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Hydrozirconation of 1-hexyne, the addition to in situ prepared N-acyliminium species, and ring-closing metathesis (RCM) were key

steps in the preparation of a tricyclic isoindolinone scaffold. An unusual alkene isomerization process during the RCM was identi-

fied and studied in some detail. Chemical diversification for library synthesis was achieved by a subsequent alkene epoxidation and
zinc-mediated aminolysis reaction. The resulting library products provided selective hits among a large number of high-throughput
screens reported in PubChem, thus illustrating the utility of the novel scaffold.

Introduction

Isoindolinones represent a common scaffold seen in naturally
occurring compounds such as magallanesine [1], lennoxamine
[2] and clitocybin A [3], or drug candidates such as pagoclone
[4] (Figure 1). These heterocycles have demonstrated a variety
of pharmacological activities, including anti-inflammatory [5],
antihypertensive [6] and vasodilatory [7], antipsychotic [8,9],
and anticancer effects [10]. Due to the broad biological
properties and the general utility of isoindolinones in the
preparation of other synthetic building blocks, a variety of
approaches for the preparation of these heterocycles have been

explored [11-18]. Previously, we reported on the addition of
organometallic reagents to in situ generated N-acyliminium ions
[19]. This methodology applies to a variety of commercially
available or easily prepared starting materials and creates many
opportunities for further functionalization and chemical library
synthesis. For example, a ring-closing metathesis of the alkene
addition product affords structurally novel tricyclic iso-
indolinones with a newly formed seven-membered ring [19].
We have now developed this concept further toward a library

synthesis of functionalized azepino-isoindolinone derivatives.
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Figure 1: Representative isoindolinone natural products and pharma-
ceuticals.

Results and Discussion

N-Alkylation of phthalimide with 4-penten-1-ol under
Mitsunobu conditions, followed by NaBHy4 reduction and
pivaloate protection of the intermediate hemiaminal, provided
alkene 1 in 59% overall yield (Scheme 1). After hydrozircona-
tion of 1-hexyne with zirconocene hydrochloride [20-23],
addition of trimethylaluminium activated the in situ generated
alkenylzirconocene and allowed the displacement of the
pivaloate on 1 in 55% yield to afford diene 2 [19,24].

Ring-closing metathesis of 2 using Grubbs 2" generation cata-
lyst [25] in the presence of 1 equiv of Ti(OiPr)4 [26,27] at room
temperature provided, surprisingly, a modest 45% yield of the
alkene-isomerized homoallylic amide 3 instead of the expected
allylic amide 4 (Scheme 1). This result was reproduced with
Zhan catalyst-1B [28,29], which gave 3 in 50% yield. The
structure of alkene 3 was determined based on the X-ray
analysis of epoxide 5 (Figure 2), obtained with NaHCO3-
buffered meta-chloroperbenzoic acid (m-CPBA) in 57% yield
[30,31].

The surprising formation of 3 instead of 4 under the metathesis
conditions could be explained by a ruthenium-catalyzed double-
bond isomerization [32]. The release of ring strain, however,
can only be partially responsible for this facile isomerization.
DEFT calculations of the five possible alkene isomers of 4 indi-
cated a decrease in relative energy from 4 to 3, but other
isomers were even lower in energy (Figure 3). The starting
geometries for the alkene isomers prior to DFT optimizations
were obtained by a conformational search using the MMFF
force field.
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Scheme 1: Formation of isomerized azepinoisoindoline 3 and
oxirane 5.

Figure 2: X-Ray structure of epoxide 5.

In order to investigate the factors influencing the alkene isomer-
ization process, we conducted a ring-closing metathesis in the
absence of Ti(OiPr)4 (Scheme 2). The resulting product was
different from 3, based on a TLC analysis, but proved to be
quite labile during workup. Therefore, it was immediately

subjected to m-CPBA epoxidation conditions to give a modest
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Figure 3: Relative energies of alkene isomers based on RB3LYP/6-311G* calculations with MacSpartan '06.

