Solid-Supported Synthesis of Bicyclic Peptides Containing Three Parallel Peptide Chains

Tuomas Karskela,*^[a] Petri Heinonen,^[a] Pasi Virta,^[a] and Harri Lönnberg^[a]

Keywords: Amino acids / Cyclic peptides / Cyclization / Solid-phase synthesis

Four homodetic bicyclic peptides **9a–d**, containing three parallel peptide chains, were synthesized on a hydroxymethylfunctionalized polystyrene support. α, α -Bis(aminomethyl)- β alanine, bearing orthogonal protections (Alloc, Boc, Fmoc) on the three amino groups (**1**), was attached to the support through an H₂N-Leu-Leu-Gly-OH spacer, and the peptide chains were assembled on the amino groups of **1** by either a stepwise coupling or coupling of a segment, keeping the amino protection within each chain unchanged. *N*-(**4**-Allyloxy-**4**-oxobutanoyl)iminodiacetic acid (**2**) was then coupled to the Fmoc-protected chain. The Boc protecting group was removed, and the exposed amino group was coupled with the remaining free carboxylic acid function of **2**. Finally, the Alloc and allyl ester protections were removed from the carboxylic and amino functions, and a second cyclization was performed. Release from the support gave **9a–d** as free carboxylic acids.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

Introduction

Conformational rigidity may give biologically active homodetic cyclic peptides increased potency, receptor selectivity, metabolic stability and bioavailability.^[1-4] Additional cyclization resulting in bicyclic homodetic peptides increases the rigidity further making such peptides interesting subjects of research.^[5-9] In spite of this appeal, relatively few syntheses of homodetic bicyclic peptides either in solution^[10-14] or on a solid support^[15-17] have been described. Recently, we have widened their scope by reporting a synthesis of homodetic bicyclic spiropeptides on a solid support.^[18]

To find out whether libraries of homodetic bicyclic peptides containing three parallel amino acid chains could be prepared conveniently on a solid support, we have synthesized four such peptides on hydroxymethyl-functionalized polystyrene. These peptides consist of two different branching units, viz. α,α -bis(aminomethyl)- β -alanine (cf. 1 in Figure 1) and N-succinyliminodiacetic acid (cf. 2), used to cap the carboxylic and amino termini of the peptide chains, respectively. The synthesis is initiated by assembling the peptide chains one after another on the three orthogonally protected amino groups of solid-supported α,α -bis(aminomethyl)- β -alanine; N-succinyliminodiacetic acid is then coupled to one of the chains and cyclizations with the remaining two branches are carried out on the support. Release of

E-mail: tuokarsk@utu.fi

the bicyclic peptides from the solid support as free carboxylic acids makes them suitable for possible further conjugation.

Figure 1. Branching units used in the synthesis of bicyclic peptides

Results and Discussion

Synthesis of Building Blocks

The preparation of the orthogonally protected α, α -bis(aminomethyl)- β -alanine branching unit **1**, used as a solidsupported scaffold for the peptide synthesis, has been described previously.^[19] The second branching unit **2**, used to cap the amino termini of the peptide chains, was synthesized as depicted in Scheme 1. Succinic acid monoallyl ester^[20] and the di-*tert*-butyl ester of iminodiacetic acid^[21] were condensed by HOAt/DCC^[22] activation. Subsequent removal of the *tert*-butyl protecting groups gave **2** in a moderate 40% overall yield. The amino-protected dipeptides were obtained by established methods based on HOSu/ DCC chemistry.

Department of Chemistry, University of Turku, 20014 Turku, Finland Fax: (internat.) + 358-2/333-7631

Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.

3

2

Scheme 1. Synthesis of the branching unit 2: (i) HOAt, DCC, Py, DMF; (ii) TFA, $\rm CH_2Cl_2$

Solid-Phase Synthesis of Bicyclic Peptides

The hydroxymethyl-functionalized polystyrene was first derivatized with an H₂N-Leu-Leu-Gly-OH spacer.^[23] Accordingly, glycine was attached to the resin by the symmetrical anhydride method, and the chain was elongated by two leucine residues using Fmoc chemistry with HATU/ DIEA^[24,25] activation. The branching unit 1 was then coupled similarly to obtain tetrapeptide 4 (Scheme 2) bearing three orthogonally protected amino groups. Two approaches were used for the construction of the parallel peptide chains on these amino functions, which can be deprotected one after another. With peptides 5a and 5b (Table 1), the chains were introduced as dipeptide segments. With peptides 5c and 5d, the chains on the Fmoc- and Boc-protected amino groups were assembled by stepwise coupling using Fmoc- and Boc-protected amino acids, respectively. The Alloc-protected branch P³ was introduced as a segment. Both approaches gave satisfactory coupling yields,

