104              |
|                      | 407         | 108.32             |         | γ(OH) <sub>ar</sub>            |                  |

<sup>a</sup> Ref. [17,18].

<sup>b</sup> s – strong; m – medium; w – weak; v – very.

<sup>c</sup> The symbol "v" denotes stretching vibrations. " $\beta$ " denotes in-plane bending modes. " $\gamma$ " designates out-of-plane bending modes; " $\varphi$ (CCC)" denotes the aromatic ring out-of-plane bending modes. and " $\alpha$ (CCC)" designates the aromatic ring in-plane bending modes.

#### Table 2

Wavenumbers (cm<sup>-1</sup>), intensities and assignments of bands occurring in the IR and Raman spectra of lithium, sodium, potassium, rubidium and cesium syringates. The theoretical wavenumbers were calculated in B3LYP/6-311++G<sup>\*\*</sup> level.

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Assignment No.ª                              | Cs syringate |          | te      | Rb syringate |         | K syringate        |          |         |           | ate                | Na syring |          |         | e                  | Li syringat       |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------|----------|---------|--------------|---------|--------------------|----------|---------|-----------|--------------------|-----------|----------|---------|--------------------|-------------------|------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | Raman        | IR       | Raman   | IR           |         | Raman              |          | IR      |           | Raman              |           | IR       |         | Raman              |                   | IR         |
| 3495 s   3769 <sup>b</sup> 130.65   3410 s   3772   124.09   3443 s   3772   124.98   3418 s   3418 s   3447 s     3074 w   3226   4.07   3079 w   3226   6.34   3090 w   3073 w   3226   5.44   3072 w   3073 w   3071 w     3013 vw   3224   1.55   3015 w   2997 w   3225   1.74   2999 w   3011 w   3225   2.53   3014 w   3010 vw   3017 vw   3011 w   3025 w     3001 w   3003 w   2976 w   2974 w   2974 w   2995 vw   3002 w   2998 w     2963 w   3135   21.76   2970 m   3132   24.25   2977 w   2955 w   3132   24.10   2977 w   2976 w   2979 vw   2974 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | Exp.         | Exp.     | Exp.    | Exp.         | Exp.    | Int. <sub>IR</sub> | Theoret. | Exp.    | Exp.      | Int. <sub>IR</sub> | Theoret.  | Exp.     | Exp.    | Int. <sub>IR</sub> | Theoret.          | Exp.       |
| 3074 w   3226   4.07   3079 w   3226   6.34   3090 w   3073 w   3226   5.44   3072 w   3073 w   3071 w     3013 vw   3224   1.55   3015 w   2997 w   3225   1.74   2999 w   3011 w   3225   2.53   3014 w   3010 vw   3017 vw   3011 w   3025 w     3001 w   3003 w   2976 w   2970 m   3132   24.25   2977 w   2955 w   3132   24.10   2977 w   2976 w   2979 vw   2974 w     2963 w   3135   21.76   2970 m   3132   24.25   2977 w   2955 w   3132   24.10   2977 w   2976 w   2979 vw   2974 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | v(OH) <sup>c</sup> <sub>ar</sub>             |              | 3447 s   |         | 3418 s       |         | 124.98             | 3772     | 3443 s  |           | 124.09             | 3772      | 3410 s   |         | 130.65             | 3769 <sup>b</sup> | 3495 s     |
| 3013 vw   3224   1.55   3015 w   2997 w   3225   1.74   2999 w   3011 w   3225   2.53   3014 w   3010 vw   3017 vw   3011 w   3025 w     3001 w   3003 w   2976 w   2976 w   2974 w   2995 vw   3002 w   2998 w     2963 w   3135   21.76   2970 m   3132   24.25   2977 w   2955 w   3132   24.10   2977 w   2976 w   2979 vw   2974 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | v(CH) 20a                                    |              |          | 3071 w  | 3073 w       | 3072 w  | 5.44               | 3226     | 3073 w  | 3090 w    | 6.34               | 3226      |          | 3079 w  | 4.07               | 3226              | 3074 w     |
| 3001 w     3003 w     2976 w     2974 w     2995 vw     3002 w     2998 w       2963 w     3135     21.76     2970 m     3132     24.25     2977 w     2955 w     3132     24.10     2977 w     2976 w     2979 vw     2974 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | v(CH) 20b                                    | 3025 w       | 3011 w   | 3017 vw | 3010 vw      | 3014 w  | 2.53               | 3225     | 3011 w  | 2999 w    | 1.74               | 3225      | 2997 w   | 3015 w  | 1.55               | 3224              | 3013 vw    |
| 2963 w 3135 21.76 2970 m 3132 24.25 2977 w 2955 w 3132 24.10 2977 w 2976 w 2979 vw 2974 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v(CH)                                        | 2998 w       |          | 3002 w  | 2995 vw      |         |                    |          | 2974 w  |           |                    |           | 2976 w   | 3003 w  |                    |                   | 3001 w     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v <sub>as</sub> (CH <sub>3</sub> )           |              | 2974 w   | 2979 vw | 2976 w       | 2977 w  | 24.10              | 3132     | 2955 w  | 2977 w    | 24.25              | 3132      | 2970 m   |         | 21.76              | 3135              | 2963 w     |
| 3132 24.43 3129 26.99 3129 26.88<br>2020 2020 2020 2020 2020 2020 2020 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |              | 0055     | 00.40   | 20.44        | 00.40   | 26.88              | 3129     | 20.40   | 2020      | 26.99              | 3129      | 2020     | 2020    | 24.43              | 3132              | 2022       |
| 2938 m 30//6 31.39 2939 w 2938 w 30/3 33.28 2939 w 2940 w 30/3 33.22 2942 w 2941 w 2943 w 2955 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $V_{as}(CH_3)$                               |              | 2955 W   | 2943 w  | 2941 W       | 2942 w  | 33.22              | 3073     | 2940 w  | 2939 w    | 33.28              | 3073      | 2938 w   | 2939 w  | 31.39              | 3076              | 2938 m     |
| 3062 37.72 3059 39.88 3059 39.88 3059 39.80 2012 52.60 2047 m 2047 m 2045 m 2045 m 2046 m 2046 m 2046 m 2046 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 2040         | 2045     | 2045    | 20.42        | 2047    | 39.80              | 3059     | 2045    | 2044      | 39.88              | 3059      | 2020     | 2042    | 37.72              | 3062              | 2020       |
| 2839 III 3015 30.12 2842 W 2839 III 3013 33.04 2844 W 2845 W 3013 32.08 2847 W 2843 III 2845 W 2845 W 2840 | V <sub>s</sub> (CH <sub>3</sub> )            | 2840 W       | 2845 W   | 2845 W  | 2843 111     | 2847 W  | 52.68              | 3013     | 2845 W  | 2844 W    | 53.04              | 3013      | 2839 111 | 2842 W  | 50.12              | 3015              | 2839 111   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V(CC) 83                                     |              | 1645 sh  |         | 1647 m       | 1656 w  | 63.83              | 1651     | 1684 m  |           | 54 12              | 1651      | 1686 m   |         | 61.56              | 1650              | 1661 m     |
| 1604 m 1624 19.96 1603 vc 1616 m 1626 12.96 1600 vc 1613 m 1625 13.86 1502 vc 1603 sh 1592 vc 1614 m 1598 vc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v(CC) 8b                                     | 1598 vs      | 1614 m   | 1592 vs | 1603 sh      | 1592 vs | 13.86              | 1625     | 1613 m  | 1600 vs   | 12.96              | 1626      | 1616 m   | 1603 vs | 19.96              | 1624              | 1634 m     |
