

Available online at www.sciencedirect.com

INORGANIC CHEMISTRY COMMUNICATIONS

Inorganic Chemistry Communications 10 (2007) 1307-1310

www.elsevier.com/locate/inoche

Sulfur bridging by acetophenone thiosemicarbazone in $[Ag(\mu-dppm)_2(\mu-SR)Ag(ONO_2)](NO_3)$ dimer with a new $\{Ag_2(\mu-P,P)_2(\mu-SR)\}$ core

Tarlok S. Lobana ^{a,*}, Sonia Khanna ^a, Alfonso Castineiras ^b

^a Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India ^b Departamento De Quimica Inorganica, Facultad de Farmacia, Universidad de Santiago, 15782 Santiago, Spain

> Received 11 July 2007; accepted 7 August 2007 Available online 15 August 2007

Abstract

Acetophenone thiosemicarbazone (Haptsc) with silver(I) nitrate and $Ph_2P-CH_2-PPh_2$ (dppm) has formed a first example of triply hetero-bridged [Ag(μ -P,P-dppm)_2(μ -S-Haptsc)Ag(ONO₂)]NO₃ dimer with a short Ag · · · Ag contact of 2.9939(7) Å. © 2007 Elsevier B.V. All rights reserved.

Keywords: Acetophenone thiosemicarbazone; Silver(I); Bis(diphenylphosphino)methane; Triply bridging; Asymmetrically coordinated

In literature, diphosphine complexes of silver(I) usually adopt modes A–C having two or more than two P, Pbridges (Chart 1) [1–7]. For example, mode A is shown by bis(diphenylphosphino)methane in $[(NO_3)Ag(\mu-P,P-dppm)_2Ag(NO_3)]$ [1]. Similarly, mode B is shown by bis(diphenylphosphino)pentane in $[Ag(\mu-P,P-dppp)_2(\mu-Cl)_2Ag]$ [2]. Bis(diphenylphosphino)ferrocene shows coordination mode C in $[(HCOO)Ag(\mu-P,P-dppf)_3Ag(HCOO)]$ complex [3].

There are a few reports on silver(I)-thiosemicarbazone chemistry, namely, the formation of a hexameric complex $[Ag_6(HL)_6]$ (HL = anion of salicylaldehyde thiosemicarbazone) with N²–S-bridging cum-S-bridging coordination mode, and a few other complexes characterized by analytical data and spectroscopically [8]. As a part of our interest in metal-thiosemicarbazone chemistry [9], it was desired to explore $Ag_2(\mu$ -P,P)_m cores (m = 1–3), bonded to thiosemicarbazones.

In a typical reaction, acetophenone thiosemicarbazone was reacted with silver(I) nitrate and dppm, leading to the formation of the dimer, $[Ag(\mu-P,P-dppm)_2(\mu-S-Hap-$

tsc)-Ag(ONO₂)]NO₃ **1**. It has sulfur bridging across the $Ag_2(\mu$ -P,P-dppm)₂ core, and it represents a new coordination mode D in metal-thiosemicarbazone chemistry, which is reported in this communication (Scheme 1).

Reaction of AgNO₃ (0.025 g, 0.14 mmol) with one mole of dppm (0.056 g, 0.14 mmol) in CH₃CN (10 mL) at 40 °C, followed by the addition of one mole of Haptsc ligand (0.028 g, 0.14 mmol) in methanol (5 mL) under magnetic stirring for 2 h, has formed compound, $[Ag(u-P,P-dppm)_2]$ $(\mu$ -S-Haptsc)Ag(ONO₂)]NO₃ 1. Its IR spectrum shows the presence of v(N-H) bands at 3342 cm⁻¹ (due to $-N^{1}H_{2}$ group), and 3165 cm⁻¹ (due to $-N^{2}H$ group), supporting the interaction of thiosemicarbazone ligand with silver(I) as a neutral ligand. A thioamide band, v(C=S) at 833 cm^{-1} shifts to lower energy while v(C–N) bands at 999, 1024 cm⁻¹ show a shift to higher energy with respect to the free Haptsc ligand {v(C=S), 844 cm⁻¹; v(C-N), 916, 962 cm⁻¹}. Medium to broad peaks are observed in $1480 - 1605 \text{ cm}^{-1}$ the region corresponding to $\{\delta NH_2 + v(C=N) + v(C=C)\}$ vibrational modes, which are at slightly higher energy regions vis-à-vis the free ligand. Presence of characteristic $v(P-C_{Ph})$ band at 1095 cm⁻¹ indicates the presence of coordinated dppm in the complex, and it shifted to slightly higher energy region

^{*} Corresponding author. Fax: +91 183 2 258820.