Table 1. Dipeptide branches used for the synthesized peptides (5-9, cf. Scheme 2)

Entry	\mathbb{P}^1	\mathbb{P}^2	P ³
5-9a	β-Ala-Gly	Gly-β-Ala	Phe-β-Ala
5-9b	Ser-β-Ala	Gly-β-Ala	Phe-β-Ala
5-9c	Ala-Gly	Asn-Gly	Phe-β-Ala
5-9d	Gly-Ala-Gly	Gly-Asn-Gly	Phe-β-Ala

but segment coupling was considered safer and more reproducible for manual SPPS since the number of steps on the solid support was smaller.

After completing the chain assembly, the Fmoc protection of chain P¹ was removed. The second branching unit 2 was converted into a cyclic anhydride with EDAC activation, and allowed to react with the exposed amino group. In this manner, protection of the carboxymethyl groups could be avoided. Cleavage of the Boc protecting group from chain P^2 then enabled the first cyclization reaction, which was performed by HATU/DIEA activation. After reaction at room temperature for 5 h, no starting material could be detected. Because 2 is not chiral, there is no risk for epimerization even though the cyclization is slow.^[26] While the cyclization of **6a** and **6b**, which contain β -alanine residues in both of the peptide chains participating in the reaction, proceeded well, the corresponding reaction with **6c** and **6d**, having a glycine residue in place of β -alanine, vielded a more complex product mixture. The fact that 1.1.3.3-tetramethylguanidino derivatives^[27] could be detected among the side products led us to use a phosphonium coupling reagent for the second cyclization with

 P^1 , P^2 and P^3 = peptide chains \bigcirc = LeuLeuGly-Hydroxymethyl-polystyrene

Scheme 2. Synthesis of bis(aminomethyl)-β-alanine conjugates: (i) SPPS; (ii) piperidine, DMF; (iii) *N*-(4-allyloxy-4-oxobutanoyl)iminodiacetic anhydride, DMF; (iv) TFA, CH₂Cl₂; (v) HATU, DIEA, DMF; (vi) Pd(OAc)₂, PPh₃, Bu₃SnH, AcOH, CH₂Cl₂; (vii) 30% HBr/ AcOH, thioanisole, pentamethylbenzene, TFA these peptides. The Alloc and allyl ester protecting groups were removed simultaneously from the monocyclic peptides using palladium/tributyltin hydride chemistry.^[28] The second cyclization to 8a and 8b was performed over 16 h using similar HATU/DIEA chemistry as before. To obtain 8c and 8d, HATU was replaced with PyBOP^[20] and the solvent was changed from DMF to a 1:4 mixture of DMSO and NMP. Furthermore, the reaction time was extended to 22 h. The cyclization reaction was repeated with 7d since not all the starting material had disappeared during the reaction. In spite of these changes, the second cyclization reaction of 7c and 7d led to a complex reaction mixture and markedly decreased yield, probably because of polymerization on the solid support. Acid-catalysed cleavage from the support gave 9a-d as free carboxylic acids. Accordingly, the bicyclic peptides bear a functionalized side arm that may be exploited for further conjugation in solution.

All four peptides were obtained in pure states by HPLC, but in low yields. Only peptide **9a**, which had the simplest amino acid composition, was obtained as a reasonably pure crude product. Owing to the chiral centre of branching unit **1**, the compound appeared as a pair of diastereoisomers that could be separated by HPLC (Figure 2). In addition to these four bicyclic peptides, two attempts were made, unsuccessfully, to synthesize a bicyclic peptide having a smaller ring size and no β -alanine residues. Accordingly, the methodology described seems to allow preparation of homodetic bicyclic peptides on a solid support, but its applicability to library synthesis is severely limited. Only in favourable cases is the crude product reasonably pure, and usually HPLC purification is needed.