yield of the further oxidized 6, which was structurally assigned
by X-ray analysis (Figure 4). The formation of 6 implies the
intermediate presence of alkene 4, the product of a regular
RCM of diene 2. Accordingly, the isolation of 6, and the
absence of significant quantities of 5, confirmed the chelating
additive Ti(OiPr)4 as the primary factor responsible for the
isomerization of 4 to 3 in the previous reaction sequence. An
additional contributing reason for the exclusive formation of 3
in the earlier metathesis reactions could be the decomposition of
the acid-labile isomer 4 under the reaction and chromato-
graphic-purification conditions. A possible pathway for
decomposition is indicated by the benzylic/allylic methine oxi-
dation product 6. The ability of Ti(OiPr)4 to induce alkene
isomerization during the ring-closing metathesis reaction is
noteworthy; while there are a number of additives known to
decrease the rate of isomerization in RCM [33-35], we are
unaware of any previous report on an alkene-isomerization-
promoting effect of an additive in this reaction. We can specu-
late that the presence of Ti(OiPr), stabilizes the ruthenium
alkylidene complex and, thus allows product isomerization to
take place during and after the RCM reaction (see below).

MesN_ _NM
es es
Clln,.g/
u=
c”' | “ph m-CPBA
PCys NaHCO,
2 [4]
toluene, rt benzene, rt

20% (two steps)

Scheme 2: Ring-closing metathesis of diene 2 in the absence of
Ti(OiPr)4 and isolation of hydroxy epoxide 6 after treatment with
m-CPBA.

We also briefly studied the influence of the diene substitution
pattern on the rate of isomerization from 4 to 3 and the corres-

ponding product distribution (Scheme 3). Addition of in situ

y

¢

Figure 4: X-Ray structure of epoxyalcohol 6.

prepared vinyl alane to pivaloate 1 provided the diene 7 in 80%
yield. RCM with Grubbs second-generation catalyst in the
presence of Ti(OiPr),4 led to an exclusive conversion to alkene
4, i.e., no alkene isomerization was observed in this case, and
no homoallylic amide 3 was detected in the reaction mixture.
Similarly, in the absence of Ti(OiPr)4, crude 4 was obtained in
77% yield (Supporting Information File 1). The different reac-
tion course with alkenes 2 and 7 indicates a role of the ruthe-
nium carbene intermediate in the isomerization. Metathesis of 2
leads to an alkylidene complex, that could form a ruthenium
hydride species. In contrast, metathesis of 7 provides a more
reactive methylidene complex that is also likely to decompose
more quickly and, thus, be unavailable for isomerization of the
kinetic product 4 beyond the time span of the completion of the
RCM reaction [36]. It was, however, difficult to purify product
4 due to its chemical instability. When the RCM reaction of 7
was conducted on larger scale in the absence of Ti(OiPr),4, and
the crude intermediate was subjected to m-CPBA oxidation,
epoxy alcohol 6 was isolated in 11% overall yield. LC-MS as
well as NMR analyses suggested a 5:1 ratio of epimers at the
hemiacetal carbon. Hydroxylation/oxidation at the benzylic
position with m-CPBA in air in the presence of bicarbonate has
been observed previously, and a radical mechanism was
proposed [37].
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Scheme 3: Preparation and RCM reaction of bis-terminal diene
analogue 7.

In summary, these studies suggest that the alkene isomerization
from allylic to homoallylic amides under RCM conditions is
both dependent on the presence of the Lewis acidic additive
Ti(OiPr)4 as well as the substitution pattern of the a,w-diene

precursor.

With alkene 3 and the corresponding epoxide 5 in hand, a Znl,-
mediated amine alkylation protocol could be employed, which
introduced a variety of nitrogen nucleophiles 8{1-13}
(Scheme 4) [38,39]. Co(ClO4); hexahydrate could also be used

0
X 8{1-13
( \ {1-13}
Z
H ZnI2, CH3CN
80 °C

9{1-13}, major

Scheme 4: Conversion of epoxide 5 to 1,2-amino alcohols.
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in place of Znl,, but was generally less efficient (Table 1).
Anilines with electron-withdrawing (CF3, CN, CO,Et), elec-
tron-donating (OCH3), and halogen substituents (F, CI, Br) in
ortho-, meta- and para-positions were used (Figure 5). Further-
more, aminopyridines 8{/1} and 8{12} as well as aliphatic
amine 8{13} were compatible with the reaction conditions. With
the exception of 8{13}, two regioisomeric products were
formed: the major isomer 9{/—12} was obtained by an attack on
the distal carbon atom of the epoxide, while the minor isomer
10{7/-13} was obtained by proximal ring opening. These
isomers were separated by chromatography on SiO,, and an
X-ray analysis confirmed the structural assignment for 10{7}
(Figure 6). The remainder of the library products were assigned