E-mail address: tarlokslobana@yahoo.co.in (T.S. Lobana).

^{1387-7003/\$ -} see front matter @ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.inoche.2007.08.005

with respect to the free ligand (1091 cm^{-1}) . The coordinated and ionic nitrate bands in the complex appear at 1605, 1384 and 1304 cm⁻¹ and could not be assigned separately due to various other bands in this region [10]. In order to resolve the bonding by nitrate and to establish the geometry around silver atoms, single crystal structure determination has been carried out.

The crystal structure of complex 1 shows the presence of two silver(I) atoms bridged by two dppm and one acetophenone thiosemicarbazone ligands, resulting in a triply bridged dinuclear complex [Ag(µ-P,P-dppm)₂(µ-S-Haptsc)Ag(ONO₂)]NO₃ 1 (Fig. 1). Compound 1 has one unidentate NO₃⁻ coordinating to one Ag(I) center and the second NO_3^- is outside the coordination sphere. Further, compound 1 has two asymmetrically coordinated silver(I) centers, one is three coordinated and second is four coordinated. It is known that the complex of silver(I) nitrate with dppm is dinuclear $[(NO_3)Ag(\mu-P,P-dppm)_2Ag(NO_3)]$ [1] and has P, P bridges along with chelating nitrates. The formation of 1 may be treated as sulfur bridging across $Ag(\mu$ -P,P-dppm)₂Ag core of $[(NO_3)Ag(\mu-P,P-dppm)_2Ag(NO_3)]$ with simultaneous movement of one nitrate outside the coordination sphere.

Fig. 1. Structure of complex 1 with atomic numbering scheme. Selected bond lengths (Å) and angles (°): Ag(1)-Ag(2) 2.9939(7), Ag(1)-S(1) 2.6282(18), Ag(1)-P(11) 2.4612(7), Ag(1)-P(41) 2.4500(17), Ag(2)-S(1) 2.5971(18), Ag(2) -P(31) 2.4375(17), Ag(2)-P(21) 2.4575(17), S(1)-C(18) 1.704(7), Ag(2) -O(11) 2.462(5), P(41)-Ag(1)-P(11) 128.47(6), P(41)-Ag(1)-S(1) 107.29(6), P(11)-Ag(1)-S(1) 114.55(6), P(31)-Ag(2)-P(21) 132.56(6), P(31)-Ag(2)-O(11) 109.14(14), P(21)-Ag(2)-O(11) 88.85(12), P(31)-Ag(2)-S(1) 110.78(6), P(21)-Ag(2)-S(1) 109.76(6), O(11)-Ag(2)-S(1) 97.38(14), C(18)-S(1)-Ag(2) 100.2(2), C(18)-S(1)-Ag(1) 105.8(3), Ag(2)-S(1)-Ag(1) 69.91(5).

In complex 1, the bond angles around one of the silver atoms, 107.29(6)–128.47(6)° support a distorted trigonal planar geometry with the P(41)–Ag(1)–S angle being the smallest (107.29(6)°) and the P(41)–Ag(1)–P(11) being the largest angle (128.47(6)°). The second silver atom exhibits a distorted tetrahedral geometry as the bond angles range from $88.85(12)^\circ$ to $110.78(6)^\circ$. The P–Ag–P' bond angles in 1 are nonlinear resulting in the folding of the central Ag₂P₄ core across Ag···Ag axis. The introduction of sulfur bridging across Ag₂P₄ core bends P–Ag–P' angles to $128.47(6)^\circ$ and $132.56(6)^\circ$, shorter than $138.3(1)^\circ$ in the compound [(NO₃)Ag(µ-P,P-dppm)₂Ag(NO₃)] [1].

Two Ag and one S atoms form an isosceles triangle {S-Ag-Ag, 54.56(4)°, 55.53(4)°, S-Ag-S, 69.91(5)°}, bringing the Ag···Ag contact to 2.9939(7) Å, less than twice the sum of radius of silver(I), (3.4 Å) [11]. This distance is shorter than 3.085(1) Å in [(NO₃)Ag(μ -P,P)₂Ag(NO₃)] [1]. The S-Ag-S bond angle of 69.91(5)° is slightly shorter than 72–74° in sulfur bridged complex [Ag(CN)₂(etu)₂]_n (et = 2-imidazolidinethione) [11].