| 1054 m 1024 13.00 1050 vs 1015 m 1020 12.00 1000 vs 1015 m 1025 13.00 1352 vs 1015 m 1328 vs 1014 m 1356 vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v.(COO)                                      | 1553 w       | 1545 vs  | 1547 w  | 1578 s       | 1547 w  | 307.73             | 1547     | 1545 vs | 1000 v3   | 525 11             | 1555      | 1560 vs  | 1005 V3 | 482.26             | 1531              | 1557 vs    |
| 150 vs 1546 112 79 1522 w 1520 m 1539 122 41 1518 w 1520 sh 1536 230 95 1534 w 1508 s 1539 w 1520 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v(CC) 19a                                    | 1555 W       | 1520 m   | 1539 w  | 1508 s       | 1534 w  | 230.95             | 1536     | 1520 sh | 1518 w    | 122.41             | 1539      | 1520 m   | 1522 w  | 112.79             | 1546              | 1524 s     |
| 1464 m 1506 40.84 1460 m 1507 42.30 1467 sh 1466 m 1507 41.68 1486 w 1456 m 1485 w 1466 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\delta_{rr}(CH_2)$                          |              | 1466 m   | 1485 w  | 1456 m       | 1486 w  | 41.68              | 1507     | 1466 m  | 1467 sh   | 42.30              | 1507      | 1460 m   | 1022 11 | 40.84              | 1506              | 1464 m     |
| 1504 33.64 1505 33.86 1505 33.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cas(Cr.5)                                    |              | 1100 111 | 1100 11 | 1 100 111    | 1100 11 | 33.30              | 1505     | 1100    | 1 107 511 | 33.86              | 1505      | 1100 111 |         | 33.64              | 1504              | 1 10 1 111 |
| 1491 10.47 1452 m 1491 10.71 1448 m 1491 11.94 1450 m 1450 m 1453 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\delta_{as}(CH_3)$                          | 1453 m       |          | 1450 m  |              | 1450 m  | 11.94              | 1491     |         | 1448 m    | 10.71              | 1491      |          | 1452 m  | 10.47              | 1491              |            |
| 1490 8.16 1490 6.95 1490 5.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |              |          |         |              |         | 5.78               | 1490     |         |           | 6.95               | 1490      |          |         | 8.16               | 1490              |            |
| 1485 3.54 1485 2.97 1485 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\delta_s(CH_3)$                             |              |          |         |              |         | 1.90               | 1485     |         |           | 2.97               | 1485      |          |         | 3.54               | 1485              |            |
| 1484 25.80 1482 3.84 1483 7.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |              |          |         |              |         | 7.83               | 1483     |         |           | 3.84               | 1482      |          |         | 25.80              | 1484              |            |
| 1445 17.80 1414 s 1422 sh 1447 30.87 1446 27.58 1410 w 1410 vw 1418 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v(CC) 19b                                    | 1418 w       |          | 1410 vw |              | 1410 w  | 27.58              | 1446     |         |           | 30.87              | 1447      | 1422 sh  | 1414 s  | 17.80              | 1445              |            |
| 1395 vs 1423 724.53 1392 m 1395 vs 1397 778.15 1398 s 1398 vs 1400 767.19 1385 sh 1385 vs 1382 sh 1398 vs 1398 sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | v <sub>s</sub> (COO)                         | 1398 sh      | 1398 vs  | 1382 sh | 1385 vs      | 1385 sh | 767.19             | 1400     | 1398 vs | 1398 s    | 778.15             | 1397      | 1395 vs  | 1392 m  | 724.53             | 1423              | 1395 vs    |
| 1319 m 1321 m 1315 m 1315 m 1312 sh 1313 sh 1312 sh 1311 m 1314 sh 1313 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\delta_s(CH_3)$                             | 1313 w       | 1314 sh  | 1311 m  | 1312 sh      | 1313 sh |                    |          | 1312 sh | 1315 m    |                    |           | 1315 m   | 1321 m  |                    |                   | 1319 m     |
| 1277 m 1406 364.65 1288 w 1277 s 1409 194.71 1277 w 1279 m 1411 371.61 1283 sh 1277 m 1270 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\nu(CC)$ + $\beta C$ -(OH) <sub>ar</sub> 14 | 1270 w       | 1277 m   |         | 1283 sh      |         | 371.61             | 1411     | 1279 m  | 1277 w    | 194.71             | 1409      | 1277 s   | 1288 w  | 364.65             | 1406              | 1277 m     |
| 1240 m 1338 32.94 1247 w 1238 s 1335 25.70 1237 m 1238 s 1336 33.25 1222 s 1223 vs 1222 m 1236 m 1229 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | v(CH) 2                                      | 1229 m       | 1236 m   | 1222 m  | 1223 vs      | 1222 s  | 33.25              | 1336     | 1238 s  | 1237 m    | 25.70              | 1335      | 1238 s   | 1247 w  | 32.94              | 1338              | 1240 m     |
| 1296 89.56 1296 92.50 1296 96.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\beta(OH)_{ar}$                             |              |          |         |              |         | 96.55              | 1296     |         |           | 92.50              | 1296      |          |         | 89.56              | 1296              |            |
| 1209 s 1263 77.90 1210 vw 1211 s 1259 76.92 1210 vw 1213 s 1258 77.66 1202 w 1203 s 1202 w 1213 s 1212 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v(C-O)                                       | 1212 w       | 1213 s   | 1202 w  | 1203 s       | 1202 w  | 77.66              | 1258     | 1213 s  | 1210 vw   | 76.92              | 1259      | 1211 s   | 1210 vw | 77.90              | 1263              | 1209 s     |
| 1228 	257.62 	1228 	249.53 	1228 	249.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\beta(CH) = 3$                              |              |          |         |              |         | 245.71             | 1228     |         |           | 249.63             | 1228      |          |         | 257.62             | 1228              |            |
| 1210; 12.40; 1211; 11.90; 1211; 11.77;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $p(CH_3)$                                    |              |          |         |              |         | 11.77;             | 1211;    |         |           | 11.90;             | 1211;     |          |         | 12.46;             | 1210;             |            |
| 1201 1.55 $1202$ 2.10 $1202$ 2.55<br>1171 0.45 1171 0.42 1171 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $o(CH_{\tau})$                               |              |          |         |              |         | 2.55               | 1202     |         |           | 2.10               | 1202      |          |         | 1.55               | 1201              |            |
| 11/1, 0.43, 11/1, 0.42, 11/1, 0.43, 11/1, 0.43, 11/1, 0.43, 11/1, 0.43, 11/2, 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p(CH <sub>3</sub> )                          |              |          |         |              |         | 0.45,              | 11/1,    |         |           | 0.42,              | 11/1,     |          |         | 0.45,              | 11/1,             |            |
