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1-3 directly targeted c-myc promoter elements and itddbthe telomerase activity.

In addition,1-3 may trigger cell apoptosis via a mitochondrialfdystion pathway.
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Abstract

There iridium(lll) complexes, [Ir(3-MeO-Phtpy){I1(1), [Ir(2-MeO-Phtpy)C}] (2)
and [Ir(4-MeO-Phtpy)Cf] (3) with 4-(3-methoxyphenyl)-2/2%',2"-terpyridine
(3-MeO-Phtpy), 4(2-methoxyphenyl)-2,/%',2"-terpyridine (2-MeO-Phtpy) and
4'-(4-methoxyphenyl)-2,/%',2"-terpyridine (4-MeO-Phtpy) as ligands, respectiyvely
were synthesized and evaluated for their antipaiive activities. In these
complexes, the iridium(lll) center adopts a six{choate distorted octahedral
geometry. Among them, complek exhibited the most potent activity, with
values of 3.19-27.71uM against four cancer cell lines (BEL-7404, Hep-G2,
NCI-H460 and MGCB80-3 cells). Cellular mechanism d&ta suggested that
complexes 1-3 directly targeted c-myc promoter elements and itdub the
telomerase activity. In addition, complex&s3 may trigger cell apoptosis via a
mitochondrial dysfunction pathway. We postulatedt tthe difference in the vitro
antitumor activities of complexes-3 is mainly dependent on the position of the

methoxy group on the phenyl ring of the iridiumaligl.

Keywords
4'-substituted-2,26',2"-terpyridine, iridium(lll) complexes, cell apoptesiantitumor

activity, telomerasactivity



1. Introduction

Since G-quadruplex (G4) DNA is widely located iretchromosomal telomeric
sequences as well as regulatory regions of oncegesneh as KRAS, c-myc, HRAS,
bcl-2, c-KIT and VEGF) [1-11], it is considered as important regulator of a wide
range of biological processes including translatreplication and splicing [1, 10-12].
The presence of G4 DNA in human cells has beenyfigsatablished using antibody
[1, 10-13], thereby providing the basis for thecalation of its functions in normal
and disease states. Therefore, rational desigmali snolecule ligands to selectively
interact and stabilize G4 DNA has been identifisdaapromising strategy for the
development of anti-cancer drugs selective towéudsor cells against normal cells
[1,14].

The c-myc oncoprotein is a transcription factot fhlays essential roles in controlling
cell proliferation, growth, and apoptosis as we#l @ regulating carcinogenic
progression [1,10,11,14]. Deregulation of c-mycresgion is associated with human
tumors and cancers [1,10,11,14]. Thus, c-myc isrgrortant drug target in oncology
[1,10,11,14,15]. Strategies that aim to target ctmgth in the gene and protein levels,
including those that interfere with c-myc synthessgability, and transcriptional
activity, have emerged as effective anti-canceraghies [1,10,11,14,15].

Recent studies have demonstrated that metal-tdipgricomplexes with Zn(ll),
Cu(ll), Pd(ll), and Pt(Il) ion centres can act dfedive G4 ligands [16-26]. For
example, Ang et al. designed four dinuclear Pt@ipyridine complexes, which were
shown as efficient G4 ligands [24]. A dinuclear Mdierpyridine complex was
shown to effectively bind to G4 DNA and stabilizeetantiparallel topology; its

selectivity for G4 DNA is 100-fold higher than th&dr duplex DNA [1,25,26].



Bertrand et al. synthesized a range of Cu(ll)-tedaye complexes which displayed
better affinity and selectivity for G4 DNA than slar complexes reported previously
[1,16]. Nonetheless, little is known about theiuid(lll) complexes with terpyridine
and its derivatives as ligands and detailed studiiegheir molecular mechanisms of
action are still lacking [27-31].