Two molecules of dppm bridge the Ag atoms with Ag–P bond distances in the range, 2.437–2.461 Å. The Ag–P bond distances are slightly longer than ca. 2.417–2.436 Å

in [(NO₃)Ag(μ -P,P-dppm)₂Ag(NO₃)][1]. Neutral acetophenone thiosemicarbazone ligand bridges across Ag(μ -P,P)₂Ag core via its sulfur atom, with Ag–S bond distance of 2.6282(18), 2.5971(18) Å. These Ag–S bond distances are longer than 2.573(1) Å in [Ag(pymtH)(PPh₃)₂]NO₃ (pymtH = pyrimidine-2-thione) [12]. The nitrate is coordinated to silver atom in **1** via one of its oxygen atoms with a bond distance of 2.462(5) Å, comparable with Ag–O distance of 2.689(6) Å in [(NO₃)Ag(μ -P,P-dppm)₂Ag(NO₃)] [1]. It may be noted that bridging of Ag(μ -P,P-dppm)₂Ag core by sulfur atom of Haptsc has brought Ag–Ag contact close to 2.9939(7) Å, less than twice the sum of radius of silver(I), (3.4 Å) [13].

The imino hydrogen $(-N^2H)$ is engaged in strong intramolecular hydrogen bonding with the coordinated oxygen atom $(-N^2H\cdots ONO_2, 2.51 \text{ Å})$ as well as with the non-coordinated oxygen atom $(-N^2H\cdots ONO_2, 2.14 \text{ Å})$ of the bonded nitrate group (Fig. 2). On the other hand, one hydrogen atom of amino group $(-N^1H_2)$ is engaged in strong intramolecular hydrogen bonding with the azomethine nitrogen $(-HN^1H\cdots N^3, 2.23 \text{ Å})$ and inter-molecular H-bonding with two oxygen atoms of the non-coordinated nitrate group $(-HN^1H\cdots O, 2.48, 2.56 \text{ Å})$ while the second hydrogen atom forms a strong intermolecular hydrogen bonding with one oxygen atom of the second non-coordinated nitrate group $(-HN^1H\cdots O, 2.29 \text{ Å})$, forming an eight membered cavity in the center. These interactions result in the formation of a hydrogen-bonded tetramer.

The ¹H NMR spectrum of compound **1** in CDCl₃ (polar solvent) shows the $-N^{2}H$ signal at δ 10.53 ppm, which is upfield relative to the free ligand. A single signal at δ 8.75 ppm, is observed for $-N^{1}H_{2}$ proton, while second signal is obscured by the multiplet signals due to the phenyl protons

of Haptsc, and dppm ligands (δ 7.00–7.69 ppm). Methyl protons of Haptsc ligand show a single signal at δ 2.22 ppm. Methylene protons of dppm ligands appear as a pair of doublets at δ 3.21, 3.60 ppm. Further, the ³¹P NMR spectrum of **1** shows two signals at δ , -106.2 ppm, and δ , -109.7 ppm with coordination shifts ($\delta_{complex} - \delta_{ligand}$) of 24.01 and 20.5 ppm, respectively, supporting the presence of two non-equivalent phosphorous atoms in the complex.

In conclusion, complex 1 reveals a new coordination core {Ag₂(µ-P,P)₂(µ-SR)} in metal-thiosemicarbazone chemistry. In literature, modes close to 1 are shown by heterocyclic thioamides with dppm as a coligand, as in [Rh₂(CO)₂(µ-S-L)(µ-P,P-dppm)₂]Cl · CH₂CL₂ (L = 1,3-thiazolidine-2-thione), [Cu₂(µ-S-L)₂(µ-P,P-dppm)(η¹-P-dppm)] (L = 6-tertbutyl-dimethylsilylpyridine-2-thione) [14–16].

Compound 1: Mp 190–192 °C, yield: 0.050 g, 52%. C, H, N, analysis for C₅₉H₅₅Ag₂N₅O₆P₄S: C, 54.38; H, 4.22; N, 5.38. Found: C, 54.28; H, 4.16; N, 5.13. Main IR peaks (KBr, cm⁻¹): v(N–H), 3342 m (–NH₂) 3165m (–NH); δ (NH₂) + v(C=N) + v(C–C), 1541s, 1483s; v(C=S) + v(C– N), 1024s, 999s, 833s (thioamide moiety); 1095 v(P–C_{Ph}). ¹H NMR data (δ , ppm; CDCl₃), 10.53 (s, N²H), 8.75 (sb, -N¹H₂), 7.00–7.69 (m, Ph + –N¹H₂), 3.21, 3.60 (d, –CH₂), 2.22 (s, CH₃). ³¹P NMR data (δ , ppm, CDCl₃), –106.2, –109.7 ppm, $\Delta\delta(\delta_{complex} - \delta_{ligand}) = 24.01$, 20.5 ppm (³¹P NMR spectra were recorded by taking TMP {(MeO)₃P} as external reference taken at zero position).