| 1144 343 24 1145 347 46 1145 349 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $vO = (CH_{a})$                              |              |          |         |              |         | 349.20             | 1145     |         |           | 347.46             | 1145      |          |         | 343 24             | 1144              |            |
| 1130 3625 1131 4092 1129 4430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ко (сн.)<br>в(СН) 18b                        |              |          |         |              |         | 44 30              | 1129     |         |           | 40.92              | 1131      |          |         | 36.25              | 1130              |            |
| 1069 2.67 1184 m 1072 2.65 1185 vw 1184 m 1072 2.53 1191 w 1190 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $vO-(CH_2)$                                  |              |          | 1190 w  |              | 1191 w  | 2.53               | 1072     | 1184 m  | 1185 vw   | 2.65               | 1072      | 1184 m   |         | 2.67               | 1069              |            |
| 1119 vs 967 4.30 1121 w 1111 vs 962 2.88 1111 w 1111 vs 961 0.39 1114 m 1111 vs 1114 m 1107 vs 1111 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v(CH) 13                                     | 1111 w       | 1107 vs  | 1114 m  | 1111 vs      | 1114 m  | 0.39               | 961      | 1111 vs | 1111w     | 2.88               | 962       | 1111 vs  | 1121 w  | 4.30               | 967               | 1119 vs    |
| 1042 m 1041 m 1040 m 1042 m 1040 m 1033 s 1034 m 1033 s 1034 m 1038 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\delta_{as}(CH_3)$                          | 1038 m       | 1034 m   | 1033 s  | 1034 m       | 1033 s  |                    |          | 1040 m  | 1042 m    |                    |           | 1040 m   | 1041 m  |                    |                   | 1042 m     |
| 959 w 779 139.44 961 w 955 w 768 98.43 954 m 955 w 782 156.46 947 m 950 vw 945 m 949 w 949 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | β <sub>s</sub> (COO)                         | 949 w        | 949 w    | 945 m   | 950 vw       | 947 m   | 156.46             | 782      | 955 w   | 954 m     | 98.43              | 768       | 955 w    | 961 w   | 139.44             | 779               | 959 w      |
| 910 m 922 10.87 910 w 912 m 921 12.53 914 w 912 m 921 11.04 915 w 901 m 915 w 907 m 911 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v(CH) 7b                                     | 911 w        | 907 m    | 915 w   | 901 m        | 915 w   | 11.04              | 921      | 912 m   | 914 w     | 12.53              | 921       | 912 m    | 910 w   | 10.87              | 922               | 910 m      |
| 883 m 890 16.66 885 vw 874 m 892 16.71 875 vw 874 m 898 15.30 873 w 880 m 867 w 881 m ??                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | γ(CH) 11                                     | ??           | 881 m    | 867 w   | 880 m        | 873 w   | 15.30              | 898      | 874 m   | 875 vw    | 16.71              | 892       | 874 m    | 885 vw  | 16.66              | 890               | 883 m      |
| 869 sh 878 0.98 856 w 881 1.98 856 w 881 0.98 866 w ??                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | γ(CH)                                        | ??           | 866 w    |         |              |         | 0.98               | 881      | 856 w   |           | 1.98               | 881       | 856 w    |         | 0.98               | 878               | 869 sh     |
| 833 w 831 3.60 818 w 818 w 823 0.39 818 m 810 sh 831 16.99 807 m 831 w 806 m 845 w 836 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v(CH) 7a                                     | 836 w        | 845 w    | 806 m   | 831 w        | 807 m   | 16.99              | 831      | 810 sh  | 818 m     | 0.39               | 823       | 818 w    | 818 w   | 3.60               | 831               | 833 w      |
| 793 s     801 w     785 s     785 s     790 m     793 s     795 m     795 s     806 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\alpha(CCC)$ 12                             | 806 w        | 795 s    | 795 m   | 793 s        | 790 m   |                    |          | 785 s   |           |                    |           | 785 s    | 801 w   |                    |                   | 793 s      |
| 762 2.29 763 1.69 769 1.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | γ(CH) 5                                      |              |          |         |              |         | 1.89               | 769      |         |           | 1.69               | 763       |          |         | 2.29               | 762               |            |
| 755 s 798 45.56 759 s 754 s 800 42.10 755 m 756 s 805 40.96 754 w 750 m 754 w 750 s 749 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\gamma_{\rm s}({\rm COO})$                  | 749 w        | 750 s    | 754 w   | 750 m        | 754 w   | 40.96              | 805      | 756 s   | 755 m     | 42.10              | 800       | 754 s    | 759 s   | 45.56              | 798               | 755 s      |
| 675 m 595 0.02 677 w 671 m 596 0.06 689 w 673 m 597 0.05 685 w 679 w 681 w 677 m 677 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | φ(CC) 4                                      | 677 w        | 677 m    | 681 w   | 679 w        | 685 w   | 0.05               | 597      | 673 m   | 689 w     | 0.06               | 596       | 671 m    | 677 w   | 0.02               | 595               | 675 m      |
| 550 w 566 0.11 550 w 546 m 565 0.04 546 w 546 w 564 0.01 546 m 546 m 545 m 544 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | φ(CC) 16b                                    |              | 544 w    | 545 m   | 546 m        | 546 m   | 0.01               | 564      | 546 w   | 546 w     | 0.04               | 565       | 546 m    | 550 w   | 0.11               | 566               | 550 w      |
| 555     3.01     517 w     554     2.60     517 w     514 w     521 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\alpha(CCC)$ 6b                             |              |          | 521 w   |              | 514 w   |                    |          |         | 517 w     | 2.60               | 554       |          | 517 w   | 3.01               | 555               |            |
| 494 w 505 7.93 491 w 488 w 490 0.67 498 w 490 w 527 6.74 498 w 498 w 496 w 498 w 492 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\beta_{as}(COO)$                            | 492 m        | 498 w    | 496 w   | 498 w        | 498 w   | 6.74               | 527      | 490 w   | 498 w     | 0.67               | 490       | 488 w    | 491 w   | 7.93               | 505               | 494 w      |
| 413 vw 416 w 416 w 417 w 411 vw<br>449 90 95 442 90 58 443 91 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\phi(CC)$<br>$\gamma(OH)_{2r}$              |              |          | 411 vw  | 417 w        |         | 91 71              | 443      | 416 w   |           | 90 58              | 442       | 416 w    |         | 90 95              | 449               | 413 vw     |