In this work, there iridium(lll) complexes, [Ir(3-80-Phtpy)Cd] (1),
[Ir(2-MeO-Phtpy)C}] (2 and [Ir(4-MeO-Phtpy)C}] 3 with
4'-(3-methoxyphenyl)-2,%',2"-terpyridine (3-MeO-Phtpy),
4'-(2-methoxyphenyl)-2,%',2"-terpyridine (2-MeO-Phtpy) and
4'-(4-methoxyphenyl)-2,/%',2"-terpyridine (4-MeO-Phtpy) as ligands, respectiyely
were synthesized and characterized by ESI-MS, #tspscopy, UV-vis spectroscopy,

elemental analysis, single-crystal X-rayfdiction analysis, and NMR spectroscopy.

In addition, the effects of these complexes on psadliferation and apoptosis were

evaluated.

2. Results and discussion

2.1 Synthesis and characterization

Synthesis of 4(3-methoxyphenyl)-2,%’,2"-terpyridine (3-MeO-Phtpy),
4'-(2-methoxyphenyl)-2,2%',2"-terpyridine (2-MeO-Phtpy) and
4'-(4-methoxyphenyl)-2,%',2"-terpyridine  (4-MeO-Phtpy) was performed as
described previously (Scheme 1) [27-33]. The thtespyridine ligands were
individually incubated with IrGlin CH;OH and DMSO (v:v= 25:1) at 8 for 48 h

to obtain the corresponding iridium(lll) metal colewes1-3. Their structures were
characterized by spectroscopic and analytical nasthoncluding ESI-MS, IR

spectroscopy, UV-vis spectroscopy, elemental amalysingle-crystal X-ray



diffraction analysis, as well as NMR spectroscopy (F§sS18).

[Scheme 1]

2.2 Crystal structures of complexes 43
The X-ray crystallographic data for complexes are summarized in the Supporting
Information (Tables S$3iS9). In these complexes, the iridium(lll) center is
six-coordinate (three nitrogen ligands from theyeidine moiety plus three chloride
ligands) with a distorted octahedral geometry (Fig8). The I-N bond lengths are
in the range of 1.94&.043, 1.9382.060 and 1.938.060 A, respectively, which are
within the normal range.

[Fig. 1]

[Fig. 2]

[Fig. 3]
2.3 Stability and solubility studies of complexes-13 in TBS and distilled water
The stability of complexed—3 (3.0x10° M) in 10 mM Tris-HCI buffer solution
(TBS), pH 7.35 was monitored by following the chasgin the UV-vis, the
conductivity experiment and ESI-MS spectra (Figk2,S515, S18-S20). The UV-vis
spectra of the three complexes showed that theg stable in TBS for 48 h at room
temperature. ESI-MS characterization of these cergd revealed the most abundant
ions at m/z = 680.1 for complexag[Ir" + (3-MeO-Phtpy) + 2Cl + DMSO}, m/z =
652.1 for complexeg ([Ir"' + (2-MeO-Phtpy) + 3Cl + bD — H]), and m/z = 680.1
for complexes3 ([Ir'"' + (4-MeO-Phtpy) + 2CI + DMSO). After 48-h incubation in
TBS, there was no change in the m/z values of thst mbundant ions, confirming
that complexesl-3 were stable under this condition. Moreover, thadumtivity
experiment was thus carried out for further asseasnAs shown in Fig. S20, after

the stock solution of complexds-3 and cisplatin at their I§g concentrations were



diluted by cellular lysate (Hep-G2 cells) and wasnitored immediately, the
conductivity of cisplatin was observed to increesg@dly, comparing with three Ir(lll)
complexesl-3 solution. Finally, the conductivity value of thellalar lysate (Hep-G2
cells) of complexe4-3 and cisplatin boosted about 2.3, 2.4, 2.5 andi@és in 48 h,
respectively, therefore, it could be concluded th@tl) complexes1-3 was more
stable for 48 h in cellular lysate (Hep-G2 cellsart that of cisplatin, which further
supported the stability analysis results of UV-¥®ectroscopy and ESI-MS. Taken
together, three new Ir(lll) complexds-3 during in the required time could retain a
coordinated geometry with a positive charge undigsiplogical conditions.