Figure 2. Chromatogram of the crude diastereoisomeric pair of **9a** recorded by using a Hypersil HyPurity Elite C18 column (150 \times 4.6 mm, 5 μ m), applying a linear gradient from 0.1% aq. TFA to acetonitrile over 30 min at a flow rate of 1.0 mL/min; the detection wavelength was 215 nm

Experimental Section

General Remarks: The NMR spectra were recorded with a JEOL JNM-GX 400 or JNM-A 500 spectrometer. The chemical shifts are given in ppm downfield from that of internal (CH₃)₄Si. The mass spectra of low-molecular-weight compounds were recorded with a VG 7070E mass spectrometer. Finnigan Mat Lasermat was used for mass analyses of reactions on solid support. For high-resolution mass spectrometry of bicyclic peptides, an Applied Biosystems Mariner 5272 mass spectrometer was used. RP HPLC analyses and separations were performed with a Hypersil HyPurity Elite C18 column (150 × 4.6 mm, 5 µm), applying a linear gradient from

0.1% aq. TFA to acetonitrile over 30 min at a flow rate of 1.0 mL/ min. The detection wavelength was 215 nm. For abbreviations used see ref.^[22]

Di-tert-butyl N-(4-Allyloxy-4-oxobutanoyl)iminodiacetate (3): Monoallyl succinate (2.9 g, 18 mmol), HOAt (2.6 g, 19 mmol), DCC (3.9 g, 19 mmol), di-tert-butyl iminodiacetate (4.2 g, 17 mmol) and pyridine (3.1 mL, 38 mmol) were stirred in DMF (50 mL) overnight. The reaction mixture was filtered and concentrated by rotary evaporation. The residue was dissolved in CH₂Cl₂ and washed with 1 M aq. AcOH and saturated aq. NaHCO₃. The organic phase was dried with Na₂SO₄, and the solvent was evaporated. Silica gel chromatography (EtOAc/petroleum ether, 3:7, v/v) yielded 3 (3.4 g, 48%) as a clear oil. $R_{\rm f} = 0.49$ (EtOAc/petroleum ether, 3:7). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.45$ and 1.49 [2 s, 2 \times 9 H, C(CH₃)₃], 2.67 (m, 4 H, CH₂CH₂CO₂), 4.01 and 4.05 (2 s, 2×2 H, CH_2CO_2tBu), 4.59 (td, J = 1.4, 5.7 Hz, 2 H, 4 $OCH_2CH=CH_2$), 5.22 (tdd, J = 1.4, 2.7, 10.4 Hz, 1 H, CH= CHH), 5.31 (tdd, J = 1.5, 3.1, 17.2 Hz, 1 H, CH=CHH), 5.91 (tdd, J = 5.7, 10.5, 17.2 Hz, 1 H, CH=CH₂) ppm. ¹³C NMR (100 MHz, $CDCl_3$): $\delta = 27.6$ (CH₂CH₂CON), 27.9 (CCH₃), 29.1 (CH₂CH₂CO₂), 48.8 and 50.7 (NCH₂CO₂), 65.1 (CH₂=CHCH₂O), 81.7 and 82.6 (CCH₃), 118.0 (CH=CH₂), 132.1 (CH=CH₂), 167.8 and 168.3 (CO2tBu), 171.7 (CO2All), 172.3 (CON) ppm. MS (EI+): $m/z = 385 [M^+] (0.1), 329 (6), 328 (5), 312 (12), 273 (46), 256 (22),$ 228 (47), 141 (100), 57 (72). HRMS (EI⁺): C₁₉H₃₁NO₇ requires 385.2101; found 385.2101 [M+].