Crystallographic data for 1: $C_{59}H_{55}Ag_2N_5O_6P_4S$, M = 1301.76, monoclinic, a = 25.057(2) Å, b = 15.3627(14) Å, c = 31.365(3) Å, $\alpha = 90^{\circ}$, $\beta = 98.4040(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 11944.1(18) Å³, T = 100(2) K, space group C2/c (No. 15), $\rho_{calcd} = 1.448$ g cm⁻³, Z = 8, μ (Mo-K α) = 0.850 mm⁻¹, 62,522 reflections measured on a Bruker X8 Kappa

Fig. 2. Packing diagram of complex 1.

APEXII diffractometer unique 12,282 ($R_{int} = 0.0524$). The final R_1 0.0672 was for 7030 reflections [$I > 2\sigma(I)$] and wR_2 was 0.1658.

Acknowledgement

Financial support from CSIR, New Delhi, to one of us (Sonia) is gratefully acknowledged.

Appendix A. Supplementary material

CCDC 653471 contains the supplementary crystallographic data for compound **1**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data _request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.inoche.2007.08.005.

References

- [1] (a) D. Ho, R. Bau, Inorg. Chem. 22 (1983) 4073;
- (b) E.R.T. Tiekink, Acta Crystallogr. C 46 (1990) 235.
- [2] A. Cassel, Acta Crystallogr. B 32 (1976) 2521.
- [3] T.S.A. Hor, S.P. Neo, C.S. Tan, T.C.W. Mak, K.-P. Leung, R.-J. Wang, Inorg. Chem. 31 (1992) 4510.
- [4] E.R.T. Tiekink, Acta Crystallogr. C 46 (1990) 1933.
- [5] Y. Rui-Na, X. Wen-Gang, W. Dong-Wei, J. Dou-Man, C. Liao-Rong, L. Bao-Sheng, Jiegou Hauxue 14 (1995) 229.

- [6] S. Kitagawa, M. Kondo, S. Kawata, S. Wada, M. Maekawa, M. Munakata, Inorg. Chem. 34 (1995) 1455.
- [7] E. Lozano, M. Nieuwenhuyzen, S.L. James, Chem. Eur. J. 7 (2001) 2644.
- [8] (a) L.A. Ashfield, A.R. Cowley, J.R. Dilworth, P.S. Donnely, Inorg. Chem. 43 (2004) 4121;
 (h) T. L. L. Chem. A. Chem. M. K. Chem. A. L. L. Chem. 43 (2004) 4121;

(b) T.S. Lobana, G. Bhargava, V. Sharma, M. Kumar, Ind. J. Chem. 42A (2003) 309.

[9] (a) T.S. Lobana, S. Khanna, R.J. Butcher, A.D. Hunter, M. Zeller, Polyhedron 25 (2006) 2755;

(b) T.S. Lobana, Rekha, A. Castineiras, Inorg. Chem. Commun. 8 (2005) 1094;

(c) T.S. Lobana, Rekha, R.J. Butcher, A. Castineiras, E. Bermejo, P.V. Bharatam, Inorg. Chem. 45 (2006) 1535;

(d) T.S. Lobana, Rekha, R.J. Butcher, Transit. Metal. Chem. 29 (2004) 291;

(e) T.S. Lobana, G. Bawa, Ray J. Butcher, B.-J. Liaw, C.W. Liu, Polyhedron 25 (2006) 2897.

- [10] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Fifth ed., Wiley-Interscience Publication, New York, 1997.
- [11] F.B. Stocker, D. Britton, V.G. Young Jr., Inorg. Chem. 39 (2000) 3479.
- [12] P. Aslanidis, P. Karagiannidis, P.D. Akrivos, B. Krebs, M. Lage, Inorg. Chim. Acta 254 (1997) 277.
- [13] J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Principals of Structure and Reactivity, Fourth ed., Harper Collins College, Publishers, New York, 1993.
- [14] (a) E.S. Raper, Coord. Chem. Rev. 165 (1997) 475;
 (b) J.A. Garcia-Vazquez, J. Romero, A. Sousa, Coord. Chem. Rev. 193-195 (1999) 691.
- [15] J. Xiau, M. Cowie, Can J. Chem. 71 (1993) 726.
- [16] P. Perez-Lairido, J.A. Garcia-Vazquez, J. Romero, M.S. Louro, A. Sousa, J. Zubieta, Inorg. Chim. Acta 271 (1998) 1.