In addition, the solubility of three Ir(lll) comptes 1-3 was investigated
gravimetrically in distilled water by UV-vis specaicopy [34], as shown in Fig. S21.
The solubility of Ir(lll) complexed-3 were over 0.16, 0.08 and 0.07 g/L in distilled
water at room temperature, respectively.

2.4 In vitro cytotoxicity

To analyze the in vitro antitumor activity of 3-Md@htpy, 2-MeO-Phtpy,
4-MeO-Phtpy, cisplatin, IrGland complexe$-3, we evaluated their cytotoxic effects
on the BEL-7404, Hep-G2, NCI-H460 and MGCB80-3 tuncetl lines using the
normal human HL-7702 cells as a control. The MTTogmetric assay was
performed to estimate the J@values of the compounds after a 48-h incubatiothef
cells with these compounds. As shown in Table 1%hd, complexe&-3 exhibited
lower 1Gso values (IGo= 3.19-38.27uM) against all the tested cancer cells than the
corresponding 16 values of 3-MeO-Phtpy, 2-MeO-Phtpy, 4-MeO-Phtpy arCls.
Notably, in the Hep-G2 cells, complexks3 showed higher cytotoxicity compared to
cisplatin. Among these three complexesmplex1 exhibited the highest cytotoxicity

against all the tested cell lines, followed by céewf2 and then comple8. All three



complexes displayed higher cytotoxicity againsttinaor cell lines compared to the
normal HL-7702 cell line. As shown in Table 1, cdexpl exhibited a remarkably
high selectivity index factor [36,37]. The highesivity for the tumor cells rendered
complex1 to be a promising lead anti-tumor compound.

[Table 1]
2.5 Cellular uptake and distribution of complexes 3 in the Hep-G2 cells
Cellular uptake and distribution of complexes3 in the Hep-G2 cells was measured
using ICP-MS after a 24 h exposure to the complexekeir 1Gy concentrations. As
shown in Fig. 4A, the cellular uptake level of cdexgl was determined to be 6.843 +
0.224 nmol Ir / 1B cells, higher than the levels of comp2¥5.027 + 0.107 nmol Ir /
10° cells), complex3 (3.945 + 0.209 nmol Ir / focells), and cisplatii4.025 + 0.154
nmol Pt / 16 cells). Thus, the high cytotoxicity of compléxmight be caused by its
high cellular uptake level. The cellular distritmrtiof complexed-3 in the Hep-G2
cells was determined using the methods reportedqusgly [38-41]. As shown in Fig.
4B, complexesl-3 were accumulated in the nuclear fraction and titeanondrial
fraction, whereas cisplatin was mainly accumulatetthe mitochondrial fraction. The
cellular distribution of these compounds is likeglated to the apoptotic pathways
that they activated [38—41].

[Fig. 4]
2.6 Effects of complexes 1-3 on the expression ofnyc and hTERT in the
Hep-G2 cells
Recent findings have unambiguously demonstrated tiwa expression level of
hTERT is a key regulator of the telomerase actiji®;13]. The expression of hnTERT
is regulated by several factors. For example, c-m@hown to induce the expression

of hTERT, whereas the stimulating protein 1 (Spigpsesses it [42,43]. Herein, we



examined the effects of complexes3 on the expression of c-myc and hTERT in the
Hep-G2 cells. We found that treatment with compgeke3 for 24 h downregulated
the expression of c-myc and hTERT genes and pwotaeithe Hep-G2 cells (Figs. 5
and 6). Notably, complex displayed the most significant effect, followed by
complex2 and complex3.