N-(4-Allyloxy-4-oxobutanoyl)iminodiacetic Acid (2): Compound 3 (3.4 g, 8.8 mmol) was stirred in a mixture of TFA and CH₂Cl₂ (2:1, 21 mL) for 30 min. The reaction mixture was concentrated by rotary evaporation. The crude product was purified by silica gel chromatography (MeOH/CH₂Cl₂, 1:9) to give 2 (1.9 g, 79%) as a clear viscous oil. $R_{\rm f} = 0.28$ (MeOH/CH₂Cl₂, 1:9). ¹H NMR (400 MHz, $[D_6]DMSO$: $\delta = 2.52$ (m, 4 H, $CH_2CH_2CO_2$), 3.96 and 4.18 (2 s, 2×2 H, NCH₂CO₂), 4.51 (td, J = 1.5, 5.3 Hz, 2 H, OCH₂CH= CH₂), 5.18 (tdd, J = 1.4, 2.8, 10.5 Hz, 1 H, CH=CHH), 5.29 (tdd, J = 1.7, 3.4, 17.2 Hz, 1 H, CH=CHH), 5.88 (tdd, J = 5.3, 10.5,17.3 Hz, 1 H, CH=CH₂), 12.70 (br. s, 1 H, CO₂H) ppm. ¹³C NMR $(100 \text{ MHz}, [D_6]\text{DMSO}): \delta = 27.1 (CH_2CH_2CON), 28.7$ (CH₂CH₂CO₂), 48.2 and 49.7 (NCH₂CO₂), 64.3 (CH₂=CHCH₂O), 117.5 (CH= CH_2), 132.7 (CH=CH₂), 170.6 and 170.8 (CO₂H), 171.7 (CO₂All), 172.3 (CON) ppm. MS (EI⁺): m/z = 273 [M⁺] (11), 255 (69), 229 (56), 216 (12), 141 (34), 101 (7), 41 (100). HRMS (EI⁺): C₁₁H₁₅NO₇ requires 273.0849; found 273.0846 [M⁺].

N-[N-(Allyloxycarbonyl)phenylalanyl]-β-alanine (10): N-Fmoc-phenylalanine (1.1 g, 2.8 mmol), DCC (0.68 g, 3.3 mmol) and HOSu (0.38 g, 3.3 mmol) were dissolved in cooled dioxane and stirred for 2 h and the filtered. β-Alanine tert-butyl ester hydrochloride (0.50 g, 2.8 mmol) and K₂CO₃ (0.38 g, 2.8 mmol) were dissolved in aq. dioxane, and then added to the filtered solution. After stirring overnight, the solvent was evaporated. The residue was dissolved in CH₂Cl₂ (100 mL) and washed with half-saturated brine. The organic layer was dried with Na₂SO₄ and the solvent was evaporated. The crude N-(N-Fmoc-phenylalanyl)-β-alanine tert-butyl ester was purified by silica gel chromatography (EtOAc/petroleum ether, 6:4). The Fmoc protecting group was removed by stirring for 30 min in piperidine/CH₂Cl₂ (1:4). The volatile components were removed by rotary evaporation. The product was purified by silica gel chromatography (EtOAc/petroleum ether, 3:7, then MeOH/CH₂Cl₂, 1:19), which gave N-phenylalanyl-B-alanine tert-butyl ester in an overall yield of 84% (0.69 g). The latter compound (0.68 g, 2.3 mmol) was dissolved in dioxane and NaOH (2.8 mmol) in H₂O (10 mL) was added. Allyl chloroformate (0.42 g, 2.8 mmol), diluted with dioxane (1.0 mL) was slowly added to the stirred reaction mixture. After the reaction had reached completion, the mixture was concentrated. The residue was dissolved in CH2Cl2 and washed with water. The organic layer was then dried with Na₂SO₄, the solvent was evaporated, and the residue was purified by silica gel chromatography (EtOAc/petroleum ether, 3:7), yielding N-(N-alloc-phenylalanyl)-β-alanine tert-butyl ester (0.78 g, 90%). The product was stirred for 45 min in TFA/CH₂Cl₂ (1:1; 8 mL), after which time the CH2Cl2 and some TFA was evaporated, and some diethyl ether was added. The product was left to crystallize in a refrigerator overnight. The crystals that formed were suction-filtered and washed with cold diethyl ether. Silica gel chromatography (MeOH/CH₂Cl₂, 1:9) gave N-[N-(allyloxycarbonyl)phenylalanyl]-β-alanine (0.45 g, 68%). $R_{\rm f} = 0.47$ (MeOH/CH₂Cl₂, 1:9). ¹H NMR (400 MHz, $[D_6]DMSO$: $\delta = 2.33$ (t, J = 6.8 Hz, 2 H, CH_2CO_2), 2.71 (dd, J =10.3, 13.7 Hz, 1 H, CHHPh), 2.91 (dd, J = 4.5, 13.7 Hz, 1 H, CHHPh), 3.24 (m, 2 H, CH₂CON), 4.14 (m, 1 H, NCHCO₂), 4.36 $(d, J = 5.1 \text{ Hz}, 2 \text{ H}, \text{ OC}H_2\text{CH}=\text{CH}_2), 5.11 (dd, J = 1.3, 10.5 \text{ Hz},$ 1 H, CH=CHH), 5.18 (dd, J = 1.7, 17.3 Hz, 1 H, CH=CHH), 5.81 (tdd, J = 5.1, 10.5, 17.3 Hz, 1 H, $CH=CH_2$), 7.15–7.25 (m, 5 H, Ar), 7.39 (d, J = 8.5 Hz, 1 H, Phe NH), 8.04 (t, J = 5.4 Hz, 1 H, β-Ala NH), 12.17 (br. s, CO_2H) ppm. ¹³C NMR (100 MHz, $[D_6]DMSO$): $\delta = 33.8$ (CH₂CH₂N), 34.8 (CH₂CH₂CO₂), 37.6 (CH₂Ph), 56.1 (NCHCO), 64.3 (CH₂=CHCH₂O), 116.8 (CH= CH₂), 126.2 (C4 Ph), 128.0 (C2,6 Ph), 129.1 (C3,5 Ph), 133.5 (CH= CH₂), 138.1 (C1 Ph), 155.7 (NCO₂CH₂), 171.4 (CON), 172.9 (CO_2H) ppm. MS (EI⁺): m/z = 320 [M⁺] (1), 219 (8), 204 (9), 160 (9), 91 (65), 41 (100). HRMS (EI⁺): C₁₆H₂₀N₂O₅ requires 320.1372; found 320.1368 [M⁺].