<sup>a</sup> Ref. [8,18].

<sup>b</sup> s – strong; m – medium; w – weak; v – very.

<sup>c</sup> The symbol "ν" denotes stretching vibrations. "β" denotes in-plane bending modes. "γ" designates out-of-plane bending modes; " $\phi$ (CCC)" denotes the aromatic ring out-of-plane bending modes. and " $\alpha$ (CCC)" designates the aromatic ring in-plane bending modes.

R. Świsłocka/Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 111 (2013) 290-298

**Table 3** The experimental and calculated chemical shifts of protons in the <sup>1</sup>H NMR and carbons in the <sup>13</sup>C NMR spectra of syringic acid and alkali metal syringates,  $\delta$  (ppm).

| Atom position <sup>a</sup> | n <sup>a</sup> Syringic acid |                    |                    | Syringates |                    |                    |        |                    |                    |        |                    |                    |        |        |
|----------------------------|------------------------------|--------------------|--------------------|------------|--------------------|--------------------|--------|--------------------|--------------------|--------|--------------------|--------------------|--------|--------|
|                            |                              |                    |                    | Li         |                    |                    | Na     |                    |                    | К      |                    |                    | Rb     | Cs     |
|                            | Exp.                         | Calc. <sup>b</sup> | Calc. <sup>c</sup> | Exp.       | Calc. <sup>b</sup> | Calc. <sup>c</sup> | Exp.   | Calc. <sup>b</sup> | Calc. <sup>c</sup> | Exp.   | Calc. <sup>b</sup> | Calc. <sup>c</sup> | Exp.   | Exp.   |
| H1                         | 12.61                        | 5.42               | 6.04               | -          | -                  | -                  | -      | -                  | -                  | -      | -                  | -                  | -      | -      |
| H2                         | 7.22                         | 7.13               | 7.30               | 7.25       | 7.35               | 7.44               | 7.24   | 7.40               | 7.42               | 7.18   | 7.35               | 7.42               | 7.16   | 7.14   |
| H3a,3b,5a,5b               | 3.80                         | 3.69               | 3.84               | 3.73       | 3.68               | 3.81               | 3.74   | 3.67               | 3.80               | 3.76   | 3.71               | 3.82               | 3.74   | 3.72   |
| H3c,5c                     | 3.80                         | 4.10               | 4.25               | 8.32       | 4.04               | 4.21               | 8.34   | 4.01               | 4.18               | -      | 4.03               | 4.20               | 8.34   | 8.38   |
| H4                         | 9.19                         | 5.61               | 6.09               | 3.73       | 5.37               | 5.75               | 3.74   | 5.25               | 5.67               | 3.76   | 5.26               | 5.68               | 3.74   | 3.72   |
| H6                         | 7.22                         | 7.28               | 7.37               | 7.25       | 7.44               | 7.46               | 7.24   | 7.40               | 7.44               | 7.18   | 7.35               | 7.42               | 7.16   | 7.14   |
| C1                         | 120.52                       | 122.39             | 122.30             | 128.83     | 128.33             | 129.27             | 129.66 | 130.39             | 131.49             | 127.10 | 131.55             | 132.07             | 129.89 | 131.85 |
| C2                         | 107.01                       | 110.25             | 110.61             | 107.03     | 110.04             | 108.80             | 106.89 | 110.11             | 108.52             | 106.68 | 109.40             | 108.15             | 106.60 | 106.58 |
| C3                         | 147.57                       | 152.57             | 152.29             | 146.88     | 152.34             | 151.93             | 146.84 | 152.06             | 151.56             | 146.93 | 151.97             | 151.71             | 146.74 | 146.68 |
| C4                         | 140.34                       | 148.06             | 147.60             | 137.89     | 146.24             | 144.74             | 137.14 | 145.06             | 143.74             | 137.79 | 145.06             | 143.84             | 136.82 | 136.25 |
| C5                         | 147.57                       | 151.21             | 152.19             | 146.88     | 150.42             | 151.54             | 146.84 | 150.32             | 151.79             | 146.93 | 150.20             | 151.44             | 146.74 | 146.68 |
| C6                         | 107.01                       | 107.62             | 108.23             | 107.03     | 106.59             | 106.69             | 106.89 | 106.76             | 106.57             | 106.68 | 106.07             | 106.18             | 106.60 | 106.58 |
| C7                         | 167.39                       | 170.04             | 171.99             | 170.50     | 189.01             | 187.83             | 170.48 | 182.80             | 182.58             | 168.29 | 184.03             | 183.28             | 168.37 | 168.57 |
| C8                         | 56.09                        | 55.14              | 55.76              | 55.77      | 55.06              | 55.67              | 55.79  | 54.92              | 55.56              | 55.78  | 54.97              | 55.60              | 55.71  | 55.68  |
| C9                         | 56.09                        | 55.62              | 56.22              | 55.77      | 55.25              | 55.80              | 55.79  | 55.04              | 55.62              | 55.78  | 55.07              | 55.64              | 55.71  | 55.68  |

<sup>a</sup> Atom numbering in Fig. 1.

<sup>b</sup> Calculations for isolated molecules.

<sup>c</sup> Calculations for the molecules in the solvent (DMSO).