[Fig. 5]

[Fig. 6]
2.7 Complexes 1-3 inhibited the telomerase activity
Recent studies have demonstrated that the teloeeaasvity is elevated in
immortalized cell lines, germinal cells, and in 8% of human cancer specimens,
thereby supporting the role of telomerase in errtalization and in cancer/tumor
progression [42,43]. To investigate the effectcomplexesl-3 on the telomerase
activity in the Hep-G2 cells, the TRAP assay (TR#&Rer staining assay) was
performed on the Hep-G2 cells treated with com@dxe. As shown in Figs. 7 and
S22, complexe$-3 significantly inhibited the telomerase activitytimee Hep-G2 cells.
Again, complexl showed the highest inhibitory activity, followeg bomplex2 and
complex3.

[Fig. 7]
2.8 Transfection assay
To probe whether complexe$-3 directly regulated the c-myc promoter in the
Hep-G2 cells, the cells were transfected by thearobd green fluorescent protein
(EGFP) plasmid or the c-myc plasmid (including cen@4 DNA promoter) was then
examined by the luciferase reporter gene, usingntle¢hods reported previously
[34,38,40,44,45]. Compared with the untreated grabhp Hep-G2 cells with the

EGFP plasmid transfection emitted green fluoresedfiog. 8A), indicating that the



transfection was successful. In the Hep-G2 cedlsdiiected with the c-myc plasmid,
treatment with complexek-3 on the Hep-G2 cells induced a pronounced decrafase
the fluorescence signal in the luciferase assagesting that complexds-3 directly
targeted the c-myc promoter (Fig. 8B). Compléxcaused the most significant
decrease of the fluorescence signal (from 100.0861@0.3%).

[Fig. 8]
2.9 Mitochondrial membrane potential Ay)
Mitochondria plays a crucial role in the inductiamd control of apoptosis through the
release of proapoptotic factors such as cytochroifegt c) [46,47]. As shown in Fig.
4, complexesl-3 were accumulated in the mitochondrial fraction ahd nuclear
fraction. Therefore, alterations in the mitochoatimembrane potential{y) were
measured in the Hep-G2 cells using an invertedrdésmence microscope after
staining the cells with the JC-1 cationic dye (F. JC-1 can aggregate on intact
mitochondria with normaly values and form red fluorescence as a result ®f th
aggregation. When the mitochondria membrane isldaped and an abnormaly is
present, JC-1 remains as monomers and emits ghearedcence. Treatment with
complexesl-3 at their IGy concentrations caused a decrease in the inteoisitye
red fluorescence signal and an increase in thensiite of the green fluorescence
signal. This result indicates the cytotoxicity afngplexesl-3 is associated with a
mitochondrial pathway [46,47].

[Fig. 9]
2.10 Effects of complexes 1-3 on intracellular RO§eneration
Many anticancer agents have been shown to indécgdheration of reactive oxygen
species (ROS) [48,49], which are considered askegiators of apoptotic signaling.

We investigated the effects of complexXies3 in inducing the production of ROS in



the Hep-G2 cells. The production of ROS was exathineusing an oxidant-sensitive
fluorescent probe, 'Z’-dichlorofluorescindiacetate (DCFDA). After treatmiewith
complexesl-3 at their IGo concentrations for 24 h, the level of ROS in thepts2
cells was significantly increased, as shown in Ei@. The results demonstrated that
complexes1-3 induced the generation of ROS. Among these th@maptexes,
complexl induced the highest level of ROS.

[Fig. 10]
2.11 Effects of complexes 1-3 on the expressionagoptosis related proteins in
the Hep-G2 cells
To further elucidate the molecular mechanisms wewl in the cytotoxicity of
complexesl-3, we investigated the effects of these three coxeglen the expression
of proteins important for mitochondria-mediated @ijosis. As shown in Fig. 11, we
found that complexe$—3 were able to decrease the expression level o2 liclthe
Hep-G2 cells. In contrast, the expression of p%3, loyt ¢, and apaf-1 was increased
after the treatment with complex&s3. These proteins are involved in the induction
of mitochondrial membrane depolarization and cetiosis [48-50]. Accordingly, a
recent study has demonstrated that DNA damage tiochondrial possibly through
increased ROS generation and activation of a DNAadge response [51-58].
Moreover, 53BP1 plays a potential role in DNA damagsponses and binds to the
tumor suppressor protein p53 [39,59]. Thus, tofydhe effects of Ir(lll) complexes
1-3 on mitochondrial fraction in Hep-G2 cells, we @adrout Western blot analyses
on 53BP1 protein in Hep-G2 cells and showed theltes: Fig. 23. Compared with
the control group cells, significant increases 8BB1 level on mitochondrial fraction
in Hep-G2 cells were observed, suggesting thatl)irlbmplexes1-3 significantly