N-(*N*-Fmoc-serinyl)-β-alanine (11): *N*-Fmoc-*O*-*t*Bu-serine (0.84 g, 2.2 mmol), DCC (0.54 g, 2.6 mmol) and HOSu (0.30 g, 2.6 mmol) were dissolved in cooled dioxane (25 mL) and stirred for 2 h and then filtered. β-Alanine tert-butyl ester hydrochloride (0.40 g, 2.2 mmol) and K₂CO₃ (0.30 g, 2.2 mmol) were dissolved in aq. dioxane (4 mL), and then added to the filtered solution. After stirring overnight, the solvent was evaporated. The residue was dissolved in CH₂Cl₂ (100 mL) and washed with half-saturated brine. The organic layer was dried with Na2SO4 and the solvent was evaporated. Crude N-(N-Fmoc-O-tert-butylserinyl)-\beta-alanine tert-butyl ester was purified by silica gel chromatography (EtOAc/petroleum ether, 3:7). The tert-butyl protecting groups were removed by stirring for 2 h in TFA, after which time the TFA was evaporated. Silica gel chromatography (MeOH/CH₂Cl₂, 1:9) gave the title compound (0.72 g, 82%). $R_{\rm f} = 0.28$ (MeOH/CH₂Cl₂, 1:9). ¹H NMR (400 MHz, $[D_6]DMSO$): $\delta = 2.36$ (m, 2 H, CH_2CO_2), 3.25 (m, 2 H, CH₂CON), 3.54 (m, 2 H, CH₂OH), 3.99 (m, 1 H, NCHCO₂), 4.21 (m, 1 H, Fmoc CH), 4.25 (m, 2 H, Fmoc CH₂), 7.32 (m, 3 H, Fmoc Ar, Ser NH), 7.41 (m, 2 H, Fmoc Ar), 7.73 (m, 2 H, Fmoc Ar), 7.88 (m, 2 H, Fmoc Ar), 7.94 (m, 1 H, β-Ala NH) ppm. ¹³C NMR (100 MHz, $[D_6]DMSO$): $\delta = 33.9$ (CH₂CH₂N), 34.9 (CH₂CH₂CO₂), 46.6 (CH Fmoc), 57.2 (NCHCO), 61.8 (CH₂OH), 65.8 (CH₂ Fmoc), 120.1, 125.4, 127.1, 127.7, 140.7, 143.8, and 143.9 (Ar Fmoc), 155.9 (NCO₂CH₂), 170.1 (CON), 173.0 (CO₂H) ppm. MS (EI⁺): m/z = 398 [M⁺] (1), 354 (1), 178 (100), 165 (25). HRMS (EI⁺): C₂₁H₂₂N₂O₆ requires 398.1478; found 398.1480 $[M^+].$