(IR), 1261 cm<sup>-1</sup> (R), 1379 cm<sup>-1</sup> (theoret.) and v(OH): 3374 cm<sup>-1</sup> (IR),  $3776 \text{ cm}^{-1}$  (theoret.). Deformation in plane vibration bands  $\beta$ (C=O): 737 cm<sup>-1</sup> (IR), 734 cm<sup>-1</sup> (R), 665 cm<sup>-1</sup> (theoret) and deformation out of plane vibration bands  $\gamma$ (C=O): 671 cm<sup>-1</sup> (IR), 676 cm<sup>-1</sup> (R), 776 cm<sup>-1</sup> (theoret.). Moreover, in the spectra of acid the bands of lower intensity are present, originating from deformation vibrations  $\beta(OH)$  located at 1206 cm<sup>-1</sup> (IR), 1198 cm<sup>-1</sup> (R), 1329 cm<sup>-1</sup> (theoret.) and  $\gamma(OH)$  581 cm<sup>-1</sup> (IR), 581 cm<sup>-1</sup> (R),  $580 \text{ cm}^{-1}$  (theoret.) were also observed. In the spectrum of the syringic acid also bands from the aromatic ring and functional groups of the ring (hydroxyl –OH<sub>ar</sub> and methoxy –OCH<sub>3</sub> groups) were present, which were also visible in the spectra of salt. Comparison of the spectrum of acid with those of its alkali metal salts revealed, first of all, the disappearance of stretching vibrations band (C=O). Instead, bands related to the stretching and deformation vibrations of (COO<sup>-</sup>) groups ( $v_{as}$  1578–1545 cm<sup>-1</sup>,  $v_s$  1398–1385 cm<sup>-1</sup>,  $\beta_s$  959–949 cm<sup>-1</sup>,  $\beta_{as}$  498–488 cm<sup>-1</sup>) were found in the spectra of complexes. The wavenumbers of symmetric in-plane deformations  $\beta_{as}(COO)$  decreased in the following series Li  $\rightarrow$  Na = K  $\rightarrow$  Rb  $\rightarrow$  Cs. The values of  $\Delta\beta = \beta_s(COO) - \beta_{as}(COO)$  increased in the spectra along the series:  $Rb \rightarrow Cs \rightarrow K = Li \rightarrow Na$ syringates and they are respectively: 451, 452, 465, 467  $cm^{-1}$ . The wavenumbers as well as intensities of the aromatic ring vibration bands did not significantly change. The IR spectra of metal syringates is presented in Fig. 2, where the shift of particular bands along the mentioned above series may be observed.

Peaks at 3073–2977 cm<sup>-1</sup> can be assigned to the C–H stretching modes of aromatic ring. The typical four peaks that occur in the spectra of aromatic compounds were present in the region 1686–1410 cm<sup>-1</sup>. In the IR and Raman spectra of studied compounds these bands are located at about 1660 cm<sup>-1</sup> (8a), 1620 cm<sup>-1</sup> (8b), 1520 cm<sup>-1</sup> (19a) and 1420 cm<sup>-1</sup> (19b). Stretching vibrations bands  $v_{as}(CH_3)$  that occur in the ranges: 2955–2938 cm<sup>-1</sup> (IR, Raman) and  $v_s(CH_3)$  in the ranges: 2847–2833 cm<sup>-1</sup> (IR, Raman). The  $\delta_{as}(CH_3)$  (in plane bending) give the bands in the ranges: 1468–1444, 1042–1033 cm<sup>-1</sup> (IR, Raman), and  $\delta_s(CH_3)$  in the range: 1484–1312 cm<sup>-1</sup> (IR). The bands of the vO–(CH<sub>3</sub>) vibrations are located in the range 1190–1154 cm<sup>-1</sup>.

The wavenumbers of aromatic bands numbered as 8a, 8b, 7a, 7b, 11, 12 and 16b in IR as well as in Raman spectra increase in comparison to free acid.

The correlation between calculated and experimentally obtained wavenumbers in IR spectra of syringic acid and lithium, sodium, potassium syringates were studied and generally good agreement was found. The correlation coefficient *R* for 4-hydroxy-3,5-dimethoxybenzoic acid spectra is 0.9962 and lithium, sodium and potassium salts amount to 0.9973; 0.9964; 0.9975, respectively.



Fig. 1. Structures of: syringic acid (a) and sodium syringate (b).



Fig. 2. Experimental FT-Raman spectra (a), FT-IR spectra (b) of syringic acid and the FT-IR spectra of salts: lithium (c), sodium (d), potassium (e), rubidium (f) and cesium syringates (g).

# NMR spectra

One of the most important factors that affect the chemical shift is the electron density. Increasing the electron density causes a higher field intensity and the decrease – lower field strength. Theoretically as well as experimentally obtained <sup>1</sup>H NMR and <sup>13</sup>C NMR chemical shifts of syringic acid and alkali metal syringates are presented in Table 3. The numbering of atoms is shown in Fig. 1. The experimental proton (<sup>1</sup>H) and carbon (<sup>13</sup>C) NMR spectra of syringic acid are presented in Figs. 3 and 4.

Data for the last two salts were only experimentally obtained. Almost all protons in salts were shifted diamagnetically in comparison to acid. This tendency suggests that introduction of alkali metal atoms causes the decrease in the ring current intensity. The largest changes of chemical shifts were observed at H4 atom. It indicates a decrease in the electronic charge density around this nucleus and a decrease in the screening effect. The differences between chemical shifts of proton atoms along metal series are small and irregular. Theoretical an experimental signals from carbons no. 2, 3, 4, 5, 6, 8, and 9 were shifted downfield in comparison to the appropriate signals in the spectrum of



Fig. 3. The experimental proton (<sup>1</sup>H) NMR spectra of syringic acid.



ligand, whereas the signals from carbons no. 1 and 7 were shifted upfield.

The linear correlation was observed between carbon NMR theoretical and experimental data of studied compounds. The correlation coefficient (R) for <sup>13</sup>C NMR spectra are amount to 0.999 (calculations for isolated molecules); 0,999 (calculations for the molecules in DMSO) for acid, 0.995; 0,996 for lithium, 0,998; 0,998 for sodium and 0,997; 0,998 for potassium syringates.