induced DNA damages on mitochondrial fraction inLBE04 cells [51-59].
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[Fig. 11]
2.12 Activation of caspase-3 and caspase-9
The activation of caspase-3 and caspase-9 plays@ortant role in the process of
programmed cell death and apoptosis [49,60]. We itmi@d the activation of
caspase-3 and caspase-9 in the Hep-G2 cells updnetitment with complexds-3
for 24 h. Compared to the untreated cells, thetdtea@ells showed activation of
caspase-3 and caspase-9 (Fig. 12), suggestingdhailexesl-3 induced cell death
via apoptosis in the Hep-G2 cells [49,60]. Thex#leated with complegt showed
the highest levels of activated caspase-3 and saspha

[Fig. 12]
2.13 Cell apoptosis
As demonstrated in the sections above, compldxes directly regulated c-myc
promoter, inhibited the expression of c-myc and RTEdisrupted the mitochondrial
function, and ultimately led to cell apoptosis [340,48-50,60-62]. The apoptotic
effects of complexe$-3 were evaluated by the Annexin V FITC and Pl daainsng
assay, which can examine the occurrence of phasplssrine externalization and
determine whether this is caused by physiologigalptosis or nonspecific necrosis
[34,38,40,48-50,60-62]. The Hep-G2 cells were &@atith complexe4-3 at their
ICso concentrations for 24 h. As shown in Fig. 13, thsult of the staining assay
confirmed that the treatment with the complexesedwapoptosis in the Hep-G2 cells.
Complex1 induced the highest level of cell apoptosis, foko by complex2 and
complex3.

[Fig. 13]

3. Conclusion
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In this study, there iridium(lll) complexes withrpgridine ligands were synthesized
and characterized by different spectroscopic an@lyda techniques. These
complexesexhibited higher cytotoxicity against different Iclshes compared to the
terpyridine ligands. More importantly, they showsslective cytotoxicity against the
tumor cell lines. In vitro assays with the Hep-@ihor cells revealed that complexes
1-3 acted as a telomerase inhibitor by directly targethe c-myc promoter elements.
Moreover, complexed-3 triggered the Hep-G2 cell apoptosis via a mitochah
dysfunction pathway, which caused ROS generatiomsrugtion of Ay,
downregulation of the expression of bcl-2 and upl&tipn the expression of p53, bax,
cyt ¢, 53BP1 and apaf-1. It should be noted thahpiex 1 showed the highest
cytotoxicity among the three complexes. The highkotoyxicity of complex1l was
postulated to be related to the substitution pmsitof the methoxy group on the
terpyridine moiety. The 3-MeO substitution corresged to highest level of cellular
uptake. Taken together, compléxs an excellent lead compound for the development

of new telomerase inhibitors.

4. Experimental methods

4.1 Synthesis

4.1.1 Synthesis and characterization of the terpydine ligands

Synthesis of 4(3-methoxyphenyl)-2,%’,2"-terpyridine (3-MeO-Phtpy),
4'-(2-methoxyphenyl)-2,%',2"-terpyridine (2-MeO-Phtpy) and
4'-(4-methoxyphenyl)-2,%',2"-terpyridine (4-MeO-Phtpy) were performed using the
methods described previously [27-33]. 2-Acetylpyréd(2.813 g, 23.2 mmol, 2 eq.)
was added to 2-methoxybenzaldehyde, 3-methoxybeeizgdie or