Solid-Phase Syntheses: Fmoc protecting groups were removed by treatment with piperidine/DMF (1:4) for 20 min. After deprotection, the solid support was washed with DMF, CH_2Cl_2 and MeOH. Boc protecting groups were removed by treatment with TFA/ CH_2Cl_2 (1:3) for 1 h. The support was then neutralized with pyridine in CH_2Cl_2 and washed with CH_2Cl_2 and MeOH. Alloc and

allyl ester deprotection was performed by palladium/tributyltin hydride chemistry.^[28] Palladium(II) acetate, reduced with triphenylphosphane (6 equiv.), was used as the catalyst. HATU/DIEA activation^[24,25] was utilized for coupling reactions using amino acid (2.5 equiv.), HATU (2.5 equiv.) and DIEA (5 equiv.). The resin beads were swelled with the reaction solvent before addition of the coupling reagents. The total volume of the solvent was 10 µL/mg of resin. Reaction time was 2 h. The solid support was then washed with DMF, CH₂Cl₂ and MeOH. The resin was always dried under reduced pressure after washes. Coupling reactions were monitored either by determining the Fmoc loading or by removing small resin aliquots that were cleaved and analysed by HPLC to evaluate the quality of the on-resin product. The theoretical loading was calculated by Equation (1), where L stands for the loading [mol g^{-1}] and ΔM for the change in the molecular mass of the product. The yield was then calculated by Equation (2).

$$L_{\text{theoretical}} = L_{\text{initial}} / (\Delta M \times L_{\text{initial}} + 1)$$
(1)

$$Yield = (L_{measured}/L_{theoretical}) \times 100\%$$
(2)

Synthesis of Bicyclic Peptide 9a: Hydroxymethyl-functionalized polystyrene resin was first loaded with Fmoc-glycine (loading 340 μ mol g⁻¹) by the symmetrical anhydride method. The unchanged hydroxy groups were acetylated (Ac₂O/2,6-lutidine/1-methylimidazole/THF, 5:5:8:100; 30 min), and the support was washed with CH₂Cl₂ and MeOH. Two Fmoc-leucine units and branching unit 1 were subsequently attached in a stepwise manner to the glycineloaded resin (120 mg, 42 µmol). Boc-Gly-β-AlaOH^[30] and Fmocβ-Ala-GlyOH^[31] were coupled to the branching unit as dipeptide segments after removal of corresponding protecting groups. At this point, the Fmoc loading was 95% of the theoretical loading. The Alloc protecting group was then removed, and Alloc-Phe-β-AlaOH (10) was coupled. The Fmoc protecting group was removed from the branched peptide 5a. Branching unit 2 (45 mg, 160 µmol) was dissolved in DMF and converted into its anhydride by treatment with EDAC·HCl (30 mg, 160 µmol) for 40 min. The solution was added to the peptide-derivatized solid support (130 mg, 32 µmol) that had been swollen in DMF. After 40 min of shaking, the resin was washed with DMF, CH₂Cl₂ and MeOH. This anhydride coupling was repeated. After removal of the last Boc protecting group, the first cyclization was performed by shaking the resin overnight with a mixture of HATU and DIEA (5 and 10 equiv., respectively) in DMF. Alloc and allyl ester protections were removed from the solid-supported peptide (7a; 110 mg, 29 µmol) and the second cyclization was carried out in a similar manner. The product was cleaved from the support with 0.1 M TBAF in THF containing 0.1 м water (6 h, 55 °C). After cleavage, the resin was rinsed with THF (5 mL), neutralized with TFA and the solvent was evaporated under reduced pressure. The cleavage reaction was repeated four times. HPLC purification yielded the two diastereoisomeric products (1.5 mg and 0.5 mg, combined yield of 4.7% calculated from the original Fmoc loading). Diastereoisomer A: ¹H NMR $(500 \text{ MHz}, [D_6] \text{acetone} / D_2 \text{O}): \delta = 0.86 - 0.94 (CH_3 Leu),$ 1.61-1.75 (CH₂, CH Leu), 2.30-2.90 (CH₂CO β-Ala, CH₂CO succinyl), 2.86 (CHH Phe), 3.20-4.10 (CH₂N β-Ala, Gly, branching unit), 3.25 (CHH Phe), 4.05-4.45 [CON(CH2CO)2], 4.36 (CHN Leu), 4.52 (CHN Leu), 4.55 (CHN Phe), 7.15-7.30 (H-Ar Phe), 7.30-7.37 (NH) and 7.80-8.15 (NH) ppm. Diastereoisomer **B:** ¹H NMR (500 MHz, $[D_6]$ acetone/ D_2O): $\delta = 0.88-0.95$ (CH₃) Leu), 1.68-1.75 (CH₂, CH Leu), 2.18-2.80 (CH₂CO β-Ala, CH₂CO succinyl), 2.83 (CHH Phe), 3.20-4.25 (CH₂N β-Ala, Gly, branch), 3.37 (CHH Phe), 4.07-4.47 [CON(CH₂CO)₂], 4.29 (CHN Leu), 4.54 (CHN Leu), 4.57 (CHN Phe), 7.19-7.31 (H-Ar Phe),