Table 1: Library matrix of products 9{7-13} and 10{7-13} [isolated
yield (%) and purity by ELSD (%)].

o o]
N N
H H
’N’R H OH
N :
OH HN‘R
Amine 9{1-13} 10{1-13}
segment R
8{1} 56 (>99) 19 (94)2
8{2} 81 (95) 15 (>99)
8{3} 24 (>99) 10 (99)
8{4} 72 (99) 17 (99)
8{5} 44 (99) 33 (95)
8{6} 69 (>99) 17 (95)
8{7} 41 (>99) 12 (>99)
8{8} 58 (99) 26 (98)
8{9} 85 (99) 15 (99)
8{10} 59 (>99) 15 (72)
8{11} 59 (>99) 32 (>99)
8{12} 20 (99) b
8{13} =P 46 (>99)

aCo(ClO4)2-6H,0 was used in place of Znly; PProduct was not
isolated.

OH
10{7-13}, minor
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Figure 5: Amine building blocks for library synthesis.

»

Figure 6: X-ray structure of amino alcohol 10{7}.

based on the characteristic chemical-shift data for 10{7} and its
congener 9{7} [40]. Yields and purities of amino alcohols
9{1-12} and 10{I-13} are summarized in Table 1.

The 9{1-11}/10{1-11} isolated product ratios varied between
5:1 and 1.5:1, with no obvious trends discernable. Interestingly,
for adamantyl amine 8{13}, only the corresponding 10{13} was
isolated, most likely due to the steric bulk of the adamantyl
group: molecular mechanics calculations indicate that the
aminolysis of 5 to regioisomer 10 proceeds with minimal

isomerization of the seven-membered ring geometry in the

Beilstein J. Org. Chem. 2012, 8, 1091-1097.

lowest-energy product conformer, whereas the formation of 9

requires a substantial ring flip [41].

Conclusion

A library of novel tricyclic isoindolinone amino alcohols was
prepared in seven steps from commercially available starting
materials. Key transformations include the addition of in situ
generated alkenylalanes to an N-acyliminium ion derived from
pivaloate 1, a tandem ring-closing metathesis—isomerization
sequence and a Znly-mediated epoxide aminolysis. We investi-
gated the factors influencing the alkene isomerization during the
RCM process, and identified the presence of the additive
Ti(OiPr)4, the substitution pattern on the alkene, and the
chemical reactivity of the benzylic allylic methine carbon to be
significant contributors. Regioisomeric library products 9 and
10 were submitted to the NIH Small Molecule Repository
(SMR) [42], screened in the Molecular Libraries Probe Center
Network (MLPCN) [43], and biological results were deposited
in PubChem [44]. For example, 9{2} was tested in 188 assays
and identified as an active hit (based on the hit criteria in the
individual test systems) in 4 assays, including a cell-based assay
to identify antagonists of the orexin 1 receptor; an assay to iden-
tify inhibitors of Apaf-1 (apoptotic peptidase activating factor
1); a cell-based assay to identify antagonists of the human M1
muscarinic receptor; and a cellular assay to identify human
immunodeficiency virus 1 inhibitors. Amino alcohol 9{7} was
tested in 185 bioassays reported in PubChem, and found to
serve as an inhibitor of human platelet activating factor acetyl-
hydrolase 2 (PAFAH2). It is clear from these and other
screening data disclosed for this series in the PubChem data-
base that the tricyclic isoindolinone scaffolds hold strong poten-

tial for the development of selective and potent lead structures.

Supporting Information

Supporting information contains experimental procedures

for newly synthesized compounds and NMR spectra.

Supporting Information File 1

Experimental procedures and characterization details of
synthesized compounds.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-8-120-S1.pdf]
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