4-methoxybenzaldehyde (11.6 mmol, 1 eq.) dissoilmegD mL ethanol. KOH pellets
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(46.5 mmol, 4 eq.) were added to this solution. Tdwction mixture was stirred at
room temperature for 10 min. NK40 mL, 25% ag.) was slowly added to the reaction
mixture. After a 24-h incubation at 3€, 5 mL of 25% aq. NHwas added to the
reaction mixture again. The flask containing thact®n mixture was cooled to
-20 °C. The obtained white precipitate in the flagks isolated through filtration and
washed with cold ethanol. We further purified tlaele product using recrystallization
in ethanol-HO. After recrystallization, each product was recedeby filtration,
washed with cold ethanol and petroleum ether, aretl dinder high vacuum for 24 h
(Scheme 1).

Characterization of 3-MeO-Phtpy. Yield: 45.62%. B8%: m/z = 701.4 for [2M+N4]
m/z = 362.1 for [M+Na]. *H NMR (600 MHz, DMSOd):  8.68 (s, 2H), 8.55 (d} =
7.6 Hz, 4H), 7.94 (s, 2H), 7.44 (s, 2H), 7.41 (8),17.34 (s, 1H), 7.28 (s, 1H), 7.03 (s,
1H), 3.80 (s, 3H). Elemental analysis: calcd (%) @g,H1/N3O: C 77.86, H 5.05, N
12.38; found: C 77.81, H5.10, N 12.35.

Characterization of 2-MeO-Phtpy. Yield: 45.62%. B8%: m/z = 701.4 for [2M+N4]
m/z = 362.1 for [M+Na]. *H NMR (600 MHz, DMSO¢): 5 8.71 (s, 2H), 8.56 (s,
2H), 8.00 (s, 2H), 7.86 (dl = 8.1 Hz, 2H), 7.78 (s, 2H), 7.25 (s, 1H), 7.111(),
6.99 (s, 1H), 6.91 (s, 1H), 3.81 (s, 3H). Elemenatalysis: calcd (%) for £H17N30:

C 77.86, H 5.05, N 12.38; found: C 77.84, H 5.08,2\34.

Characterization of 4-MeO-Phtpy. Yield: 45.62%. B8%: m/z = 701.4 for [2M+N4]
m/z = 362.1 for [M+Na]. '"H NMR (600 MHz, DMSOd): § 8.77 (s, 2H), 8.66 (s,
4H), 7.96 (d,J = 93.6 Hz, 4H), 7.53 (s, 2H), 7.13 (s, 2H), 3.863H). Elemental
analysis: calcd (%) for £8H;17N3O: C 77.86, H 5.05, N 12.38; found: C 77.89, H 5.07
N 12.33.

4.1.2 Synthesis and characterization of complexes3
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IrClz (0.0299 g, 0.1 mmol) was mixed with 3-MeO-PhtpyM&0O-Phtpy or
4-MeO-Phtpy (0.0339 g, 0.1 mmol), 0.20 mL DMSO &0 mL CHOH in a Pyrex
tube. The Pyrex tube containing the reaction me&twas then placed in liquid,N
vacuumed and sealed. The reaction was initiatduelying the reaction mixture to 80
°C. After two days of incubation at 8, the resulting brown-black crystals were
isolated and characterized by different spectroscapd analytic techniques
Characterization of complek. Yield: 92.20%.'H NMR (600 MHz, DMSOk): &
8.87 (s, 4H), 8.75 (s, 2H), 8.32 (s, 2H), 7.78), 7.52 (s, 2H), 7.47 (s, 1H), 7.10 (s,
1H), 3.87 (s, 3H). ESI-MS: m/z = 680.1 for f§@I1+DMSOT". IR (KBr): 3913, 3887,
3782, 3697, 3658, 3432, 3065, 2942, 2839, 16037, 16473, 1406, 1352, 1265, 1214,
1164, 1100, 1028, 904, 849, 787, 731, 688, 651, 867 cm'. Elemental analysis:
calcd (%) for G,H1/Cl3lrN3O: C 41.42, H 2.69, N 6.59; found: C 41.39, H 2.H5,
6.60.