Synthesis of Bicyclic Peptide 9b: The synthesis was conducted as described for 9a, with the exception that the initial loading was 210 μ mol g⁻¹. Fmoc-Ser- β -AlaOH (11) was used instead of Fmoc- β -Ala-GlyOH, and the reaction time for the first cyclization was 5 h. The peptide was cleaved from the resin with acid (30% HBr in AcOH/pentamethylbenzene/thioanisole/TFA, 4:5:6:100; room temperature, 3 h). The resin was rinsed with CH₂Cl₂ and MeOH. The solvents were evaporated under reduced pressure, and the residue was extracted with EtOH/0.1% aq. TFA (1:4). The extract was washed with diethyl ether before HPLC purification. The diastereoisomers could not be separated by the HPLC system used. HRMS (ESI⁺): (C₅₀H₇₅N₁₃O₁₆ + 2 H)/2 requires 557.7800; found 557.7813 [M + 2 H]²⁺.

Synthesis of Bicyclic Peptide 9c: The synthesis was conducted as described for 9a, except that the initial loading was 440 μ mol g⁻¹. Instead of segment coupling, the Fmoc- and Boc-protected branches were assembled by stepwise couplings. The first cyclization was performed by shaking the resin with a mixture of HATU and DIEA (5 and 10 equiv., respectively) in DMF for 5 h. The second cyclization was carried out by shaking the resin with PyBOP and DIEA (2 and 4 equiv., respectively) in DMSO/NMP (1:4) for 22 h. Acid was used to release the product as described for 9b. The diastereoisomers could not be separated by the HPLC system. HRMS (ESI⁺): (C₅₀H₇₄N₁₄O₁₆ + 2 H)/2 requires 564.2776; found 564.2764 [M + 2 H]²⁺.

Synthesis of Bicyclic Peptide 9d: The synthesis was conducted as described for 9c, except that the second cyclization was repeated. The diastereoisomers could not be separated by the HPLC system. HRMS (ESI⁺): ($C_{54}H_{80}N_{16}O_{18}$ + H) requires 1241.5909; found 1241.5861 [M + H]⁺.

Acknowledgments

We thank H. Hakala and K. Wiinamäki for mass analyses and J. Sinkkonen for NMR spectroscopic data.

- ^[1] V. J. Hruby, F. Al-Obeidi, W. Kazmierski, *Biochem. J.* 1990, 268, 249-262.
- ^[2] J. Rizo, L. M. Gierasch, Annu. Rev. Biochem. **1992**, 61, 387-418.
- [3] C. Blakburn, S. A. Kates, Methods Enzymol. 1997, 289, 175–198.
- [4] J. N. Lambert, J. P. Mitchell, K. D. Roberts, J. Chem. Soc., Perkin Trans. 1 2001, 471–484.
- ^[5] Y. A. Ovchinnikov, V. T. Ivanov, *Tetrahedron* 1975, 31, 2177–2209.
- ^[6] H. Itokawa, H. Morita, K. Takeya, N. Tomioka, A. Itai, Y. Iitaka, *Tetrahedron* 1991, 47, 7007–7020.
- [7] I. Kolossváry, W. C. Guida, J. Am. Chem. Soc. 1996, 118, 5011–5019.
- [8] A. Lombardi, G. D'Auria, O. Maglio, F. Nastri, L. Quartara,