#### Table 4

Dipole moments (Debye) and total energy (Hartree, 1 hartree = 2625.5 kJ/mol) calculated using B3LYP/6-311++G<sup>\*\*</sup> method.

|                         | Syringic acid     | Syringates        |                   |                   |  |  |  |
|-------------------------|-------------------|-------------------|-------------------|-------------------|--|--|--|
|                         |                   | Li                | Na                | К                 |  |  |  |
| Dipole moment<br>Energy | 0.314<br>-725.308 | 5.088<br>-732.306 | 8.000<br>-887.067 | 7.372<br>-132.469 |  |  |  |

#### Table 5

The bond lengths and angles of the structures of syringic acid and its alkali metal salts calculated in B3LYP/6-311++G<sup>\*\*</sup> level (atom numbering on Fig. 1).

| Syringic acid                 |        | Syringates |        |        |  |  |  |
|-------------------------------|--------|------------|--------|--------|--|--|--|
|                               |        | Li         | Na     | K      |  |  |  |
|                               | Calc.  | Calc.      | Calc.  | Calc.  |  |  |  |
| Bond lengths (Å) <sup>a</sup> |        |            |        |        |  |  |  |
| C1-C2                         | 1 400  | 1 398      | 1 397  | 1 397  |  |  |  |
| (2-(3))                       | 1 394  | 1 388      | 1 394  | 1 395  |  |  |  |
| C3-C4                         | 1 405  | 1 403      | 1 403  | 1 403  |  |  |  |
| C4-C5                         | 1.404  | 1.404      | 1.402  | 1.402  |  |  |  |
| C5-C6                         | 1.387  | 1.394      | 1.389  | 1.389  |  |  |  |
| C1-C6                         | 1.399  | 1.398      | 1.397  | 1.397  |  |  |  |
| C1C7                          | 1.478  | 1.490      | 1.501  | 1.502  |  |  |  |
| C7-01                         | 1.362  | 1.277      | 1.270  | 1.271  |  |  |  |
| C7—02                         | 1.212  | 1.276      | 1.272  | 1.272  |  |  |  |
| 01-H1/M                       | 0.968  | 1.851      | 2.204  | 2.203  |  |  |  |
| 02—M                          | -      | 1.850      | 2.203  | 2.203  |  |  |  |
| C2—H2                         | 1.079  | 1.080      | 1.080  | 1.080  |  |  |  |
| C3-03                         | 1.359  | 1.376      | 1.364  | 1.364  |  |  |  |
| O3–C8                         | 1.422  | 1.423      | 1.419  | 1.419  |  |  |  |
| C4-04                         | 1.353  | 1.357      | 1.360  | 1.300  |  |  |  |
| 04—H4                         | 0.968  | 0.967      | 0.967  | 0.967  |  |  |  |
| C5-05                         | 1.372  | 1.362      | 1.378  | 1.378  |  |  |  |
| 05—С9                         | 1.426  | 1.421      | 1.422  | 1.422  |  |  |  |
| C6—H6                         | 1.081  | 1.080      | 1.080  | 1.080  |  |  |  |
| Angles (°)                    |        |            |        |        |  |  |  |
| C1-C2-C3                      | 120.13 | 118.90     | 119.02 | 120.44 |  |  |  |
| C2-C3-C4                      | 119.41 | 121.09     | 121.17 | 119.46 |  |  |  |
| C3-C4-C5                      | 119.77 | 119.66     | 119.50 | 119.50 |  |  |  |
| C4-C5-C6                      | 120.98 | 119.37     | 119.46 | 121.17 |  |  |  |
| C5-C6-C1                      | 118.94 | 120.32     | 120.44 | 119.02 |  |  |  |
| C2-C1-C6                      | 120.77 | 120.67     | 120.43 | 120.43 |  |  |  |
| C1-C7-01                      | 113.29 | 119.72     | 118.45 | 118.53 |  |  |  |
| C1-C7-02                      | 125.31 | 119.83     | 118.53 | 118.45 |  |  |  |
| 01                            | 121.40 | 120.45     | 123.01 | 123.01 |  |  |  |
| C7-01-H1/M                    | 106.36 | 82.96      | 88.00  | 88.03  |  |  |  |
| C7-02-M                       | -      | 83.05      | 87.03  | 88.00  |  |  |  |
| C1-C2-H2                      | 119.12 | 118.68     | 118.51 | 117.86 |  |  |  |
| C2-C3-O3                      | 125.10 | 125.72     | 125.66 | 125.04 |  |  |  |
| C3-03-C8                      | 118.25 | 118.28     | 118.20 | 117.92 |  |  |  |
| C3-C4-04                      | 119.67 | 120.57     | 120.60 | 119.91 |  |  |  |
| C4-04-H4                      | 107.37 | 107.12     | 106.97 | 106.97 |  |  |  |
| C4C505                        | 113.19 | 115.54     | 113.19 | 113.17 |  |  |  |
| С5—О5—С9                      | 118.46 | 117.99     | 118.21 | 118.20 |  |  |  |
| C5-C6-H6                      | 122.27 | 121.66     | 122.47 | 122.47 |  |  |  |

<sup>a</sup> 1 Å =  $10^{-10}$  m

Corresponding values of correlation coefficient of <sup>1</sup>H NMR were found lower.

# Calculated data

Optimized geometrical structures of syringic acid and lithium, sodium, potassium syringates were calculated using B3LYP/6- $311++G^{**}$  method [16]. The bond lengths and the angles between

#### Table 6

The calculated aromaticity indices for syringic acid and syringates lithium, sodium and potassium.

| Aromaticity indices | Syringic acid | Syringates |          |         |
|---------------------|---------------|------------|----------|---------|
|                     |               | Li         | Na       | К       |
| HOMA                | 0.9636        | 0.9692     | 0.9734   | 0.9728  |
| $I_6$               | 94.8130       | 95.4470    | 96.40277 | 96.1029 |
| A <sub>i</sub>      | 0.9956        | 0.9966     | 0.9974   | 0.9975  |
| BAC                 | 0.9158        | 0.9273     | 0.9377   | 0.9399  |
| $\Delta(CC)^{a}$    | 0.018         | 0.016      | 0.014    | 0.014   |

<sup>a</sup> Differences between the longest and the shortest bonds in the ring.

bonds in studied molecules are presented in Table 5. The atoms numbering is shown in Fig. 1. Substitution of metal cation in a place of carboxylic group hydrogen of syringic acid does not cause significant changes in the electronic charge distribution of the ring. The significant increase of C7–O1, C1–C7, O1–M, O2–M bond lengths is observed in the series acid  $\rightarrow$  lithium  $\rightarrow$  sodium = potassium. The bond lengths of C7–O2 insignificantly decrease in the above order. In the case of angles, the increase was observed, C1–C6–C7, C1–C7–O2, C7–O1–M, C7–O2–M but decrease was noticed for: C1–C2–C7, C1–C7–O1, C3–O3–C8, O1–M–O2, C7–M–O1.