Characterization of compleg. Yield: 85.30%."H NMR (600 MHz, DMSOk): &
8.87 (d,J= 6.9 Hz, 4H), 8.66 (s, 2H), 8.33 (s, 2H), 7.782d), 7.58 (s, 1H), 7.50 (s,
1H), 7.22 (s, 1H), 7.15 (s, 1H), 3.84 (s, 3H). B&: m/z = 652.1 for [M+HO-H] .

IR (KBr): 3913, 3887, 3783, 3695, 3658, 3432, 308973, 2842, 1601, 1542, 1496,
1469, 1410, 1295, 1247, 1161, 1130, 1098, 10514,1889, 843, 791, 760, 655, 636
cm . Elemental analysis: calcd (%) for817ClalrN;O: C 41.42, H 2.69, N 6.59;
found: C 41.35, H 2.73, N 6.57.

Characterization of comple®. Yield: 80.90%.'H NMR (600 MHz, DMSO): &
8.89 (d,J = 7.8 Hz, 2H), 8.86 (s, 2H), 8.73 (s, 2H), 8.3420d), 7.95 (s, 2H), 7.79 (s,
2H), 7.11 (s, 2H), 3.83 (s, 3H). ESI-MS: m/z = @8fbr [M—-CI+DMSOJ'. IR (KBr):
3957, 3913, 3783, 3696, 3659, 3633, 3574, 34597, 30867, 2836, 1560, 1519, 1464,

1435, 1409, 1304, 1241, 1189, 1121, 1026, 889, 820, 759, 726, 653, 601, 519,
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461, 430 crt. Elemental analysis: calcd (%) fop817ClslrN;O: C 41.42, H 2.69, N
6.59; found: C 41.37, H 2.71, N 6.56.

4.2 Instrumentation, materials and other experimenal methods

The instrumentation, materials, and methods ofeckfit in vitro assays and
experiments, including the MTT assay, determinatainthe cellular uptake and
distribution of complexe4-3, the JC-1 staining assay, detection of ROS gepearat
cell apoptosis analysis, western blot, RT-PCR, #mel transfection assayyere
described in Ng and Chen previously published W8#37-40,63]. The TRAP-silver

staining assay was performed using methods reppredously [62,64].

Supporting Information

Vendor codes for 3-MeO-Phtpy, 2-MeO-Phtpy, 4-MeQphand complexed-3,
inhibitory rates (%) against the selected five hancall lines, as well as ESI-MS,
UV-vis, "H NMR, IR and crystallographic data. In additionCBC No. 1561943,
1561944 and 1561950 for iridium(lll) complex&s3 contains the supplementary

crystallographic data for this paper.
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Figure legends

Fig. 1. ORTEP drawing of complek Thermal ellipsoids for non-hydrogen atoms are
drawn at a level of 30% probability.

Fig. 2 ORTEP drawing of complex

Fig. 3. ORTEP drawing of compleX

Fig. 4. Ir or Pt contents in the Hep-G2 cancer cellsgAjl different cellular fractions
(B). ICP-MS was used to determine the metal coatent

Fig. 5. RT-PCR analysis of the expression level of c-ragd hTERT in the Hep-G2
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cells treated with complexds-3 at their IGo concentrations for 24 h.

Fig. 6. Western blot analysis of the expression level ofiye and hTERT in the
Hep-G2 cells treated with complex&s3 at their IGo concentrations for 24 h. (A)
C-myc and hTERT protein levels in Hep-G2 cells wemnalyzed by western blot. (B)
The whole-cell extracts were prepared and analygetVestern blot analysis using
antibodies against c-myc and hTERT. The same blete stripped and re-probed
with af-actin antibody to show equal protein loading. Wastblot bands from three
independent measurements were quantified with Indage (B), withthe mean = SD
(standard error of the mean).