C. Pedone, V. Pavone, J. Am. Chem. Soc. 1998, 120, 5879–5886.

- [9] R. Oliva, L. Falcigno, G. D'Auria, G. Zanotti, L. Paolillo, Biopolymers 2001, 56, 27-36.
- ^[10] V. Pavone, A. Lombardi, F. Nastri, M. Saviano, O. Maglio, G. D'Auria, L. Quartara, C. A. Maggi, C. Pedone, *J. Chem. Soc.*, *Perkin Trans.* 2 1995, 987–993.
- ^[11] L. Quartara, V. Pavone, C. Pedone, A. Lombardi, A. R. Renzetti, C. A. Maggi, *Regul. Pept.* **1996**, *65*, 55–59.
- ^[12] A. Lombardi, G. D'Auria, M. Saviano, O. Maglio, F. Nastri, L. Quartara, C. Pedone, V. Pavone, *Biopolymers* 1997, 40, 505-518.
- ^[13] R. Oliva, L. Falcigno, G. D'Auria, M. Saviano, L. Paolillo, G. Ansanelli, G. Zanotti, *Biopolymers* 2000, 53, 581–595.
- ^[14] K. Akaji, S. Aimoto, *Tetrahedron* 2001, 57, 1749–1755.
- ^[15] C. Yu, J. W. Taylor, *Tetrahedron Lett.* **1996**, *37*, 1731–1734.
- ^[16] W. Zhang, J. W. Taylor, *Tetrahedron Lett.* **1996**, *37*, 2173–2176.
- ^[17] A. Bisello, C. Nakamoto, M. Rosenblatt, M. Chorev, *Biochemistry* **1997**, *36*, 3293–3299.
- ^[18] P. Virta, J. Sinkkonen, H. Lönnberg, *Eur. J. Org. Chem.* **2002**, 3616–3621.
- ^[19] J. Katajisto, T. Karskela, P. Heinonen, H. Lönnberg, J. Org. Chem. 2002, 67, 7995-8001.
- ^[20] Succinic acid monoallyl ester was prepared, although it is commercially available, by the reaction of succinic anhydride, allyl alcohol (2 equiv.) and pyridine (1.1 equiv.) at room temp. for 2 h.
- ^[21] H. Takalo, P. Pasanen, J. Kankare, Acta Chem. Scand., Ser. B 1988, 42, 373–377.
- [22] Abbreviations: Alloc, allyloxycarbonyl; DCC, N,N'-dicyclohexylcarbodiimide; DIEA, N,N-diisopropylethylamine; DMF, N,N-dimethylformamide; DMSO, dimethyl sulfoxide; EDAC·HCl, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride; HATU, 1-[bis(dimethylamino)methylene]-1*H*-[1,2,3]triazolo[4,5-b]pyridinium hexafluorophosphate 3-oxide; HOAt, 1-hydroxy-7-azabenzotriazole; HOSu, N-hydroxysuccinimide; NMP, N-methylpyrrolidone; PyBOP, (1-benzotriazolyl)-N-oxytris(pyrrolidino)phosphonium hexafluorophosphate; SPPS, solid-phase peptide synthesis; TBAF, tetrabutylammonium fluoride; TFA, trifluoroacetic acid; THF, tetrahydrofuran.
- ^[23] G. T. Bourne, W. D. F. Meutermans, P. F. Alewood, R. P. McGeary, M. Scanlon, A. A. Watson, M. L. Smythe, *J. Org. Chem.* **1999**, *64*, 3095–3101.
- ^[24] L. A. Carpino, J. Am. Chem. Soc. 1993, 115, 4397-4398.
- ^[25] L. A. Carpino, A. El-Faham, C. A. Minor, F. Albericio, J. Chem. Soc., Chem. Commun. 1994, 201–203.
- ^[26] A. Ehrlich, H.-U. Heyne, R. Winter, M. Beyermann, H. Haber, L. A. Carpino, M. Bienert, J. Org. Chem. **1996**, 61, 8831–8838.
- [^{27]} F. Albericio, J. M. Bofill, A. El-Faham, S. A. Kates, J. Org. Chem. **1998**, 63, 9678–9683.
- ^[28] O. Dangles, F. Guibe, G. Balavoine, J. Org. Chem. **1987**, 52, 4984–4993.
- ^[29] J. Coste, D. Le-Nguyen, B. Castro, *Tetrahedron Lett.* 1990, 31, 205–208.
- ^[30] P. D. Davis, J.-C. Arnould, F. T. Thomas, *PCT Int. Appl.* 2000, WO 2000040529 A.
- ^[31] H. M. Geysen, N. J. Maeji, A. M. Bray, R. M. Valerio, *PCT Int. Appl.* **1994**, WO 9411388 A.

Received September 17, 2002