Dipole moments, energies and geometric aromaticity indices, were calculated and also shown in Tables 4 and 6. Comparing the values of dipole moment for molecule of 4-hydroxy-3,5-dimeth-oxybenzoic acid and its salts one can observe an increasing tendency: 0.314 D for free acid; 5.088 D for lithium salt; 7.372 D for potassium; for sodium salt 8.000 D. Values of energy decrease in the series:  $K \rightarrow H \rightarrow Li \rightarrow Na$ . Almost all aromaticity indices increase in the following order: acid  $\rightarrow$  lithium  $\rightarrow$  sodium  $\rightarrow$  potassium. The aromaticity indexes calculated for benzoic acid [17] (HOMA = 0.982;  $A_j$  = 0.998; BAC = 0.950;  $I_6$  = 96.89) are higher than those obtained for syringic acid (HOMA = 0.964;  $A_j$  = 0.996; BAC = 0.916;  $I_6$  = 94.81). This suggest that the syringic acid molecule.

Atomic charges on the atoms of 4-hydroxy-3,5-dimethoxybenzoic acid molecule and its alkali metal salts were calculated by Mulliken, APT (atomic polar tensor), NBO/NPA (natural bond orbital/ natural population analysis) methods (Table 7). The electron density around C1 atom increased for lithium and sodium, and then decreased for potassium syringate. Growing electron density around the metal atoms was observed in a series of acid  $\rightarrow$  lithium  $\rightarrow$  sodium  $\rightarrow$  potassium. The decrease of the charge around atoms C6, C1, O2 was observed.

The correlation between theoretical and experimental data was studied. The correlation between atomic charges on hydrogen atoms (obtained by Mulliken, APT and NBO/NPA methods) and the appropriate experimental chemical shifts (<sup>1</sup>H NMR) were calculated. The correlation coefficients *R* amount to 0.482; 0.892; 0.916, respectively (Fig. 5). From these data one could draw following conclusion: NBO/NPA method shows the best correlation with experimental results. The total charges on the aromatic ring as well as on COO<sup>-</sup> group were calculated. The increase of total charge of carboxylate group are observed in the order Li < Na < K when APT method was used for calculation. Using NBO/NPA method no changes were observed in above series. The total charge in aromatic ring is not changed in the series of alkali metal syringates irrespective of used method.

| Table 7                                                                                                                              |        |
|--------------------------------------------------------------------------------------------------------------------------------------|--------|
| The atomic charge (e <sup>a</sup> ) calculated by B3LYP/6-311++G** method for syringic acid and lithium, sodium and potassium syring | gates. |

| Atom | tom Syringic acid |        |         | Syringates |        |         |          |        |         |          |        |         |
|------|-------------------|--------|---------|------------|--------|---------|----------|--------|---------|----------|--------|---------|
|      | _                 |        |         | Li         |        |         | Na       |        |         | К        |        |         |
|      | Mulliken          | ATP    | NBO/NPA | Mulliken   | ATP    | NBO/NPA | Mulliken | ATP    | NBO/NPA | Mulliken | ATP    | NBO/NPA |
| C1   | 1.481             | -0.308 | -0.164  | 2.480      | -0.282 | -0.148  | 2.650    | -0.226 | -0.141  | 1.796    | -0.251 | -0.140  |
| C2   | -0.329            | -0.087 | -0.255  | -0.389     | -0.116 | -0.256  | -0.357   | -0.142 | -0.262  | -0.299   | -0.142 | -0.261  |
| C3   | -0.552            | 0.506  | 0.287   | -0.565     | 0.522  | 0.284   | -0.506   | 0.535  | 0.283   | -0.598   | 0.536  | 0.283   |
| C4   | -0.504            | 0.472  | 0.277   | -0.523     | 0.445  | 0.266   | -0.652   | 0.424  | 0.258   | -0.582   | 0.426  | 0.258   |
| C5   | -0.456            | 0.460  | 0.265   | -0.449     | 0.468  | 0.261   | -0.444   | 0.481  | 0.260   | -0.509   | 0.482  | 0.260   |
| C6   | -0.149            | -0.101 | -0.251  | -0.302     | -0.122 | -0.259  | -0.271   | -0.147 | -0.266  | -0.199   | -0.148 | -0.265  |
| C7   | 0.277             | 1.472  | 0.788   | -0.179     | 1.429  | 0.766   | -0.337   | 1.374  | 0.766   | -0.086   | 1.410  | 0.765   |
| C8   | -0.297            | 0.525  | -0.206  | -0.293     | 0.525  | -0.204  | -0.294   | 0.527  | -0.203  | -0.294   | 0.527  | -0.203  |
| C9   | -0.298            | 0.519  | -0.201  | -0.299     | 0.522  | -0.200  | -0.298   | 0.524  | -0.199  | -0.300   | 0.523  | -0.199  |
| 01   | -0.207            | -0.775 | -0.696  | -0.339     | -1.036 | -0.825  | -0.469   | -1.018 | -0.824  | -0.461   | -1.074 | -0.824  |
| 02   | -0.307            | -0.874 | -0.615  | -0.341     | -1.037 | -0.828  | -0.469   | -1.019 | -0.826  | -0.466   | -1.075 | -0.826  |
| 03   | -0.172            | -0.877 | -0.526  | -0.176     | -0.881 | -0.530  | -0.177   | -0.885 | -0.532  | -0.177   | -0.885 | -0.532  |
| 04   | -0.253            | -0.768 | -0.651  | -0.262     | -0.766 | -0.659  | -0.269   | -0.762 | -0.664  | -0.268   | -0.764 | -0.663  |
| 05   | -0.267            | -0.890 | -0.571  | -0.168     | -0.895 | -0.575  | -0.268   | -0.900 | -0.577  | -0.268   | -0.899 | -0.577  |
| H1/M | 0.299             | 0.304  | 0.484   | 0.190      | 0.829  | 0.886   | 0.442    | 0.854  | 0.917   | 1.017    | 0.950  | 0.915   |
| H2   | 0.210             | 0.093  | 0.232   | 0.214      | 0.097  | 0.236   | 0.223    | 0.099  | 0.235   | 0.208    | 0.099  | 0.234   |
| H3a  | 0.155             | -0.034 | 0.170   | 0.151      | -0.035 | 0.169   | 0.149    | -0.037 | 0.168   | 0.150    | -0.037 | 0.168   |
| H3b  | 0.155             | -0.034 | 0.170   | 0.151      | -0.035 | 0.169   | 0.149    | -0.037 | 0.168   | 0.150    | -0.037 | 0.168   |
| H3c  | 0.195             | 0.004  | 0.193   | 0.190      | -0.002 | 0.189   | 0.187    | -0.006 | 0.187   | 0.186    | -0.006 | 0.188   |
| H4   | 0.304             | 0.336  | 0.488   | 0.301      | 0.331  | 0.486   | 0.300    | 0.327  | 0.485   | 0.299    | 0.328  | 0.485   |
| H5a  | 0.166             | -0.023 | 0.176   | 0.161      | -0.027 | 0.173   | 0.159    | -0.029 | 0.172   | 0.159    | -0.029 | 0.172   |
| H5b  | 0.166             | -0.023 | 0.176   | 0.161      | -0.027 | 0.173   | 0.159    | -0.029 | 0.172   | 0.159    | -0.029 | 0.172   |
| H5c  | 0.182             | 0.006  | 0.192   | 0.177      | -0.001 | 0.189   | 0.174    | -0.005 | 0.187   | 0.173    | -0.004 | 0.187   |
| H6   | 0.200             | 0.097  | 0.237   | 0.211      | 0.096  | 0.236   | 0.219    | 0.097  | 0.235   | 0.207    | 0.098  | 0.234   |