Fig. 7. Inhibition of the telomerase activity by complex&s3 at their 1Go
concentrations in the Hep-G2 cancer cells for 24 h.

Fig. 8. Transfection of the EGFP plasmid (A) and the c-npjasmid (B) in the
Hep-G2 tumor cells. In (A), the cells were imagethg a Nikon Te2000 microscope
(magnification 200x). In (B), the transfected celisre treated complexds3 at their
ICso concentrations for 24 h. The expression level -ofiyc was determined by a
multi-model plate reader with luciferase reporteng assay Kkit.

Fig. 9. Fluorescence spectroscopic characterization oHine- G2 cells treated with
complexesl-3 at their 1Go concentrations for 24 h. The treated cells weaaet by
the JC-1 dye and imaged using a Nikon Te2000 ntoges (magnification 200x).

Fig. 10 Determination of ROS generation in the Hep-G2 dedlated with complexes
1-3 at their 1Go concentrations for 24 h. The treated cells wesnstl by an
oxidant-sensitive fluorescent probée,72dichlorofluorescindiacetate (DCFDA) and
imaged using a Nikon Te2000 microscope (magnificaB00x).

Fig. 11 Western blot analysis of the effects of compleke3 on the expression levels

of proteins involved in mitochondrion-initiated agosis. (A) The apoptosis related
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proteins protein levels in Hep-G2 cells were anadysdy western blot. (B) The
whole-cell extracts were prepared and analyzed Bsté/n blot analysis using
antibodies against apoptosis related proteins. Jdme blots were stripped and
re-probed with g-actin antibody to show equal protein loading. Westblot bands
from three independent measurements were quaniftadmage J. in (B).

Fig. 12 Flow cytometry analysis of the effects of compglet-3 on the levels of
active caspase-3 and caspase-9 in the Hep-G2 cells.

Fig. 13 Apoptosis rate of the Hep-G2 cells. These Hepe@ls were the three Ir
complexesl-3 at their IGo concentrations for 24 h and stained with AnnexRIVC
and PI, followed by flow cytometry analysis.

Scheme 1 Synthetic routes for three terpyridine ligandsl ahe corresponding Ir

complex1-3.

Table 1.1Cs¢” values [iM) of 3-MeO-Phtpy, 2-MeO-Phtpy, 4-MeO-Phtpy, cigpia

and complexe%-3 on the five selected human cell lines.

Compound BEL-7404  Hep-G2  NCI-H460 MGC80-3 HL-7702
3MeO-Phpy 34345102 19.67:0.73 19.96:0.35 20.96:031  35.HI(1.78)
L 27.77+059 3.19+1.15 6.93t0.44 8.68+1.05  37.51+(14676)
2 MeO-Phipy  30:9420.80 26.40+145 24.73:110 2302144  17.18(0.65)
) 31.29+1.30 6.63+1.01 10.42+1.39 14.69+2.12  31.468-(4.75)
4MeO-Phypy 5078%0.65 2843:0.39 33.78+1.76 35712092  18.MI2(0.64)
3 38.27+0.43 15.08:0.62 27.91#0.93 22.09:0.71  39.153(2.59)
Cisplatirf 16.91+1.01 18.68+0.67 18.01+1.23 13.99+0.76 171984 (0.96)

8The 1Gs values are presented as meai (standard error of the mean) from five or

six independent experimenf<Cisplatin was prepared at a concentration of 1.0imM
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a 0.154 M NaCl solution [34,35]. The selectivity index factors, defined assdC

(HL-7702 cells)/IGo (Hep-G2 tumor cells), are shown in parenthese3[36
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Highlights:

* There iridium(lll) complexes with terpyridine hgds were synthesized and
characterized.

» Complexes1-3 directly targeted c-myc promoter elements and itddb the
telomerase activity

» 1-3 may trigger cell apoptosis via a mitochondrialfdpstion pathway