<sup>a</sup>  $e = 1.6021892 \times 10^{-19}$ C.



Fig. 5. The correlation between calculated atomic charges (Mulliken, APT, NBO/NPA methods) on hydrogen atoms and the appropriate experimental chemical shifts (<sup>1</sup>H NMR).

# Conclusions

The theoretical parameters were compared to the experimental characteristics of studied compounds. Good correlation between experimental and calculated IR and NMR spectra was noted. The correlation coefficients (*R*) for IR spectra for syringic acid, lithium, sodium, and potassium syringates amount to 0.9962; 0.9973; 0.9964; 0.9975, respectively. The corresponding values for <sup>13</sup>C NMR spectra are in the range 0.995 – 0.999. The calculated energy decreases in order:  $K \rightarrow H \rightarrow Li \rightarrow Na$ . Experimental studies (FT-IR, FT-Raman) showed that alkali metal ions affect the electronic charge distribution in the aromatic ring. The intensity and wavenumbers in the case of bands number as 20a, 2, 4, 16b, 19a (IR), 20b, 19b, 2, 13, 4 (*R*) decrease in comparison to free acid, which shows disorder of the electron ligand. In the <sup>1</sup>H NMR spectra of syringates the signals from all protons are shifted upfield in com-

parison to appropriate signals in the spectrum of acid. The chemical shifts of protons H3, H4 and H5 decrease in the series:  $Li \rightarrow Na \rightarrow K \rightarrow Rb \rightarrow Cs$  syringates as consequence of the circular current weakening and therefore an increase in the screening of aromatic protons. This is an evidence that alkali metal perturb the aromatic system of the molecule.

The highest correlation coefficients were obtained for experimental and theoretical data calculated by the NBO/NPA method.

Spectral characteristic of the alkali metal syringates was performed. Replacement of carboxylic group hydrogen with alkali metal ions brought about some characteristic changes in molecular spectra as well as in geometrical structure of studied molecules. Obtained data of total energy indicated that stabilization of studied molecules increases along the series:  $K \rightarrow H \rightarrow Li \rightarrow Na$ . The values of dipole moment show an increasing tendency in series: syringic acid  $\rightarrow K$  syringate. HOMA,  $A_j$ , BAC and  $I_6$  aromaticity indices show that the salts possess higher aromaticity character then the acid molecule. Good agreement was obtained between the experimental and calculated infrared spectra.

#### Acknowledgement

This work was supported by the Polish Ministry of Science and Higher Education in the framework of Grant No. N N312 111838.

#### References

- [1] P. Koczoń, J. Piekut, M. Borawska, R. Świsłocka, W. Lewandowski, Anal. Bioanal. Chem. 384 (2006) 302-308.
- [2] M. Kalinowska, R. Świsłocka, M.H. Borawska, J. Piekut, W. Lewandowski, M. Kaliniwska, R. Swistocka, J. Pickut, W. Lewandowski, Spectrochim. Acta Part A 70 (2008) 126–135.
  R. Świsłocka, J. Piekut, W. Lewandowski, Spectrochim. Acta A (2012).
- doi:10.1016/j.saa.2012.01.004.
- [4] R. Vinayagam, Int. J. Pharm. Biol. Arch. 1 (4) (2010) 393-398.
- [5] C.M. Guimaraes, M.S. Giao, S.S. Martinez, A.I. Pintado, M.E. Pintado, L.S. Bento, F.X. Malcata, J. Food Sci. 72 (1) (2007). C039-43.
- [6] C. Alasalvar, J.M. Gregor, D. Hang, P.C. Quantick, F. Shahidi, J. Agric. Food Chem. 49 (2001) 1410-1416.
- [7] M. Iwan, A. Kula, Z. Rzączyńnska, S. Pikus, D. Flisiuk, M. Gomoła, Chem. Pap. 61 (2007) 376-382.
- [8] M.V. Belkov, S.D. Brinkevich, S.N. Samovich, I.V. Skornyakov, G.B. Tolstorozhev, O.I. Shadyro, J. Appl. Spectrosc. 78 (6) (2012) 794-801.
- [9] C.D. Phelps, L.Y. Young, Microb. Ecol. 33 (1997) 206-215.

- [10] M. Kalinowska, R. Świsłocka, W. Lewandowski, J. Mol. Struct. 834-836 (2007) 572-580.
- [11] R. Świsłocka, E. Regulska, M. Samsonowicz, T. Hrynaszkiewicz, W. Lewandowski, Spectrochim. Acta A 61 (2005) 2966-2973.
- [12] E. Regulska, M. Samsonowicz, R. Świsłocka, W. Lewandowski, J. Mol. Struct. 744-747 (2005) 353-361.
- [13] R. Świsłocka, M. Samsonowicz, E. Regulska, W. Lewandowski, J. Mol. Struct. 792 (2006) 227-238.
- [14] P. Koczoń, J. Piekut, M. Borawska, W. Lewandowski, J. Mol. Struct. 651-653 (2003) 651-656.
- [15] P. Koczoń, P. Mościbroda, K. Dobrosz-Teperek, W. Lewandowski, J. Mol. Struct. 565-566 (2001) 7-11.
- [16] M.J. Frisch, G.W. Trucks, H. B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian, Inc., Wallingford CT, 2009. Gaussian 09, Revision A.11.2.
- [17] Z. Hubicki (Ed), Nauka i przemysł, spektroskopowe metody w praktyce, nowe wyzwania i możliwości, UMCS Lublin, 2012, pp. 274-280.
- [18] G. Varsányi, Assignments for Vibrational Spectra of 700 Benzene Derivatives, Akademia Kiado, Budapest, 1973.